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T3: Half-Day Tutorial

Introduction, organization



Speakers

= Olga Sorkine
Media Research Lab, VLG
Courant Institute, New York University

= Mario Botsch
Graphics & Geometry Group
Bielefeld University



Shapes and Deformations

" Manually modeled and
scanned shape data

= Continuous and discrete
shape representations

Olga Sorkine, Courant Institute 3/30/2009



Shapes and Deformations

* Why deformations?

= Sculpting,
customization

» Character posing,

animation
= Criteria?
" Intuitive behavior and
interface r—

" |nteractivity | ©
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Tutorial Goals

" Present recentresearch  — ” Ui,
in shape editing a LB
= Discuss practical = o %c

considerations
" Flexibility

<

A

" Numerical issues

Laplacian-tased

a )

= Admissible interfaces 2

R

= Comparison, tradeoffs SR A
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09:00 - 09:10
09:10 - 09:25

09:25 -10:05

10:05-10:30

10:30-11:00

Schedule

Intro (O)

Shape representations,
differential geometry primer (O)

Linear surface-based
deformations (V)

Linear space deformations (O)

Break



11:00-11:10
11:10-11:40

11:40-12:20
12:20-12:30

Olga Sorkine, Courant Institute

Schedule (cont’d)

Summary of linear methods (M)

Nonlinear surface-based
deformations (V)

Nonlinear space deformations (O)
Wrap-up (O+M)

3/30/2009 7
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T3: Half-Day Tutorial

Shape Representations
Differential Geometry Recap



Continuous/analytical surfaces

" Tensor product
surfaces (e.g. NURBS)

= Subdivision surfaces

= “Editability” is
inherent to the
representation

Olga Sorkine, Courant Institute 3/30/2009 2



Spline Surfaces

" Tensor product surfaces (“curves of curves”)

= Rectangular grid of control points
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Spline Surfaces

" Tensor product surfaces (“curves of curves”)
= Rectangular grid of control points
= Rectangular surface patch

Olga Sorkine, Courant Institute 3/30/2009 4



Spline Surfaces

= Tensor product surfaces (“curves of curves”)
= Rectangular grid of control points
= Rectangular surface patch

" Problems:
= Many patches for complex models
*" Smoothness across patch boundaries
" Trimming for non-rectangular patches
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Subdivision Surfaces

» Generalization of spline curves / surfaces
= Arbitrary control meshes
= Successive refinement (subdivision)
= Converges to smooth limit surface
= Connection between splines and meshes

Olga Sorkine, Courant Institute 3/30/2009 6



Subdivision Surfaces

ion of spline curves / surfaces

= Arbitrary control meshes

" Generalizat

= Successive refinement (subdivision)

= Converges to smooth limit surface

= Connection between splines and meshes




Spline & Subdivision Surfaces

" Basis functions are smooth bumps e

R
» Fixed support :_; : ==
= Fixed control grid HFHH

= Bound to control points mf
= |nitial patch layout is crucial \M\\\I

= Requires experts!

" Decouple deformation from surface
representation! \



Discrete Surfaces: Point Sets, Meshes

= Flexible

= Suitable for highly
detailed scanned data

*" No analytic surface
" No inherent “editability”

Y

Mesh editing
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Differential Geometry

" Tool to analyze shape
= Key notions:

" Tangents and normals
= Curvatures
= Laplace-Beltrami operator
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Continuous Case — Parametric

= |Local parameterization:
(x(u,v))

p(uv)=| y(uv)|, (uv)eDcR’
\Z(M,V))

" Tangent plane at point
P(u,v) is spanned by

~ 0p(u,v) ~ 0p(u,v) "
p, ===, P,=— °

= Normal: n(u,v)zuguxg"”
X




Discrete Case — Piecewise Linear

"= No derivatives!
= Strategy 1: locally fit an y
analytic patch ./’\
= Expensive o

= Strategy 2: generalize ¢
definitions to discrete

qrv,

= Start from intrinsic

notions (non-parametric)
o
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Normal Curvature

N P, xp,
p, xP,

Dwecﬂontinthetangentpbne:

P, P,
P. P,

pv/Hva/\ i
<

P./lIp.l

t=cosop +sIn @
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Normal Curvature

The curve vy is the intersection
of the surface with the plane
through n and t.

Normal curvature:

P IR C ()

Curvature on a curve: the rate of change in normal

Olga Sorkine, Courant Institute 3/30/2009 14



Normal Curvature

The curve vy is the intersection
of the surface with the plane
through nand t.

Normal curvature:

IR ORI

Curvature on a curve: the rate of change in normal
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Normal Curvature

The curve vy is the intersection
of the surface with the plane
through nand t.

Normal curvature:

IR ORI

Curvature on a curve: the rate of change in normal
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Normal Curvature

The curve vy is the intersection
of the surface with the plane
through nand t.

Normal curvature:

IR ORI

Curvature on a curve: the rate of change in normal
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Normal Curvature

The curve vy is the intersection
of the surface with the plane
through nand t.

Normal curvature:

k() = K(((D))

y 4
2N _
V4 (04 P o
— Oj

°\0‘C})

Discrete curvature: turning angles R §
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Surface Curvatures

" Principal curvatures

= Maximal curvature x, =x__ =maxk, (@)
®

* Minimal curvature x, =x . =minx (p)
@

" Mean curvature 1 %"

H="7""2 2 = [k (p)do
2 21 3

® (Gaussian curvature

K=k kK,



Classification

Local surface shape by curvatures

K>0, k=K, K=0

Isotropic:
all directions are
principal directions

spherical (umbilical) planar

K>0

Anisotropic:
2 distinct principal
directions

elliptic parabolic hyperbolic

Olga Sorkine, Courant Institute 3/30/2009 20



Discrete Gaussian Curvature

" Angle deficit

/

AN

N V)
K =2n - Z(I)l

i=1
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12n

H=—|k(p)dy
27t

Can define through

the Laplace-Beltrami

operator

A, p=—Hn

Olga Sorkine, Courant Institute

3/30/2009

Mean Curvature
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Discrete Mean Curvature

" |ntuition:




Discrete Laplace-Beltrami

= |ntuition for uniform discretization

Vi Vi

VJ6 \
Vj3

V.

J5 Vig

V,+V.,—2V,

_|_
Vi, +V,s—2Vv, +

Vis+V,—2V,

6
6L(V,)=) V,—6V, ~ —6HN
k=1
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Discrete Laplace-Beltrami

= |ntuition for uniform discretization

Vi Vi

Vi2+vm_2V1‘

6
L(Vv,)= é(Z v, —6vij ~—Hn
k=1

Olga Sorkine, Courant Institute 3/30/2009
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Discrete Laplace-Beltrami

= Cotangent formula — to compensate for
triangle shape irregularity

LC(VZ.) : Z (cot o, +c0t[3ij )(V]. —Vl.)

C24(v,) S

Vi




Discrete Laplace-Beltrami

" When the edge lengths are equal, the uniform
and the cotangent Laplacians coincide

V.

l




Discrete Laplace-Beltrami

" When the edge lengths are equal, the uniform
and the cotangent Laplacians coincide




Linear Surface-Based
Deformation

Prof. Dr. Mario Botsch

Computer Graphics & Geometry Processing

Bielefeld University

b Universitat Bielefeld



Mesh Deformation

Global deformation
with intuitive
detail preservation




Mesh Deformation

Local & global
deformations




Linear Surface-Based Deformation

-

e Shell-Based Deformation
 Multiresolution Deformation

e Differential Coordinates

.




Modeling Metaphor

* Mesh deformation by displacement function d
— Interpolate prescribed constraints
— Smooth, intuitive deformation
= Physically-based principles

d:S - IR*

p — p+d(p)




Shell Deformation Energy

» Stretching
— Change of local distances
— Captured by 18t fundamental form

* Bending
— Change of local curvature
— Captured by 2" fundamental form

» Stretching & bending is sufficient

a B 2\
RS
2

- )

T T
- [ xIn xTn ]

T T
Xy X1

— Differetial geometry: “1st and 2" fundamental forms

determine a surface up to rigid motion.”




Physically-Based Deformation

* Nonlinear stretching & bending energies

/ ksml — I’ﬂ+ kbﬂ}]l — 11’\@ dudv
Q2

stretching bending

 Linearize terms — Quadratic energy

2 2 2 2 2
/Qlc{(uduu + ||dy | )}r k{(uduu!\ + 2 [ dus||” + [|[des || )}dudv

stretching bending




Physically-Based Deformation

* Minimize linearized bending energy

E(d) = /HdUUHQ_l_QHduvHQ"I'HdvaQdUdv — min
S [f(a:)—wnmj

 Variational calculus — Euler-Lagrange PDE

A*d = dyuuu + 2duues + dppey = 0 [ f'(z) =0 ]

= “Best” deformation that satisfies constraints




Deformation Energies

Initial state

> &

(Membrane) (Thin plate)




PDE Discretization

» Euler-Lagrange PDE

23 S
A%d =0 «
d=0

d = oh

» Laplace discretization

1
Ad; = A %\:/ (cot a; + cot B;5)(d; — d;)
J i

A*d; = A(Ad;)




Linear System

» Sparse linear system (19 nz/row)
d | = ( 0 «|
i) N

— Turn into symmetric positive definite system

» Solve this system each frame
— Use efficient linear solvers !!!
— Sparse Cholesky factorization
— See course notes for details




Derivation Steps

{ Nonlinear Energy J

l Linearization

{ Quadratic Energy J

l Variational Calculus

{ Linear PDE J

l Discretization

{ Linear Equations J




CAD-Like Deformation

File Selection Regons Edt Opbons Help

[Botsch & Kobbelt, SIGGRAPH 04]




Face Animation

Large-Scale
Deformation

Mocap Markers | Skin Rendering

[Bickel et al, SCA 08]




Linear Surface-Based Deformation

-

 Shell-Based Deformation
e Multiresolution Deformation

e Differential Coordinates

.




Multiresolution Modeling

* Even pure translations induce local rotations!
= |nherently non-linear coupling

 Alternative approach
— Linear deformation + multi-scale decomposition...

Original Linear Nonlinear




Multiresolution Editing

Frequency decomposition

Change low %

frequencies

Add high frequency details,
stored in local frames




Multiresolution Editing

Multiresolution

Modeling

Freeform
—
Modeling

-
O
=

%)

O

Q

&

O

O

O
o

UOI}ONJISUOIDY

Detaill
Information

.




Normal Displacements




Limitations

* Neighboring displacements are not coupled
— Surface bending changes their angle
— Leads to volume changes or self-intersections

Original Normal Displ. Nonlinear




Limitations

* Neighboring displacements are not coupled
— Surface bending changes their angle
— Leads to volume changes or self-intersections

Original Normal Displ. Nonlinear




Limitations

* Neighboring displacements are not coupled
— Surface bending changes their angle
— Leads to volume changes or self-intersections
— See course notes for some other techniques...

* Multiresolution hierarchy difficult to compute
— Complex topology
— Complex geometry
— Might require more hierarchy levels




Linear Surface-Based Deformation

-

 Shell-Based Deformation
 Multiresolution Deformation

e Differential Coordinates

.




Differential Coordinates

. Manipulate differential coordinates instead of
spatial coordinates

— Gradients, Laplacians, local frames
— Intuition: Close connection to surface normal

2. Find mesh with desired differential coords

— Cannot be solved exactly
— Formulate as energy minimization




Differential Coordinates

5

Original Rotated Diff-Coords Reconstructed Mesh




Differential Coordinates

 Which differential coordinate 0;?

— Gradients
— Laplacians

* How to get local transformations T;(0:)?
— Smooth propagation
— Implicit optimization




Gradient-Based Editing

* Manipulate gradient of a function (e.g. a surface)

g = Vf g — T(g)

* Find function f* whose gradient is (close to) g’

i argmin/ IVE — T(g)|* dudv
£ Q

 Variational calculus — Euler-Lagrange PDE
Af" = divT(g)




Gradient-Based Editing

» Consider piecewise linear coordinate function
p(u,v) =

* |ts gradient is




Gradient-Based Editing

» Consider piecewise linear coordinate function
p(ua U) — Z P; - ¢z(u7 U)
V4

* |ts gradient is

Vp(u,v) = Z p; - Voi(u,v)

* |t Is constant per triangle




Gradient-Based Editing

» Gradient of coordinate function p

g1 Pip
. . G .
N~ :

o (3F x V) p€

* Manipulate per-face gradients

g; — T;(gy)




Gradient-Based Editing

* Reconstruct mesh from new gradients
— Overdetermined (3F x V) system

— Weighted least squares system

= | inear Poisson system Ap’ = divT(g)




Laplacian-Based Editing

* Manipulate Laplacians field of a surface
l=A(p), 1= T

* Find surface whose Laplacian is (close to) o’

p = argmin/ |Ap — T(1)|* dudv
P Q

» Variational calculus yields Euler-Lagrange PDE

A*p’ = AT(1)




Differential Coordinates

 \Which differential coordinate o; ?

— Gradients
— Laplacians

 How to get local transformations T;(0;) ?
— Smooth propagation
— Implicit optimization




Smooth Propagation

1. Compute handle’s deformation gradient
2. Extract rotation and scale/shear components

3. Propagate damped rotations over ROI




Deformation Gradient

* Handle has been transformed affinely
T(x)=Ax+t

» Deformation gradient is
VT(x)=A

 Extract rotation R and scale/shear S

A=UxV! = R=UV! s=vxv’




Smooth Propagation

» Construct smooth scalar field [0,1]
e s(x)=1: Full deformation (handle)
e s5(x)=0: No deformation (fixed part)
¢ 5(x)&(0,1): Damp handle transformation (in between)




Limitations

* Differential coordinates work well for rotations
— Represented by deformation gradient

* Translations don’'t change deformation gradient
— Translations don’t change differetial coordinates
— “Translation insensitivity”

: i
e | X
RENRATTA )
j/;\\j)\j\l\]\ g g’




Implicit Optimization

* Optimize for positions p;’ & transformations T;




Laplacian Surface Editing

|
Enter filname: |feline piy2 Reload

* info + |
- Exportfiles + [

" Editing
- RO —|

-Edit params

Free ring radiusl[l a
Fixed ring radius| 0.06
Handle radius|8.‘03

-ROI selection type =]
t« Euclicdean radius
- Geodesic radius

v Edii Maode
vV Render anchors

- System data — |
C Seftings  +[

store resuit

Save to |JY

Ml size: | 33480

© Geometry sources and visuzslization + |

C Rendering modes 4|
© Lights +1

DO 00 ——

Elue Light Golden Light  White Light  Red Lignt




Connection to Shells?

* Neglect local transformations T; for a moment...

.
e Basic formulations equivalent!

e Differ in detail preservation
- Rotation of Laplacians
- Multi-scale decomposition l

- )

/Hduu||2‘|‘2||duv”2‘|‘Hdvv||2 — min <— A?d =0




Linear Surface-Based Deformation

-

 Shell-Based Deformation
 Multiresolution Deformation

e Differential Coordinates

.
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Space Deformation

= Displacement function defined on the
ambient space
d:R°> R’
= Evaluate the function on the points of the
shape embedded in the space

Twist warp
Global and local deformation of solids

[A. Barr, SIGGRAPH 84]




Freeform Deformations

= Control object

= User defines displacements d; for each element of
the control object

= Displacements are interpolated to the entire space
using basis functions B, (X) : R°> R

d(x) = 3d, B,(x)

= Basis functions should be smooth
for aesthetic results

Olga Sorkine, Courant Institute 3/30/2009
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Trivariate Tensor Product Bases

[Sederberg and Parry 86]

lattice

= Control object

= Basis functions B, (X) are

trivariate tensor-product splines:
[

D3 ‘dijk Ni('x)Nj(y)Ni(Z)

d(x,y.z) =

3/30/2009

Olga Sorkine, Courant Institute



Trivariate Tensor Product Bases

= Similar to the surface case

= Aliasing artifacts

" |nterpolate deformation constraints?

" Only in least squares sense

Olga Sorkine, Courant Institute 3/30/2009 5



Lattice as Control Object

= Difficult to manipulate

" The control object is not \
related to the shape of m
the edited object

= Part of the shape in

close Euclidean distance
always deform similarly,
even if geodesically far

Olga Sorkine, Courant Institute 3/30/2009 6



Wires

[Singh and Fiume 98]

= Control objects are arbitrary space curves

" Can place curves along meaningful features of
the edited object

= Smooth deformations around the curve with

decreasing influence

ll

Olga Sorkine, Courant Institute 3/30/2009 7




Handle Metaphor

[RBF, Botsch and Kobbelt 05]

= Wish list for the displacement function d(X) :
" |nterpolate prescribed constraints
= Smooth, intuitive deformation

d(x;) =d,

(d: R’ - R?)
—_—

X — X + d(X)

Olga Sorkine, Courant Institute 3/30/2009 8



Volumetric Energy Minimization
[RBF, Botsch and Kobbelt 05]

" Minimize similar energies to surface case
9§[’

" But displacements function lives in 3D...

“+d, | +...+[d. | dxdydz — min

dxx

d,,

dZZ

= Need a volumetric space tessellation?
" No, same functionality provided by RBFs!



Radial Basis Functions
[RBF, Botsch and Kobbelt 05]

= Represent deformation by RBFs

d(x) =2 w;-o(lc, —x|)) +p(x)

= Triharmonic basis function ¢ () = r 3
= C’ boundary constraints
= Highly smooth / fair interpolation

|

SRB

2

d “+...+|d_|Fdxdydz — min

+|d

XXX zzz

XYy



RBF Fitting

[RBF, Botsch and Kobbelt 05]

= Represent deformation by RBFs

d(x) =2 w;-o(lc, —x|)) +p(x)

= RBF fitting

" |nterpolate displacement constraints

" Solve linear system for w; and p

Olga Sorkine, Courant Institute 3/30/2009 11



RBF Fitting

[RBF, Botsch and Kobbelt 05]

= Represent deformation by RBFs

d(x) =2 w;-o(lc, —x|)) +p(x)

= RBF evaluation
* Function d transforms points
» Jacobian Vd transforms normals
" Precompute basis functions
= Evaluate on the GPU!

Olga Sorkine, Courant Institute 3/30/2009 12



Local & Global Deformations
[RBF, Botsch and Kobbelt 05]

Olga Sorkine, Courant Institute 3/30/2009 13



Local & Global Deformations
[RBF, Botsch and Kobbelt 05]

1M vertices
movie

Olga Sorkine, Courant Institute 3/30/2009 14



Space Deformations

Summary so far

" Handle arbitrary input

= Meshes (also non-manifold)

" Point sets
= Polygonal soups

" 3M triangles

i : " 10k t

= Complexity mainly depends . Nog i
on the control object, not " Not manifold

the surface

Olga Sorkine, Courant Institute 3/30/2009 15



Space Deformations

Summary so far

" Handle arbitrary input
= Meshes (also non-manifold)
= Point sets
" Polygonal soups

F(’rﬂ';z} = [F(:,y,z),G(z,y,z),H(z,y,z))

L EaSier to analyze: functions then the Jacobian is the determinant |
. . | s |

on Euclidean domain )= 28 28 26

|

!

= Volume preservation: |Jacobian| =1 U

Olga Sorkine, Courant Institute 3/30/2009 16



Space Deformations

Summary so far

" The deformation is only loosely aware of the
shape that is being edited

" Small Euclidean distance — similar deformation
" | ocal surface detail may be distorted

Olga Sorkine, Courant Institute 3/30/2009 17



Cage-based Deformations
[Ju et al. 2005]

" Cage = crude version of the input shape

Olga Sorkine, Courant Institute 3/30/2009 18



Cage-based Deformations
[Ju et al. 2005]

= Cage = crude version of the input shape
= Polytope (not a lattice)

" Each point X in space is represented w.r.t. to
the cage elements using coordinate functions




Cage-based Deformations
[Ju et al. 2005]

= Cage = crude version of the input shape
= Polytope (not a lattice)

" Each point X in space is represented w.r.t. to
the cage elements using coordinate functions




Cage-based Deformations
[Ju et al. 2005]

= Cage = crude version of the input shape

==

N =
i

I

= Polytope (not a lattice)

A

|

A




Cage-based Deformations
[Ju et al. 2005]

= Cage = crude version of the input shape
= Polytope (not a lattice)

N

J

==
A

A

|




Cage-based Deformations
[Ju et al. 2005]

= Cage = crude version of the input shape
= Polytope (not a lattice)




Coordinate Functions

= Mean-value coordinates (Floater, Ju et al. 2005)

" Generalization of barycentric coordinates

* Closed-form solution for w; (X)

Olga Sorkine, Courant Institute 3/30/2009 24



Coordinate Functions

= Mean-value coordinates (Floater, Ju et al. 2005)

" Not necessarily positive on non-convex domains

MVC

Olga Sorkine, Courant Institute 3/30/2009 25



Coordinate Functions

= PMVC (Lipman et al. 2007) — ensures positivity,
but no longer closed-form and only c’

MVC

Olga Sorkine, Courant Institute 3/30/2009 26



Coordinate Functions

= Harmonic coordinates (Joshi et al. 2007)

= Harmonic functions /,(x) for each cage vertex p,

Ah=0

subject to: A, linear on the boundary s.t. z;(p;) = 5,

= Solve

MVC

Olga Sorkine, Courant Institute 3/30/2009 27



Coordinate Functions

= Harmonic coordinates (Joshi et al. 2007)

= Harmonic functions /,(x) for each cage vertex p,

Ah=0

subject to: A, linear on the boundary s.t. z;(p;) = 5,

= Solve

" Volumetric Laplace equation
= Discretization, no closed-form




Coordinate Functions

= Harmonic coordinates (Joshi et al. 2007)




Coordinate Functions

= Green coordinates (Lipman et al. 2008)

" Observation: previous vertex-based basis
functions always lead to affine-invariance!

X' = Zwi (X) p;

i=1



Coordinate Functions

= Green coordinates (Lipman et al. 2008)

" Correction: Make the coordinates depend on
the cage faces as well

i X
Lol §
"hwl"‘\.-l
N ..
Ok 2 o\ \
) .

k m '_
X' = ZWi(X)p; +ZWj(X)n;’
i=1 j=1 1_



Coordinate Functions

= Green coordinates (Lipman et al. 2008)
" Closed-form solution
= Conformal in 2D, quasi-conformal in 3D

GC MVC GC

Olga Sorkine, Courant Institute 3/30/2009 32



Coordinate Functions

= Green coordinates (Lipman et al. 2008)
" Closed-form solution
= Conformal in 2D, quasi-conformal in 3D

Alternative interpretation in 2D via holomorphic functions
and extension to point handles : Weber et al. Eurographics 2009

Olga Sorkine, Courant Institute 3/30/2009 33



Olga Sorkine, Courant Institute

Coffee/Tea Break

Resume at 11:00

3/30/2009
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Summary of Linear Methods
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Linear Approaches

{ Nonlinear Energy J

l Linearization

{ Quadratic Energy J

l Variational Calculus

{ Linear PDE J

l Discretization

{ Linear Equations J




Linear Approaches

* Resulting linear systems
— Shell-based Ad =
— Gradient-based Ap

— Laplacian-based  A“p

* Properties
— Highly sparse
— Symmetric, positive definite (SPD)
— Solve for new RHS each frame!




Linear SPD Solvers

Dense Cholesky factorization
— Cubic complexity
— High memory consumption (doesn’t exploit sparsity)

Iterative conjugate gradients
— Quadratic complexity
— Need sophisticated preconditioning

Multigrid solvers
— Linear complexity
— But rather complicated to develop (and to use)

Sparse Cholesky factorization
— Linear complexity
— Easy to use




Dense Cholesky Factorization

[Solve Ax = b]

1. Cholesky factorization A = LL"

2. Solve system y=L"'b, x=LTy




Dense Cholesky Factorization

A=LL"T

500x500 matrix
3500 non-zeros

36k non-zeros




Sparse Cholesky Factorization

- M. | Reordering
500500 matrix | oo x| PTAP
3500 NON-ZEros |7 i i B

36k non-zeros 14K non-zeros




L 2t
S oy

Y

SFIAME.
/K non-zeros

05

’
20,5

| &)

Cholesky Factorization

36k non-zeros

C
O
r—

©
N

-

O
e

O

Qv
LL

-
'

)
9

O
L
@,

O

)

. -

©

O
N

500x500 matrix
3500 non-zeros




Sparse Cholesky Solver

[Solve Ax = bj

1. Matrix re-ordering A = PTAP

~

2. Cholesky factorization A = LL”

3. Solve system y =L 'PTb, x=PL Ty




Bi-Laplace Systems

3 Solutions (per frame costs)

Conjugate Gradients ¢ Multigrid & Sparse Cholesky




Linear Approaches

{ Nonlinear Energy J

l Linearization

{ Quadratic Energy J

l Variational Calculus

{ Linear PDE J

l Discretization

{ Linear Equations J




Linear vs. Nonlinear

Gradient Nonlinear




Linear Approaches

{ Nonlinear Energy J

l Linearization €<= causes artifacts

{ Quadratic Energy J

l Variational Calculus

{ Linear PDE J

l Discretization

{ Linear Equations J




Linearizations / Simplifications

e Shell-based deformation
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Linearizations / Simplifications

 Gradient-based editing




Linearizations / Simplifications

* Laplacian surface editing




Linear vs. Nonlinear

* Analyze existing methods
— Some work for translations

Nonlinear

— Some work for rotations
— No method works for both

©
e
N

Gradient

Laplace




Linear vs. Nonlinear

* Linear approaches
— Solve linear system each frame
— Small deformations
— Dense constraints

* Nonlinear approaches
— Solve nonlinear problem each frame
— Large deformations
— Sparse constraints




Nonlinear Surface-Based
Deformation

Prof. Dr. Mario Botsch

Computer Graphics & Geometry Processing

Bielefeld University

b Universitat Bielefeld



Nonlinear Surface Deformation

-

 Nonlinear Optimization
 Shell-Based Deformation

* (Differential Coordinates)

\_




Nonlinear Minimization

» Given a nonlinear deformation energy
E(d) = E(d4,...,d,)

find the displacement d(x) that minimizes E(d),
while satisfying the modeling constraints.

 Typically E(d) stays the same, but the modeling
constraints change each frame.




Gradient Descent

» Start with initial guess do

* |terate until convergence
— Find descent direction h = -VE(d)
— Find step size A
— Updated=d + Ah

* Properties
+ Easy to implement, guaranteed convergence
— Slow convergence




Newton's Method

» Start with initial guess do

* |terate until convergence
— Find descent direction as H(d) h =-VE(d)
— Find step size A
— Update d =d + Ah

* Properties
+ Fast convergence if close to minimum
— Needs pos. def. H, needs 2"d derivatives for H




Nonlinear Least Squares

Given a nonlinear vector-valued error function
Gl(dl, c e ,dn)

e(dl,...,dn) =
€m(d1, c e ,dn)

find the displacement d(x) that minimizes the
nonlinear least squares error

1 2
E(dl, o ,dn) — 5 He(dl, o 7dn)||




Gauss-Newton Method

» Start with initial guess do

* |terate until convergence
— Find descent direction as (J(d)TJ(d)) h=-J(d)Te
— Find step size A
— Updated=d + Ah

* Properties
+ Fast convergence if close to minimum
+ Needs full-rank J(d), needs 1st derivatives for J(d)




Nonlinear Optimization

» Has to solve a linear system each frame
— Matrix changes in each iteration!
— Factorize matrix each time

* Numerically more complex
— No guaranteed convergence
— Might need several iterations
— Converges to closest local minimum

= Spend more time on fancy solvers...




Nonlinear Surface Deformation

-

* Nonlinear Optimization
e Shell-Based Deformation

* (Differential Coordinates)

\_




Shell-Based Deformation

* Discrete Shells
[Grinspun et al, SCA 2003]

» Rigid Cells
[Botsch et al, SGP 20006]

» As-Rigid-As-Possible Modeling
[Sorkine & Alexa, SGP 2007]




Discrete Shells

* Main idea
— Don't discretize continuous energy
— Define discrete energy instead
— Leads to simpler (still nonlinear) formulation

» Discrete energy
— How to measure stretching on meshes?
— How to measure bending on meshes?




Discrete Shell Energy

» Stretching: Change of edge lengths

_ 2
> A (lessl = €51)
eijEE
X

» Stretching: Change of triangle areas

Z A%Jk ‘fzyk‘ ‘fijk|)2

fijr€F

* Bending: Change of dihedral angles




Discrete Shells

[Grinspun 2003]




Realistic Face Animations

Linear model Nonlinear model




Discrete Energy Gradients

» Gradients of edge length




Discrete Energy Gradients

» Gradients of triangle area

1

| fiik) 9 Imy |

a’fz‘jk‘ . m X(Xk—Xj)
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8’f¢jk\ n; x(x; —xg)
0x; 2 || ]

Olfijel _ mux(X; — ;)
)4 2 ||Inq||




Discrete Energy Gradients

» Gradients of dihedral angle

i T
sin 0 ni X n e
atan( ) — atan<( - 2)

cos 0 nin, - ||e|
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| problems
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* Problems with large deformation
— Bad




Shell-Based Deformation

 Discrete Shells
[Grinspun et al, SCA 2003]

» Rigid Cells
[Botsch et al, SGP 20006]

» As-Rigid-As-Possible Modeling
[Sorkine & Alexa, SGP 2007]




Nonlinear Shape Deformation

* Nonlinear editing too instable?

* Physically plausible vs. physically correct

= Trade physical correctness for

— Computational efficiency
— Numerical robustness




« Qualitatively emulate thin-shell behavior

* Thin volumetric layer around center surface

» Extrude polygonal cell C; per mesh face

-




Rigid Cells

* Aim for robustness
— Prevent cells from degenerating
= Keep cells rigid

===




Elastically Connected Rigid Cells

* Connect cells along their faces
— Nonlinear elastic energy
— Measures bending, stretching, twisting, ...

%




Cell-Based Surface Deformation

1. Prescribes position/orientation for cells

2. Find optimal rigid motions per cell

3. Update vertices by average cell transformations




Elastically Connected Rigid Cells

* Pairwise energy

E;; — / 16779 (w) — £ ()| du
01)2

* Global energy




Nonlinear Minimization

* Find rigid motion T; per cell C;
win 3w, / 1T, (£9(w)) — T, (€7 (w))||* du

{3,5} [0,1]2

» Generalized global shape matching problem

— Robust geometric optimization

— Nonlinear Newton-type minimization
— Hierarchical multi-grid solver




Newton-Type lteration

1. Linearization of rigid motions

R, x+t, X + (w; XX) + v, = A;x

2. Quadratic optimization of velocities

(w) - A; (£ (u

3. Project A; onto rigid motion manifold

= | ocal shape matching | > |
A (P
27




Robustness




Character Posing
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Goblin Posing

* Intuitive large scale deformations

 \Whole session <5 min




Shell-Based Deformation

 Discrete Shells
[Grinspun et al, SCA 2003}

- Rigid Cells
[Botsch et al, SGP 20006]

* As-Rigid-As-Possible Modeling
[Sorkine & Alexa, SGP 2007]




Surface Deformation

« Smooth large scale deformation

* Local as-rigid-as-possible behavior
— Preserves small-scale details




Cell Deformation Energy

» Vertex neighborhoods should deform rigidly

> l(pj = pi) —Ri(p; — pi)




Cell Deformation Energy

 If p, p’ are known then R; is uniquely defined

* Shape matching problem
— Build covariance matrix S = PP'T

— SVD: S=UZWT!
— Extract rotation R, = UWT




Total Deformation Energy

e Sum over all vertex

min > " (8 —PY) — Ri (p; — )|

1=1 jeN (1)

* Treat p’ and R; as separate variables

» Allows for alternating optimization
— Fix p’, find R; : Local shape matching per cell

— Fix R;, find p’ : Solve Laplacian system




As-Rigid-As-Possible Modeling

« Start from naive Laplacian editing as initial guess

initial guess 1 iterations 4 iterations




As-Rigid-As-Possible Modeling




Shell-Based Deformation

 Discrete Shells
[Grinspun et al, SCA 2003]

» Rigid Cells
[Botsch et al, SGP 20006]

» As-Rigid-As-Possible Modeling
[Sorkine & Alexa, SGP 2007]




Nonlinear Surface Deformation

-

* Limitations of Linear Methods
 Shell-Based Deformation

 (Differential Coordinates)

\_




Subspace Gradient Deformation

* Nonlinear Laplacian coordinates

» Least squares solution on coarse cage subspace

[Huang et al, SIGGRAPH 06]



Mesh Puppetry

» Skeletons and Laplacian coordinates

» Cascading optimization

[Shi et al, SIGGRAPH 07]



Nonlinear Surface Deformation

-

* Limitations of Linear Methods
 Shell-Based Deformation

* (Differential Coordinates)

\_
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Nonlinear Space Deformations

" |nvolve nonlinear optimization
" Enjoy the advantages of space warps
= Additionally, have shape-preserving properties

Olga Sorkine, Courant Institute 3/30/2009 2



As-Rigid-As-Possible Deformation

2006]

Least-Squares (MLS) approach [Schaefer et al.

ing-

Mov

ints or segments as control objects

t developed in 2D and later extended to 3D
oy Zhu and Gortler (2007)

-irs

IDO
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3/30/2009

Olga Sorkine, Courant Institute



As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

= Attach an affine transformation
to each point X € R>:

AX(p) - MXp T tX

" The space warp:
X = A, (X)

Olga Sorkine, Courant Institute 3/30/2009 4



As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

= Handles p; are displaced to Q,
" The local transformation at X:
Ax(p) = Mxp + 1:x s.t.

> v 09[A, (),

2 :
—> Min

" The weights depend on X:
=20
w; (X) = [|p; = X

Olga Sorkine, Courant Institute 3/30/2009 5



As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

= No additional restriction on A (:) — affine
local transformations

IM _\!"

i '”‘M N l

|H H1 |l|

|
’h/ / ‘\l\))\,l

Olga Sorkine, Courant Institute 3/30/2009 6



As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

= Restrict A,(-) to similarity

Olga Sorkine, Courant Institute 3/30/2009 7



As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

= Restrict A,(-) to similarity

|

T
|

%

|

| I w\

Olga Sorkine, Courant Institute 3/30/2009 8



As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

= Restrict A, (-) to rigid

Olga Sorkine, Courant Institute 3/30/2009 9



As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

= Restrict A, (-) to rigid

Olga Sorkine, Courant Institute

il similarity and then

7

normalize N

3/30/2009

Solve for M, like

10



As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

= Examples

Olga Sorkine, Courant Institute 3/30/2009 11



As-Rigid-As-Possible Deformation
MLS approach — extension to 3D [Zhu & Gortler 2007]
" No linear expression for similarity in 3D

" |nstead, can solve for the minimizing rotation

2

k
argmin > w,(X)|Rp; -,

ReSO(3) ‘im1

by polar decomposition of the 3x3 covariance
matrix



As-Rigid-As-Possible Deformation

MLS approach — extension to 3D [Zhu & Gortler 2007]

" Zhu and Gortler also replace the Euclidean
distance in the weights by “distance within the

Wi (x) = d(p;. X X)

shape”

Olga Sorkine, Courant Institute 13



As-Rigid-As-Possible Deformation

MLS approach — extension to 3D [Zhu & Gortler 2007]

= More results

Olga Sorkine, Courant Institute 3/30/2009 14



As-Rigid-As-Possible Deformation
Deformation Graph approach [Sumner et al. 2007]
= Surface handles as interface

» Underlying graph to represent the
deformation; nodes store rigid transformations

= Decoupling of handles from def. representation

Deformation Graph Optimization Procedure -



Deformation Graph

[Sumner et al. 2007]
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Deformation Graph
[Sumner et al. 2007]

3/30/2009 17



Deformation Graph
[Sumner et al. 2007]

Begin with an embedded object.

Nodes selected via uniform sampling; located at g]
One rigid transformation for each node. R, tj-
Each node deforms nearby space.

Edges connect nodes of overlapping
influence.

3/30/2009

18



Deformation Graph
[Sumner et al. 2007]

Begin with an embedded object.
Nodes selected via uniform sampling; located at g]

One rigid transformation for each node. R, tj-
Each node deforms nearby space.

Edges connect nodes of overlapping
influence.

3/30/2009

19



Deformation Graph
[Sumner et al. 2007]

Influence of nearby transformations is blended.

point X transformed by node j

X' —Zw MR, (x-g,)+g, +t,]

J=1 blending weights

w,(X) =(1- ‘x—ng/d

max)

3/30/2009 20
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Optimization
[Sumner et al. 2007]

Select & drag vertices of embedded

object.

21



3/30/2009

Optimization
[Sumner et al. 2007]

Select & drag vertices of embedded
object.

Optimization finds

deformation parameters Rj , tj'

22



min  w_ E . +

rot
R,,t,...R, .t
Graph Rotation
parameters term

3/30/2009

w. B + w_E

reg — reg con — con
Regularization Constraint
term term

Select & drag vertices of embedded
object.

Optimization finds

deformation parameters Rj , tj'

23



E.. E. + w_E

rot reg reg con — con

min w
R .t;,...R ,t

m

Rot(R) = (Cl 'C2)2 T (Cl 'C3)2 T (Cz 'C3)2 T
(Cl gy _1)2 T (Cz Gy _1)2 T (C3 Gy _1)2

m

E o = Z ROt(R]‘)

For detail preservation,
features should rotate and
not scale or skew.

3/30/2009 24



min E.. E  + w_E

R,t,,...R Wrot Wreg = reg con = con

m'-m

:i ZaijRj(gk _gj)+gj +tj _(gk +tk)H2

j=1 keN(j)

where node j thinks where node &
node k should go actually goes

Neighboring nodes should
agree on where they transform
each other.

3/30/2009 25



m ]

rot

rot

+ w . E_+ w_E

reg —reg con

P
Econ ZHdeex(Z) qu
[=1

Handle vertices should go
where the user puts them.

3/30/2009

con
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Results: Polygon Soup

[Sumner et al. 2007]

Olga Sorkine, Courant Institute 3/30/2009 28



Olga Sorkine, Courant Institute

Results: Giant Mesh

[Sumner et al. 2007]
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3/30/2009
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Results: Detail Preservation

Olga Sorkine, Courant Institute

Demo

3/30/2009

[Sumner et al. 2007]
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Discussion

" Decoupling of deformation complexity and
model complexity

= Nonlinear energy optimization — results
comparable to surface-based approaches

g

Olga Sorkine, Courant Institute 3/30/2009
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Research trends

" From linear to
nonlinear techniques

= Surface-based
methods and space
warps developed
simultaneously

Olga Sorkine, Courant Institute 3/30/2009 2



Future work?

* Higher-level editing

= .. with semantic
understanding of the shape

= .. with “pseudo-physics”
automatically set up from that
understanding

= Hybrids between
surface- and space-based
methods

Olga Sorkine, Courant Institute 3/30/2009 3
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