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Fig. 1. Developable shapes can be digitally acquired by 3D scanning or freeform modeling (a). In such scenarios, the meshing is typically not aligned to

principal curvature directions, which hampers practical applications, such as fabrication with flat polygonal panels (Fig. 2). Our method remeshes an input

mesh of a (piecewise) developable surface into a curvature aligned, planar polygonal mesh (e) by computing a vector field (c), from which we integrate a

function whose isolines (d) align as well as possible to the locally estimated noisy rulings (b). Our vector field contains automatically-placed singularities in

the planar region (d), which result in naturally placed triangular patches.

We introduce an algorithm to remesh triangle meshes representing devel-

opable surfaces to planar quad dominant meshes. The output of our algo-

rithm consists of planar quadrilateral (PQ) strips that are aligned to principal

curvature directions and closely approximate the curved parts of the in-

put developable, and planar polygons representing the flat parts of the

input that connect the PQ strips. Developable PQ-strip meshes are useful in

many areas of shape modeling, thanks to the simplicity of fabrication from

flat sheet material. Unfortunately, they are difficult to model due to their

restrictive combinatorics. Other representations of developable surfaces,

such as arbitrary triangle or quad meshes, are more suitable for interactive

freeform modeling, but generally have non-planar faces or are not aligned to

principal curvatures. Our method leverages the modeling flexibility of non-

ruling based representations of developable surfaces, while still obtaining

developable, curvature aligned PQ-strip meshes. Our algorithm optimizes

for a scalar function on the input mesh, such that its isolines are extrinsi-

cally straight and align well to the locally estimated ruling directions. The

condition that guarantees straight isolines is nonlinear of high order and

numerically difficult to enforce in a straightforward manner. We devise an

alternating optimization method that makes our problem tractable and prac-

tical to compute. Our method works automatically on any developable input,

including multiple patches and curved folds, without explicit domain de-

composition. We demonstrate the effectiveness of our approach on a variety

of developable surfaces and show how our remeshing can be used alongside

handle based interactive freeform modeling of developable shapes.
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1 INTRODUCTION

Developable surfaces are commonly used in architecture and prod-

uct design due to the simplicity of their fabrication. Such surfaces

are locally isometric to a planar domain, which means they can be

manufactured by mere bending of sheet material, such as metal.

Freeform developable surfaces form a rich and interesting shape

space, but they are notoriously difficult to design due to their highly

constrained nature. Therefore in most cases, only simple forms are

used, such as cylinders and cones.

The majority of methods for developable surface modeling use

rulings based representations (see, e.g., [Solomon et al. 2012; Tang

et al. 2016]), or isometry optimization (see, e.g., [Burgoon et al. 2006;

Fröhlich and Botsch 2011]). The recently proposed discrete orthog-

onal geodesic nets [Rabinovich et al. 2018] and the checkerboard

pattern isometries [Jiang et al. 2020] represent developable surfaces

without explicitly accounting for principal curvature directions or

patch decomposition. A more recent approach to creating devel-

opable surfaces is through the approximation of existing shapes with

developables. Proposed methods include cutting surfaces into devel-

opable pieces [Sharp and Crane 2018], fitting developable patches to

a surface [Ion et al. 2020] and flowing existing surfaces to reduce a

discrete developability measure [Binninger et al. 2021; Kohlbrenner

et al. 2021; Liu and Jacobson 2021; Sellán et al. 2020; Stein et al.

2018].
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While these discrete representations of developable surfaces are

excellently suited for creative exploration and design of freeform

developable shapes, they fall short of providing a suitable final rep-

resentation for manufacturing. For that purpose, it is especially

important to have planar mesh faces aligned to principal curvature

directions [Alliez et al. 2003; Liu et al. 2006; Tang et al. 2016], that

only the ruling-based representations provide. A curvature-line rep-

resentation of a developable surface possesses the desired properties

for fabrication once the shape is fixed, since the minimal curvature

lines on a developable surface are rulings on which the normal is

constant; as such, they can be easily tessellated into planar polygons

that approximate the surface shape well. In fact, meshes comprised

of planar quadrilateral strips (with no interior vertices) constitute a

well-known model for discrete developable surfaces, whose refine-

ment and convergence properties have been studied [Liu et al. 2006].

Additionally, the planar quadrilateral strip representation allows for

the shape to be fabricated by bending developable material, such

as sheet metal, along the ruling edges of the mesh (as shown in

Fig. 23). General planar quadrilateral meshes that do not consist of

strips, i.e., not aligned to minimal curvature, are not suitable for this

fabrication process.

In this paper, we develop a method to convert a triangle mesh

representation of a developable surface into a discrete curvature-

line representation in order to reap the benefits of both worlds: the

support for developable shape creation provided by a representation

of choice, and the desirable properties for fabrication offered by the

curvature-line representation. Our method produces strips of planar

quadrilaterals (PQ) aligned to principal curvature directions that

closely approximate the curved parts of a given input mesh, along

with planar polygons representing the flat parts of the input (see

Fig. 1). In particular, our method produces precisely straight rulings,

modeled as individual edges in the output mesh.

The past decade has seen a highly active stream of fruitful re-

search on field aligned quad meshing, where principal curvature

fields have naturally received special attention [Bommes et al. 2012;

de Goes et al. 2015; Vaxman et al. 2016]. However, to the best of our

knowledge, no existing general remeshing method is guaranteed to

produce completely straight edge sequences that are consistent with

curvature lines, which are often difficult to obtain fully and faithfully

Fig. 2. An architectural illustration of our result from Fig. 1, fitted with flat

glass-like panels.

input ours ShapeUp

ℎ = 0.67% ℎ = 9.74%

𝑝 = 1.80% 𝑝 = 0.50%

Fig. 3. Attempting to convert a quad mesh of a developable shape to a PQ

mesh using a general-purpose planarization technique (ShapeUp [Bouaziz

et al. 2012]) significantly alters the shape and makes it non-developable.

This happens because the edges of the input mesh are generally not aligned

to principal curvature directions. Our method is applied to a trivial triangu-

lation of the input mesh. We report Hausdorff distance ℎ with respect to

bounding box diagonal and the maximal planarity error 𝑝 .

for discrete meshes. In this work we exploit this specific constrained

setting and the geometric structure of developable shapes to repro-

duce straight minimum-curvature lines, as well as automatically

segment the input into curved and planar parts in a robust manner

that is consistent with the structure dictated by developability.

Our method is based on fitting a scalar function on the input

mesh, such that its isolines are straight and align as best as possible

to the locally estimated rulings on non-planar regions (see Fig. 1).

The condition that guarantees straight isolines on developable sur-

faces is simple to formulate: the normalized gradient of the scalar

field needs to be divergence free. This nonlinear and high-order

condition is numerically difficult to enforce in a straightforward

manner. We therefore devise a dedicated optimization scheme that

factors the problem into a divergence-free and integrable directional

field optimization that is subsequently integrated into a scalar func-

tion. This makes our problem tractable and practical to optimize.

We extract the isolines of the obtained scalar field at the desired

resolution, and remesh the input into strips of planar quads whose

chordal edges are the isolines, i.e., the rulings. We supplement the

mesh by planar polygonal faces that represent the planar patches

of the input surface. The flexibility of the field-to-function design

allows for the automatic placement of singularities, flat regions

and curved folds without explicitly segmenting different curvature

regions on the mesh.

We demonstrate the effectiveness of our approach on a variety of

input developable shapes represented by general triangle meshes

(and triangulated quad meshes) and show how our remeshing can

be used side-by-side with freeform modeling of developables.

2 RELATED WORK

Remeshing general meshes into (planar) quad meshes is an active

area of research. A comprehensive review is beyond the scope of

this paper, but we highlight the main features of existing approaches

most closely related to our work.

As stated in the introduction, the quadrilaterals in freeform mod-

els of developable surfaces are usually non-planar, and typically
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neither triangle nor quad meshes are curvature aligned. Our goal

is to obtain a curvature-aligned remeshing with planar faces. Pla-

narization of general polygonal meshes has been explored in several

works [Alexa and Wardetzky 2011; Bouaziz et al. 2012; Diamanti

et al. 2014; Poranne et al. 2013; Tang et al. 2014]. These methods

take arbitrary shapes as input and are not specifically targeted at

developable surfaces. Typically, applying a general planarization

method to developable surfaces leads to poor results in terms of

curvature alignment and shape approximation (see Fig. 3).

A different approach to obtaining PQ meshes from general devel-

opable input meshes is to utilize the fact that PQ meshes are a dis-

crete model for conjugate nets and seek a remeshing that is aligned

to ruling directions. Many curvature-aligned or just conjugate quad

remeshing techniques for general shapes exist, see e.g. [Bommes

et al. 2012; Diamanti et al. 2014; Jakob et al. 2015; Liu et al. 2011;

Zadravec et al. 2010]. Similar to our method, these techniques rely

on numerical estimation of the principal curvature directions, but

they do not guarantee exact alignment or straight edge sequences

and may introduce unnecessary singularities on developable shapes.

Their optimization process might fail to create precise, straight rul-

ings on developable surfaces, unlike the algorithm we propose in

this work (see Fig. 5). From a fabrication viewpoint, a general PQ

remeshing method is lacking since it merely produces a PQ mesh,

rather than a PQ strip mesh, which allows for simpler construction.

A more promising approach to PQmeshing of developable shapes

is a dedicated technique that utilizes their specific properties. Pe-

ternell [2004] converts a scan of a single torsal developable patch

into a PQ mesh by thinning its tangent-space representation into

a one-dimensional object (a simple curve). This approach is not

immediately applicable to composite and possibly piecewise devel-

opable surfaces that consist of multiple torsal patches and planar

regions. Kilian and colleagues [2008] compute a torsal patch decom-

position for 3D scans of physical developable surfaces by estimating

flat regions and ruling directions. This approach may struggle with

developable meshes that are coarse in comparison to scans due to

insufficient data density for reliable ruling fitting. Their method re-

lies on the ruling estimates to initialize a planar mesh development,

which is used in the subsequent optimization. The connectivity of

this initial mesh cannot be changed during the optimization, and

thus determines the approximation quality that can be obtained.

Locally estimated rulings on developable meshes can be quite noisy

and inaccurate, as we discuss in Sec. 4. We avoid a direct domain

decomposition based on rulings employed in [Kilian et al. 2008]

and instead devise a global constrained optimization approach. As

a result, our method is successful on coarse and noisy inputs. Addi-

tionally, in contrast to [Kilian et al. 2008], our method can handle

piecewise developable surfaces that are not curved folds constructed

from a single sheet of material. Their method optimizes and deforms

a surface to become developable as a whole, whereas our work takes

a piecewise approach to remeshing the existing surface without

deforming it. We compare our results to their work in Sec. 6.

Wang and colleagues [2019] use discrete parallel geodesic nets as

a discrete model for developable surfaces. They require the geodesic

strips to be of constant width for a surface to be developable, but do

not impose any requirements on the directions of these strips and as

such do not have a ruling-aligned representation for developables.

They also use parallel geodesic nets to approximate surfaces by

piecewise developable strips. The individual geodesic strips of a

parallel geodesic net are approximated by piecewise planar faces

in a postprocessing step, but this does not guarantee that compat-

ibility between neighboring strips is preserved. In contrast, our

method produces a complete, connected remeshing of the input

developable surface with strips aligned to the rulings, rather than

in the orthogonal direction.

While targeting geodesic fields, rather than planar quad remesh-

ing, the works by Vekhter et al. [2019] and Pottmann et al. [2010]

show parallels to our proposed method. They compute a unit curl-

free field, while we compute a divergence-free fieldÐthese two kinds

of fields are in fact duals. Nevertheless, our field has further con-

straints in terms of ruling alignment, which we take into account.

In addition, our optimization strategy is different, interlacing inte-

grability optimization with divergence reduction. We discuss this

in further detail in Sec. 3.

3 BACKGROUND

We next summarize relevant facts about both continuous and dis-

crete developable surfaces that inform our algorithm and offer a

directional-field based definition of developable surfaces. We pro-

vide a discrete setup for these fields in Sec. 4, and an optimization

scheme in Sec. 5.

3.1 Developable surface parameterization

A 𝐶2-continuous surface S that has vanishing Gauss curvature

everywhere is a smooth developable surface. A general developable

comprises multiple developable patches {S𝑖 } ,
⋃

S𝑖 = S, where

each such patch is either a torsal patch (a curved ruled surface with

constant normal along each ruling) or a planar patch. The rulings

are completely contained in each S𝑖 , i.e., they extend up to the

boundary 𝜕S𝑖 [Massey 1962]. The planar patches are regions with

vanishing mean curvature 𝐻 = 𝜅2/2, where 𝜅2 is the max (absolute)

curvature. They are bounded by rulings of torsal patches and the

boundary of the surface, as shown in Fig. 4.

Fig. 4. Developable surfaces (top row) and their decompositions into planar

and curved (torsal) patches, shown on the 2D development (bottom row). We

display the planar patches in white and the curved patches in purple. The

rulings are illustrated as thin grey lines, with the borders between curved

and flat patches in thick black and inflection lines in blue.
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input our result Diamanti et al. [2014] Instant Meshes [Jakob et al. 2015]

Fig. 5. Remeshing an input developable surface using the directional field design of [Diamanti et al. 2014] does not result in globally straight edge sequences.

Instant Meshes, the curvature-aligned quad dominant remeshing technique of [Jakob et al. 2015], introduces superfluous singularities and does not always

succeed in finding the exact rulings. For Instant Meshes we use the following settings: 4-RoSy extraction, quad-dominant mesh extraction, no boundary

alignment (to ensure better curvature alignment; trimming can be done in a post-processing step).

Non-smooth developables. We also consider more general, piece-

wise developable surfaces. One type is creased shapes, where several

smooth developable surfaces are joined along curves with only 𝐶0-

continuity [Huffman 1976]. These curves are termed curved folds

when the surface is globally isometric to a planar domain (as in Fig.

22), and creases when this is not the case (e.g., Fig. 18). We treat

curved folds and creases identically in the rest of this paper and

refer to them as creases from now on. Another type is surfaces that

contain point singularities, such as cone apexes (see Fig. 19). These

surfaces are locally non-developable at the singularities; they can

be constructed by gluing parts of the boundary of a developable

surface together while allowing isometric deformation. The cone

apexes are easily identified, and to run our method we remove the

apex vertices that don’t coincide with a crease together with their

incident faces. If desired, they can be added back in post-processing.

We note that our method requires that the individual pieces are suf-

ficiently smooth, and allow a definition of rulings whose endpoints

are always on boundaries or creases (as is the case for the surface

types described above), therefore explicitly excluding surfaces that

look like crumpled paper.

Conjugate nets. Consider a single torsal patch S𝑖 , where we pa-

rameterize the patch with coordinates S𝑖 (𝑢,𝑤) as follows:

S𝑖 (𝑢,𝑤) = 𝑝 (𝑢) +𝑤 𝑟 (𝑢), (1)

where 𝑝 (𝑢) : R→ R
3 is a generating curve, and every 𝑢-isoline is a

straight line with direction 𝑟 (𝑢) : R→ S2, i.e., a ruling. The Gauss

map 𝑛(𝑢,𝑤) must be constant on the 𝑢-isolines in order for S𝑖 to

be developable: 𝑛(𝑢,𝑤) = 𝑛(𝑢). This means that the 𝑢-isolines on

S𝑖 are extrinsically straight; they constitute lines inR
3.

The rulings are the minimum curvature lines of S𝑖 . The 𝑢𝑤-

parameterization constitutes a conjugate net [Liu et al. 2006]. In

particular, choosing 𝑝 (𝑢) to be a max curvature line (i.e., having

the 𝑝 (𝑢) curve intersect all rulings at right angles) makes S𝑖 (𝑢,𝑤)

a principal curvature line parameterization.
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Seamless parameterization. When S is 𝐶2-continuous, every tor-

sal patch either borders a planar patch, or the outer boundary of S.

Planar patches allow to connect several differ-

ent ruling strips, with multiple orientations,

by introducing singularities within the planar

patch (see inset). These planar patches can-

not be ruled in a manner that is consistent

with all adjacent torsal patches, and so 𝑢 on a

planar patch will be a smooth interpolation of

the 𝑢 function on the adjacent torsal patches

(whilst locally also being subject to the constraints detailed in Sec.

3.2). Since the rulings are by definition 2-symmetric (i.e., they are

invariant to the sign of 𝑟 (𝑢)), the singularities can be of indices

± 1
2 , and the function 𝑢 is only seamless rather than continuous on

S, similarly to the stripe patterns of [Knöppel et al. 2015]. Note

however that 𝑢 is locally fully continuous (it can be łcombedž) on

each torsal patch S𝑖 . Across creases, rulings are only𝐶
0-continuous,

and thus we constrain 𝑢 to be 𝐶0 there as well. We further note

that works such as [Diamanti et al. 2014; Jakob et al. 2015; Liu et al.

2011] intermix between the 𝑢 and the𝑤 coordinates, and enable full

quad-mesh ± 1
4 singularities (see Fig. 5). While this provides more

meshing flexibility for general curved surfaces, it in fact hinders the

ability to correctly capture the pure foliation topology of the ruling

stripes comprising the developable surfaces.

3.2 Ruling fields

Our work focuses on designing directional fields that generate the

rulings of a developable surface from other representations, and

integrate them to compute 𝑢. Consider the gradient vector field ∇𝑢,

which is by definition orthogonal to the isolines of 𝑢. The geodesic

curvature of isolines is defined as: 𝜅𝑔 (𝑢) = ∇ ·
∇𝑢
∥∇𝑢 ∥

[Sethian 1999].

Since the 𝑢-isolines of the 𝑢𝑤-parameterization of a developable

surface following Eq. (1) are extrinsically flat, we have∀𝑢, 𝜅𝑔 (𝑢) = 0.

As such, ruling fields are both geodesic and principal.

Denote by 𝑟⊥ a unit-length vector field orthogonal to the ruling

directions 𝑟 in the tangent bundle of S, such that ∇𝑢
∥∇𝑢 ∥

= 𝑟⊥. Next,

consider a unit length 2-vector field 𝑌 on a developable surface S,

which is the assignment of a tangent vector 𝑌 to every point 𝑝 ∈ S,

and which is defined up to sign. If we align 𝑌 with 𝑟⊥, we have by

definition

∇𝑢 ∥ 𝑌 . (2)

For simplicity we first consider the case where 𝑌 does not have

singularities, and the surfaceS does not contain creases. This allows

𝑌 to be combed (i.e., the sign branching to be resolved) in every local

surface patch by consistently choosing one of the two directions

to obtain a smooth 1-vector field. Using this combed single-vector

field version of 𝑌 we then get:

∇ · 𝑌 = ∇ ·
∇𝑢

∥∇𝑢∥
= 0. (3)

Thismeans that𝑌 is a divergence-free unit vector field. Our objective

is to design 𝑌 and integrate 𝑢 from it, which leads to the question

for which divergence-free unit fields 𝑌 such a 𝑢 exists. 𝑌 must be

integrable up to a multiplicative scalar. That is, there must exist a

positive scalar function 𝑠 , 𝑠 (𝑝) > 0, ∀𝑝 ∈ S, for which (using the

combed version of 𝑌 ):

∇ × (𝑠𝑌 ) = 0. (4)

The geometric meaning of the scalar function 𝑠 is the density of the

isolines of 𝑢 at point 𝑝 . A non-constant 𝑠 comes up naturally when

the isolines have a fan-like structure (for instance, the rulings of a

cone).

Singularities and combing. We design 𝑌 as a 2-vector field, where

it is only defined up to sign. Therefore, the divergence and curl oper-

ators do not automatically apply. Rather, in every local surface patch

that does not contain singularities, 𝑌 can be combed by consistently

choosing one of the two directions to obtain a smooth single-vector

field on which we adhere to conditions (3) and (4).

Since our field 𝑌 is 2-symmetric, singularities have indices that

are integer multiples of ± 1
2 . As 𝑌 is a unit field, it is not defined

there, and neither is 𝑢. As a consequence, it is not divergence free

in any neighborhood that contains the singularity, and the isolines

of 𝑢 are not straight there (see Fig. 1). Note that singularities either

arise on planar patches, or on cone apexes, and therefore do not

compromise the properties of the field on torsal patches. Following

the common paradigm of seamless parameterization (e.g., [Bommes

et al. 2009; Diamanti et al. 2015]), this is the reason why we design

the field 𝑠𝑌 as curl-free, rather than as the conservative ∇𝑢, which

is only locally defined in simply-connected non-singular patches.

Relation to geodesic fields. Vekhter et al. [2019] and Pottmann

et al. [2010] both apply the unit-length divergence property to de-

sign geodesic fields; more precisely, Vekhter et al. [2019] work with

the dual curl-free vector field 𝑌⊥ and define a similar integrability

measure. Nevertheless, our work handles further challenges, as it is

not enough to target geodesic fields to guarantee that they follow

rulings, even though rulings are geodesics. It is in fact theoreti-

cally impossible to characterize rulings of a developable merely as

geodesics, since they depend on the shape operator and are thus

extrinsic. Therefore, 𝑌 has to be designed such that 𝑌⊥ aligns to

prescribed rulings. As we see in Sec. 4, estimating and aligning to

reliable rulings is a challenging task that must include completion

in unreliable regions.

Ruling field at creases. Rulings on two developable patches adja-

cent to a crease typically do not form a single, intrinsically straight

line, but rather meet at an angle (see e.g. Fig. 21, 22). We there-

fore do not require 𝑌 to be divergence-free near creases, effectively

allowing the vector field to break across them. Furthermore, the

ruling field does not have to be strictly divergence-free on planar

regions to create planar quads, and it will not be divergence-free

around singularities; nevertheless, we optimize for this property

everywhere smooth, while letting singularities emerge naturally, to

avoid identifying and segmenting these regions explicitly.

3.3 Discrete ruling-aligned developable meshes

A discrete sampling of the 𝑢-isolines of a principally-aligned param-

eterization creates a quadrilateral mesh whose faces are planar up

to second order [Liu et al. 2006]. Anisotropic quadrilateral meshing

aligned to principal directions is known to have optimality proper-

ties in terms of approximation quality (see e.g. [Alliez et al. 2003]).
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These facts motivate curvature-aligned polygonal remeshing, in

particular for fabrication purposes.

Since we only design and discretize𝑢, leaving the coordinate𝑤 as

a degree of freedom, our discretization for a torsal patch is that of a

mesh comprising long planar polygons. These polygons are for the

most part quadrilaterals whose edges are two boundary curves and

two straight rulings; thus, a torsal patch is represented as a PQ-strip

model. Planar patches are represented as big flat polygons, where

the non-straight isolines are fully contained in the plane, and we are

therefore allowed to straighten them out. The planar polygons are in

general non-quad, since they may contain singularities determined

by the number of torsal patches it connects; nevertheless, their

planarity makes them easy to refine if required.

4 DISCRETIZATION

The input to our algorithm is a triangle mesh M = {V, E, F }

representing the (piecewise) developable surface, whereV denotes

the set of vertices, E the set of edges and F the faces. To regularize

the scale of surface curvature between different surfaces, and our

optimization parameters, we scale the inputM to have unit-length

bounding box diagonal. We define 𝑢 as a piecewise-linear vertex-

based function 𝑢 (𝑣), 𝑣 ∈ V , and consequently represent 𝑟 , 𝑟⊥, and

∇𝑢 as face-based piecewise-constant tangent fields; we denote this

space as X. We use the conforming discrete gradient 𝐺 : (V →

R) → X and divergence 𝐷 : X → (V → R) operators, and the

non-conforming discrete curl operator 𝐶 : X → (E → R). Their

explicit expressions can be found in, e.g., [Brandt et al. 2017].

Estimating rulings. We compute a ruling direction 𝑟 (𝑓 ), ∀𝑓 ∈

F , as the eigenvector corresponding to the minimal eigenvalue of

the face-based shape operator 𝑆 (𝑓 ), as defined in [de Goes et al.

2020]. Since we know the ruling only up to sign, we represent it

unambiguously using a power representation [Azencot et al. 2017;

Knöppel et al. 2013]: we first represent 𝑟 (𝑓 ) as a complex number in

a local coordinate system and then square this complex number to

have a representation that is invariant to the sign of the direction,

i.e., we store 𝑅(𝑓 ) = 𝑟2 (𝑓 ). We also define 𝑅⊥ (𝑓 ) = (𝑟⊥ (𝑓 ))2, the

power representation of the ruling locally rotated by 90 degrees.

Confidence weights. A clean domain decomposition into planar

and torsal regions would significantly simplify the fitting of indi-

vidual developable patches. Unfortunately, we cannot obtain such a

clean segmentation directly, because the curvature measure (like the

ruling estimates) is noisy and does not delineate planar and torsal

patches nicely (Fig. 6). Therefore, we model on the assumption that

the rulings are least reliable in planar or near-planar regions, and

mostly consistent in strongly curved areas (see Figs. 1 and 7). We

thus attach a relative confidence weight𝑤 (𝑓 ) to each face 𝑓 ∈ F , as

a function of the discrete absolute max and min curvatures 𝜅1 (𝑓 )

and 𝜅2 (𝑓 ):

𝑤 (𝑓 ) = 𝜃1

(

1 − 𝑒𝜃2 (𝜅1 (𝑓 )−𝜅2 (𝑓 ))
2
)

. (5)

For 𝜅1 (𝑓 ) and 𝜅2 (𝑓 ) we use the absolute largest and smallest eigen-

values of the shape operator S(𝑓 ), and set 𝜃1 = 0.8, 𝜃2 = −0.014.

Fig. 6. The curvature isolines of |𝜅1 − 𝜅2 | (middle) do not provide a clean

delineation between torsal and planar parts. However, our method auto-

matically places a planar polygon in the appropriate region, without being

provided with an explicit decomposition (right).
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The confidence function is a logis-

tic curve (see inset), facilitating a

stronger distinction between confi-

dence in planar and near-planar re-

gions (albeit still small compared to

stronger curved regions). The value

of𝑤 (𝑓 ) is capped at 0.8 by design, en-

suring that we never fully rely on a

ruling. We defineV𝑏 to be all vertices

on the boundary ofM and F𝑏 all faces

that contain a vertex inV𝑏 , and we set𝑤 (𝑓 ) = 0 for these faces.

Creases. Our method requires as input the explicit identification

of the set of crease edges E𝑐 that define curved-fold creases and

boundaries to developable pieces. We defineV𝑐 as all vertices that

are incident on an edge in E𝑐 , and from this we define the set of

faces adjacent to them: F𝑐 is the set of all faces that have one or

more vertices inV𝑐 . We update the confidence weights by setting

𝑤 (𝑓 ) = 0 for all faces in F𝑐 . UsingV𝑐 andV𝑏 we initializeV∗ as

the set of mesh vertices but with the boundary and crease vertices

excluded, i.e. :V∗ = V \ (V𝑏 ∪V𝑐 ). The user can provide crease

edges as input or we can make an initial guess for the crease edges

based on the dihedral angle of adjacent faces andmanually add edges

belonging to softer creases. We require that the final set of crease

edges divides the surface into smooth developable surfaces. The

required seams for this segmentation are typically easily visually

distinguishable (for example using reflection lines). Figures 18, 20,

21, 22 and 11 show examples of developable surfaces with creases

and Fig. 20 explicitly shows them on a complex model. When creases

end in the interior of a developable piece rather than on another

crease or boundary, so called open creases, we duplicate their interior

vertices and define them as mesh boundaries. Examples of such open

creases can be seen in Figures 19, 20 and 11 (the chair model).

5 METHOD

We describe our approach to remeshing a (near-)developable in-

put triangle mesh to a curvature-aligned, planar polygonal mesh

consisting primarily of PQ strips.

5.1 Optimization problem

Setup. We compute the face-based shape operator and the ruling

related quantities 𝑟 (𝑓 ) and 𝑟⊥ (𝑓 ). Our computed field 𝑌 , and the

ruling fields 𝑟 (𝑓 ) and 𝑟⊥ (𝑓 ) are represented as either vectors in

C
|F | , or the equivalent R2 |F | , defined in a local basis defined on
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(a) input meshM (b) input rulings 𝑟 (c) streamlines of 𝑌 (d) isolines of 𝑢 (e) our resultM′

Fig. 7. Our remeshing pipeline: (a) The original inputM; (b) the noisy input rulings 𝑟 ; (c) our computed 𝑌 field, visualized with streamlines; (d) the isolines

of the optimized function 𝑢; (e) the final remeshing resultM′. Note how the isolines in (d) bend inside the planar region, which gets meshed as one large

polygon, but are straight in the torsal regions, which result in PQ-strips.

each 𝑓 ∈ F ; for simplicity we do not distinguish between them and

it is made clear by the context. We further compute the quantities

𝑅(𝑓 ) = 𝑟2 (𝑓 ), 𝑅⊥ (𝑓 ) = (𝑟⊥)2 (𝑓 ), ∀𝑓 ∈ F , as well as the confidence

weights𝑤 (𝑓 ), as detailed in Sec. 4.

We consider the diagonal face-basedmass matrix either for vector-

valued quantities𝑀X : 2 |F | × 2 |F |, or for scalar or complex quan-

tities MF : |F | × |F |, holding the face areas 𝑚(𝑓 ). We further

consider the edge-based mass matrix𝑀E holding edge masses

𝑚(𝑒) =
∥𝑒 ∥

∥𝑒dual∥
(𝑚(𝑓 ) +𝑚(𝑔)) /2,

where ∥𝑒dual∥ is defined as the summed length of the two dual

edges from the midpoint of 𝑒 to the barycenters of the adjacent

faces 𝑓 and 𝑔. Finally, for a vector field 𝑌 ∈ X we use the inte-

grated discrete divergence 𝐷𝑌 = 𝐺T𝑀X𝑌 (∈ R
|V |), where 𝐺 is

the discrete gradient operator, which for a triangular face 𝑓 consist-

ing of vertices 𝑖, 𝑗, 𝑘 and scalar function 𝑢 is defined as 𝐺𝑢𝑖 𝑗𝑘 (𝑓 ) =
1

2𝑚 (𝑓 )
(𝑒⊥

𝑗𝑘
𝑢𝑖 + 𝑒

⊥
𝑘𝑖
𝑢 𝑗 + 𝑒

⊥
𝑖 𝑗𝑢𝑘 ).

Objective. We optimize for a gradient ruling field 𝑌 (𝑓 ), accord-

ing to the requirements of Sec. 3.2. That is, 𝑌 (𝑓 ) should have unit

norm, it should align to the estimated rulings 𝑟⊥ (𝑓 ) up to sign and

according to confidence, it should be divergence free away from

creases, boundaries, and singularities, and it should be curl-free up

to scaling. Our variables are then 𝑌 (𝑓 ) itself, its power representa-

tion Γ(𝑓 ) = 𝑌 2 (𝑓 ), where Γ(𝑓 ) should align to the perpendicular

power ruling field 𝑅⊥ (𝑓 ) according to the confidence 𝑤 (𝑓 ), and

where 𝑌 is divergence-free away from singularities. Furthermore,

we optimize for a scalar field 𝑠 (𝑓 ), such that 𝑠 (𝑓 ) · 𝑌 (𝑓 ) is curl-free.

Our objective breaks down to the following terms:

Alignment objective. Our alignment term is

𝐸𝑎 (Γ) =
∑

𝑓 ∈F

𝑚(𝑓 )𝑤 (𝑓 ) ∥Γ(𝑓 ) − 𝑅⊥ (𝑓 )∥2, (6)

where𝑚(𝑓 ) is the face area of 𝑓 and𝑤 (𝑓 ) is the confidence weight

as defined in Eq. (5). This can be formulated in matrix form as

𝐸𝑎 (Γ) =
(

Γ − 𝑅⊥
)H

𝑀F𝑊F
(

Γ − 𝑅⊥
)

, (7)

where𝑊F is the diagonal matrix of per-face confidences for complex

numbers or scalars, and Γ and 𝑅⊥ are arranged as |F | × 1 complex

vectors. Note the conjugate transpose
(

Γ − 𝑅⊥
)H

.

Unit-norm divergence-free objective. We ideally want the field to be

perfectly divergence-free and have unit norm everywhere. However,

this is impossible at singularities (Sec. 3.2) and in general would only

be important on torsal patches. We follow [Viertel and Osting 2019]

and [Sageman-Furnas et al. 2019] by employing a Ginzburg-Landau

functional, introducing the following objective term (defined as

𝜀 → 0):

𝐸𝑑 (𝑌 ) =
∑

𝑣∈V

1

𝑚(𝑣)
|𝐷𝑌 (𝑣) |2 +

1

𝜖2

∑

𝑓 ∈F

𝑚(𝑓 )
(

∥𝑌 (𝑓 )∥2 − 1
)

, (8)

where𝑚(𝑣) is the barycentric Voronoi area of vertex 𝑣 ; note that its

reciprocal is used since 𝐷𝑦 is an integrated quantity. When 𝜖 → 0,

this is analogous to minimizing the divergence of a unit-norm field

after removing a ball of radius 𝜖 around singularities. Since the

unit-norm divergence-free condition is satisfiable on torsal patches

in a direction that matches with the alignment terms, singularities

(if any) will naturally be located inside planar regions.

Smoothness regularizer. To encourage the field to smoothly tran-

sition from curved to planar parts, and in general to regularize

low-confidence regions, we add a small smoothness term that en-

codes the smoothness of the power vector field across edges. For

each interior edge 𝑒 adjacent to faces 𝑓 and 𝑔, the power smooth-

ness [Knöppel et al. 2013] is measured as:

∥Γ(𝑓 ) 𝑒2
𝑓
− Γ(𝑔) 𝑒2𝑔 ∥

2 . (9)

Here, 𝑒𝑓 is the conjugate of 𝑒𝑓 , which is the complex representation

of the normalized edge vector 𝑒 in the basis of 𝑓 , and similarly for 𝑔.

Our smoothness regularizer then becomes:

𝐸𝑠 (Γ) =
∑

𝑒∈E

𝑚(𝑒) (1 −𝑤 (𝑒)) ∥Γ(𝑓 ) 𝑒2
𝑓
− Γ(𝑔) 𝑒2𝑔 ∥

2, (10)

where𝑤 (𝑒) = (𝑤 (𝑓 )+𝑤 (𝑔))/2. In matrix form, we write this energy

as 𝐸𝑠 (Γ) = Γ
H𝐿2Γ, where

𝐿2 = 𝐺H
E𝑀E (𝐼 −𝑊E )𝐺E , (11)

where𝐺E implements the differences Γ(𝑓 ) 𝑒2
𝑓
− Γ(𝑔) 𝑒2𝑔 from Eq. (9).

Integrability. We use the discrete curl operator 𝐶 to measure

integrability of the (per-face) scaled field 𝑠𝑌 :

𝐶𝑠𝑌 (𝑒) = ⟨𝑠 (𝑓 )𝑌 (𝑓 ) − 𝑠 (𝑔)𝑌 (𝑔), 𝑒⟩ . (12)
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We constrain

𝐶𝑠𝑌 = 0. (13)

To constrain 𝑠 to be positive and prevent large density variations,

we further bound

∀𝑓 ∈ F , 𝑠low < 𝑠 (𝑓 ) < 𝑠high . (14)

We provide the values used for 𝑠low and 𝑠high in Sec. 5.2.

Branching and singularities. Generating Γ from 𝑌 is well-defined.

However, the inverse has a sign degree of freedom. We follow com-

mon practice by arbitrarily choosing a sign in each face, and relating

𝑌 values across faces by using principal matching [Diamanti et al.

2014]; in our context, this means we match vectors according to

the smallest rotation angle. The curl and divergence operators are

always understood to be defined with relation to the matching at

every edge and vertex, with the exception of singularities, creases,

and boundary vertices (where we do not optimize for divergence).

Full optimization problem. Our optimization problem can then be

finally formulated as follows:

(Γ, 𝑌 , 𝑠) = argmin 𝜔𝑎𝐸𝑎 (Γ) + 𝜔𝑑𝐸𝑑 (𝑌 ) + 𝜔𝑠𝐸𝑠 (Γ), 𝑠 .𝑡 . (15)

∀𝑓 ∈ F , Γ(𝑓 ) = 𝑌 2 (𝑓 ), (16)

𝐶𝑠𝑌 = 0, (17)

∀𝑓 ∈ F , 𝑠low < 𝑠 (𝑓 ) < 𝑠high . (18)

Here,𝜔𝑎, 𝜔𝑑 , 𝜔𝑠 are scalar weights. Similar to [Sageman-Furnas et al.

2019], we seek solutions where 𝜔𝑠
𝜔𝑑
→ 0 and 𝜔𝑠

𝜔𝑎
→ 0 to allow the

solution to converge to a divergence-free unit-norm field aligned to

rulings away from planar regions and singularities.

5.2 Optimization algorithm

Our energy is nonlinear and its constraints use discrete variable

quantities such as the matching. As the optimization problem is

separable in the Γ,𝑌 and 𝑠 variables, we optimize for them in an alter-

nating fashion, following the spirit of [Sageman-Furnas et al. 2019]

and [Viertel and Osting 2019]. Our method proceeds as described

in Algorithm 1.

ALGORITHM 1: Optimize for ruling field

Initialize Γ0 = 𝑅⊥, 𝑘 = 0,V∗ = V \ (V𝑏 ∪ V𝑐 )

repeat
𝑘 ← 𝑘 + 1

Γ
𝑘
𝑎 ← ImplicitAlign(Γ𝑘−1)

Γ
𝑘
𝑠 ← ImplicitSmooth(Γ𝑘𝑎 )

∀𝑓 ∈ F, Γ
𝑘
𝑢 (𝑓 ) ←

Γ
𝑘
𝑠 (𝑓 )








Γ
𝑘
𝑠 (𝑓 )










(

𝑌𝑘
𝑢 ,𝐶𝑘 , 𝐷𝑘 ,V∗

)

← LocalRawRepresentation(Γ𝑘𝑢 )

𝑌𝑘
𝑑
← ProjectDivFree(𝑌𝑘

𝑢 , 𝐷𝑘 ,V∗)

𝑌𝑘
𝑐 ← ProjectCurlFree(𝑌𝑘

𝑑
,𝐶𝑘 )

Γ
𝑘 ← PowerRepresentation(𝑌𝑘

𝑐 )

until max𝑓 ∥Γ
𝑘 (𝑓 ) − Γ𝑘−1 (𝑓 ) ∥ < 10−3;

The function ImplicitAlign(Γ𝑘−1) reduces the alignment en-

ergy 𝐸𝑎 by a single implicit Euler step, by solving the following

linear system:
(

𝐼 +
𝜔𝑎

𝜇𝑎
𝑊X

)

Γ
𝑘
𝑎 = Γ

𝑘−1 +
𝜔𝑎

𝜇𝑎
𝑊F𝑅

⊥ . (19)

The implicit step size𝜔𝑎 is scaled by 𝜇𝑎 , which is the lowest nonzero

eigenvalue of𝑊F . Note that the mass matrix𝑀F is cancelled out in

the gradient and eigenvalue. Similarly, ImplicitSmooth(Γ𝑘𝑎 ) solves

the following linear system:

(𝑀F +
𝜔𝑠

𝜇𝑠
𝐿2)Γ

𝑘′

𝑠 = 𝑀F Γ
𝑘
𝑎 . (20)

with the lowest nonzero eigenvalue 𝜇𝑠 so that ∃𝑥 ≠ 0, 𝐿2𝑥 = 𝜇𝑠𝑀F𝑥 .

The step size 𝜔𝑎 is fixed to 0.1, and the step size 𝜔𝑠 starts as 0.005

and is halved every 30 iterations, to ensure that the alternation with

the renormalization of Γ converges.

After normalizing the current vector field, it is transformed into

the łrawž representation 𝑌 , where the principal matching (and con-

sequently, the singularities) are computed, and from them the curl

matrix 𝐶 and divergence matrix 𝐷 are updated. Furthermore, this

function updates V∗ according to the current singularities. Note

that the sets of boundary verticesV𝑏 and crease verticesV𝑐 (Sec.

4) are always mutually exclusive withV∗.

Next, ProjectDivFree(𝑌𝑘
𝑢 ) finds the closest divergence-free so-

lution to 𝑌𝑘
𝑢 by solving the following linear system:

argmin
𝑌𝑘
𝑑

∥𝑌𝑘
𝑑
− 𝑌𝑘

𝑢 ∥
2 s.t. 𝐷𝑌𝑘

𝑑

(

V∗
)

= 0. (21)

Specifically we do this by solving

argmin
𝑥∗

∥𝑥∗∥ s.t. 𝐷𝑥∗
(

V∗
)

= −𝐷𝑌𝑘
𝑢

(

V∗
)

,

where 𝑥∗ = 𝑌𝑘
𝑑
−𝑌𝑘

𝑢 . For 𝑥
∗ to be aminimum-norm solution adhering

to the constraints, it should be expressible as 𝑥∗ = 𝐷T𝑤 for some

𝑤 . So we can solve 𝐷𝐷T𝑤 (V∗) = −𝐷𝑌𝑘
𝑢 (V

∗), set 𝑥∗ = 𝐷T𝑤 and

finally obtain the divergence-free solution as 𝑥∗ + 𝑌𝑘
𝑢 .

Finally, the function ProjectCurlFree(𝑌𝑘
𝑑
) finds the closest

scaled curl-free solution by solving the following convex system:

argmin
𝑌𝑘
𝑐 , 𝑠

∥𝑌𝑘
𝑐 − 𝑠𝑌

𝑘
𝑑
∥2, (22)

𝑠 .𝑡 . 𝐶𝑌𝑘
𝑐 = 0, (23)

0.4 ≤ 𝑠 ≤ 1.6. (24)

Although we have no guarantee of convergence (as discussed in

Sec. 6), in our experiments it typically takes 50 iterations of our

optimization algorithm or less for Γ to converge.

5.3 Vector field integration and meshing

Having an integrable 𝑌 , we use a mixed-integer integration scheme

[Bommes et al. 2009] to obtain a seamless globally smooth parame-

terization which produces 𝑢. The input triangle mesh is cut into a

topological disc, where the singularities are on the boundary, and

then a corner-based𝑢 function is extracted, which is seamless across

the cuts, using integer translations. We configure the integrator to

produce 𝑢 ∈ Z+ 1
2 values at singular vertices, since then the integer

isolines avoid meeting at these singularities, and we obtain a single

polygon around the singularity.
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Fig. 8. Several snapshots from an interactive editing session (top row). The user deforms the DOG model by interacting with point handles at some selected

vertices. At any time during the interactive session, the user may pause and invoke our remeshing algorithm and view the curvature-aligned remesh (bottom

row). Note how the combinatorial structure of the ruled remeshing automatically changes to accommodate the changes in the surface geometry, without

forcing the user to specify the patch decomposition manually.

input our result after planarization

𝑝 = 11.84% 𝑝 = 0.0034%

Fig. 9. Our result from Fig. 24 is planarized using ShapeUp [Bouaziz et al.

2012], achieving maximal face planarity error of 𝑝 = 0.0034%, compared

with 𝑝 = 11.84% in our initial result. The visual difference between the

results is negligible. The Hausdorff distances are reported in Table 3.

To create the final PQ-strip mesh, we trace the integer isolines of𝑢

(at a user-specified global resolution) and then collapse all valence-2

vertices that are not on the boundary, thereby removing all interior

vertices. This effectively straightens the polylines of the isolines,

which has little effect in torsal regions, since the isolines are already

almost straight by the optimization (see Fig. 1 and Fig. 7). However,

the isolines in planar regions, which might be more curved if a

singularity causes the divergence-free constraint to be excluded,

become chords between boundary vertices. We note that since we

have a full parameterization of the surface, control over individual

panel width is also possible by specifying a custom set of 𝑢 values

for tracing the isolines. We illustrate our remeshing pipeline in Fig.

7.

6 RESULTS AND DISCUSSION

We implemented our algorithm using libigl [Jacobson et al. 2018]

and Directional [Vaxman et al. 2017a] on a machine with i7-8569U

CPU and 16GB RAM. Our typical input mesh resolution is 1800

faces, and for this approximate input size the vector field design

part of our method takes 4ś5 seconds, of which the majority of

uniformly tessellated input output, 𝑝 = 2.58%

Fig. 10. Our result on a better tessellation of the input from Fig. 9 has

maximal planarity error of 𝑝 = 2.58%, compared with 𝑝 = 11.84% initially.

the time is spent in the ProjectCurlFree step, i.e., solving the

convex optimization Eq. (22)-(24). We currently use CVX [Grant

and Boyd 2014], but this part can be optimized for better speed.

Although we do not have a formal convergence guarantee for our

alternating algorithm, we observe that it typically converges to our

specified tolerance level within 10ś20 iterations for vector fields

without singularities and 40ś50 iterations for shapes with planar

parts that introduce singularities in the vector field. We also test

our method on inputs of up to 160k faces, which does not cause

problems for convergence. The parameterization part of our method

takes approximately 10ś15 seconds.

A variety of our results can be seen in Fig. 24. Note that our

method preserves the input boundary vertices, and therefore our

output faces are quadrilateral-like higher degree polygons, rather

than actual quadrilaterals. Examples of our results with various

boundary shapes and non-disk topologies are included in Fig. 24.

Our method is applicable to developables with curved folds, as seen

in Fig. 1, 2 and 22 (input models from [Rabinovich et al. 2019])

as well as in Fig. 11. It can handle piecewise developable shapes,

such as D-forms (shapes obtained by gluing together two planar
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domains with the same perimeter) from [Jiang et al. 2020] and

sphericons from [Tang et al. 2016], see Fig. 18, as well as other

shapes with creases from [Tang et al. 2016], see Fig. 21. Works by

Stein et al. [2018], Sellán et al. [2020], Ion et al. [2020] and others

produce piecewise developable approximations, but they are not

PQ meshes. Our work can be used to remesh those surfaces, see

Fig. 20 for an example. We successfully apply our method to glued

constructions from [Jiang et al. 2020], including point singularities,

see Fig. 19. We have physically fabricated some of our results, shown

in Fig. 23. Table 3 lists the most important statistics about our results.

Developable surface editing with dynamic connectivity. To demon-

strate the utility of our approach, we use the point handle-based

editing system of [Rabinovich et al. 2018] to interactively deform an

input discrete orthogonal geodesic net (DOG) and create a sequence

of a few developable surfaces, on which we run our algorithm (of-

fline) after trivial triangulation. See Fig. 8 and the accompanying

video for some examples of such editing sessions. Note the natural

change in the combinatorics that our algorithm induces to model

exact developability, which can change considerably even for small

deformations in the input.

Planarity evaluation. Since our output meshes have no interior

vertices inside the developable patches, the ultimate accuracy mea-

sure for the developability of our results is the planarity of the mesh

faces. We measure planarity of each quadrilateral face by the ratio

of the distance between the diagonals to their average length, in

percent [Liu et al. 2006]. For higher-degree polygons, we compute

the root-mean-square (RMS) error of all quads constructed from

every 4 consecutive vertices in the polygon. An acceptable stringent

tolerance for the planarity error is ≤ 1% [Vaxman et al. 2017b]. It

is generally not expected for parameterization based methods to

achieve planarity to more than first order, so that usually further

planarization post-processing is needed. We show the raw maxi-

mum and mean planarity error values of our results without any

post-processing in Table 3. Even though our output meshes are

quite coarse, our planarity errors are typically very low without

such planarity optimization, and very close to the tolerance. Our

worst maximum planarity error is obtained on a mesh with very thin

features (Fig. 24, 5th row, middle column), and the output quad with

this maximal planarity error is towards the end of the spiral. As can

be seen in Fig. 24 and Fig. 10, the input triangulation is very coarse

there. We planarize this example, which has the worst maximum

planarity error (𝑝 = 11.84%) to zero planarity (𝑝 = 0.0034%) using

ShapeUp [Bouaziz et al. 2012], and reach a visually highly similar

result, see Fig. 9. This demonstrates the capability of our algorithm

to utilize the information in the original mesh effectively. Interest-

ingly, the triangulation of the input mesh is similar to a Schwartz

lantern, and remeshing this input to a more uniform triangulation

already drastically brings down the maximal planarity error of our

algorithm to 𝑝 = 2.58%, see Fig. 10.

Constraints and objective values. As described in Sec. 5.2, we have

an iterative multi-step optimization algorithm. Because of its al-

ternating nature, we can only guarantee that the converged solu-

tion will meet the curl-free constraint that is optimized for in the

Table 1. Maximal and mean absolute divergence for converged vector fields.

The reported absolute divergence values are computed on the final normal-

ized fields and exclude values at singularities and boundaries.

mesh max divergence mean divergence

Fig. 7 0.0105 0.00046

Fig. 8 left 0.0032 0.00004

Fig. 16 bottom 0.0102 0.00050

final step. We see that the divergence of the final (normalized) vec-

tor field is not fully zero everywhere, but it is nevertheless very

low (see Table 1). A plot of the divergence values over the mesh

shows that it mostly concentrates on planar regions (see inset).

As the divergence is close to zero in torsal

regions, the resulting function isolines are

very straight and similar to their simplified

version there. The simplified isolines in pla-

nar regions possibly deviatemore, but since

any straight line in a planar region is a ruling this does not pose a

problem. Our final converged vector field may be far from unit-norm

but this does not raise any issues as long as the divergence of its

normalized version is zero.

Comparison with state of the art. In Fig. 11 we compare our results

with the work by Kilian et al. [2008] through a visual comparison

between (triangulated versions of) their output meshes and our

outputs obtained from an isotropic remeshing of their output as

our input. Because we require the input surface to already be devel-

opable, our method does not work directly on the surface scans that

they use as input. We generated our input by explicitly preserving

the crease edges and isotropically remeshing the patches in between.

For the triangulated output meshes of Kilian et al. we determined a

lower bound on the maximal and mean planarity errors by taking

the global maximum and mean of the minimal planarity values at-

tainable by pairing each face with each of its neighbors. We obtain

visually similar results and also obtain comparable planarity error

measures, whilst requiring less user input and manual tweaking.

Specifically we do not require the user to ensure that the initial

mesh connectivity is a valid developable decomposition.

Effect of output resolution. We extract 𝑢 isolines of varying iso-

values to create output meshes of different resolutions; we then

measure their planarity and approximation quality w.r.t. the input

mesh in terms of Hausdorff distance (Fig. 12). We note that the

approximation quality and the planarity improve with higher reso-

lution, although even for the coarsest resolution these metrics are

already below tolerance.

Comparison with analytical principal-curvature directions. We test

our method on an input mesh sampled from an analytical clothoid

surface with varying resolution and compare the obtained vector

field 𝑌 with the analytical max curvature directions. See Fig. 13

and Table 2. Note that the input to our method are numerically

estimated ruling directions 𝑟 , not their analytical values. As the

data shows, upon refinement of the input mesh, our output field

converges towards the analytical solution.
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𝑝max = 1.04%, 𝑝mean = 0.06% 𝑝max = 0.35%, 𝑝mean = 0.02% 𝑝max = 2.62%, 𝑝mean = 0.11% 𝑝max = 4.56%, 𝑝mean = 0.07%

𝑝max = 1.62%, 𝑝mean = 0.19% 𝑝max = 0.31%, 𝑝mean = 0.06% 𝑝max = 7.63%, 𝑝mean = 0.21% 𝑝max = 1.84%, 𝑝mean = 0.12%

Fig. 11. We compare our results (bottom row) with those of [Kilian et al. 2008] (middle row, polygons are triangulated). As our method requires an input that

is already developable, we used an isotropic remeshing of the output produced by Kilian et al. [2008] as input (top row). The car model (third from left) is

designed by Gregory Epps. Note that this output is a higher resolution version of the one in Fig. 17.

inputM |F′ | = 23 |F′ | = 46 |F′ | = 90

ℎ = 0.47% ℎ = 0.41% ℎ = 0.41%

𝑝max = 0.52% 𝑝max = 0.54% 𝑝max = 0.32%

𝑝mean = 0.24% 𝑝mean = 0.16% 𝑝mean = 0.10%

Fig. 12. Sampling the isolines of our optimized function 𝑢 with increasing

density leads to finer remeshing of the input mesh, where the Hausdorff

distance to the input ℎ, as well as the maximal and mean polygon planarity

error, 𝑝max and 𝑝mean, decrease. The output resolution is denoted by the

number of faces |F′ |. The Hausdorff distance is reported relative to the

bounding box diagonal.

Robustness. Our method is robust with respect to the parameters

𝜔𝑎 and 𝜔𝑠 , for which there is a range of values for that leads to

visually very similar results. As the relative weight of 𝜔𝑠 with re-

spect to 𝜔𝑎 increases, the vector field turns into a more constant

field, reducing alignment quality of the final output mesh. Because

of the fact that the smoothing step is the last one before the vec-

tor field is projected onto the divergence free solution space, 𝜔𝑠 is

the dominating parameter in determining the rough layout of the

final vector field. The parameter 𝜔𝑎 (within reasonable range) has

|F | = 10k |F′ | = 68, ℎ = 0.31%

𝑝max = 1.08%, 𝑝mean = 0.34%

|F | = 40k |F′ | = 67, ℎ = 0.26%

𝑝max = 1.22%, 𝑝mean = 0.10%

|F | = 160k |F′ | = 66, ℎ = 0.24%

𝑝max = 0.25%, 𝑝mean = 0.02%

Fig. 13. As the input resolution |F | of a sampled analytical developable

surface increases, the approximation accuracy and the planarity of our

remeshed result increase. The meshing direction also aligns better with the

mesh boundaries that coincide with analytical ruling directions in this case

as the resolution increases.

a smaller contribution but can affect the exact placement of singu-

larities and the iterations required to reach convergence (see Fig.

14). For noisy inputs, as in Fig. 15, our method does not converge

with our standard parameter settings, or it converges but generates

a vector field with a large amount of singularities. For these cases,

simply increasing 𝜔𝑠 ensures that the optimization converges, al-

though some small and noisy details may be lost (in Fig. 15 (right)

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: January 2022.
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Table 2. Angular Difference (in degrees) between our optimized vector field

and the analytical principal curvature directions on the clothoidmesh shown

in Fig. 13.

|F | max ° mean °

10k 9.49 2.24

40k 4.80 1.19

160k 2.31 0.52

𝜔
𝑠
=
0.
00
5

𝜔𝑎 = 0.1 𝜔𝑎 = 0.2 𝜔𝑎 = 0.5

iter = 85 iter = 106 iter = 141

𝜔
𝑎
=
0.
1

𝜔𝑠 = 0.005 𝜔𝑠 = 0.05 𝜔𝑠 = 1.0

iter = 85 iter = 10 iter = 4

Fig. 14. A reasonable value for 𝜔𝑠 (top row) leads to visually similar results

under varying 𝜔𝑎 . High values for 𝜔𝑎 cause the vector field to follow the

noisy ruling evaluations in the central planar region, generating more singu-

larities and increasing the iterations required to reach convergence. A too

high value for 𝜔𝑠 (bottom row) causes over-smoothing of the field and over-

rules the alignment to the ruling estimates. The left column demonstrates

our standard parameters.

we use 𝜔𝑠 = 0.15). This shows that our method with the help of the

smoothness term manages to recover a principally-aligned vector

field even if the information from the input ruling directions is very

weak. For optimal alignment the value of 𝜔𝑠 should be chosen as

small as possible but as high as necessary so to not introduce ex-

cessive singularities; e.g., for the cone in the second to last row of

Fig. 24 we use 𝜔𝑠 = 0.00005 to emphasize better alignment near the

boundary.

Limitations. Our method is not entirely triangulation indepen-

dent, as shown in Fig. 16. If the input meshing does not allow for an

accurate estimation of the principal curvature directions, this might

lead to poor ruling estimation and diminished performance of our

algorithm in terms of planarity error. This is most noticeable near

the corners of the given input, where there is relatively little data

for our algorithm to align to. In order to minimize bias introduced

by the triangulation, it is advisable to triangulate polygonal input

meshes with higher valences by inserting a new vertex at the face

center and connecting it to the vertices of the original polygon in a

triangle fan.

Furthermore, as we treat curved folds in identical manner to

creases (namely we assume they delineate a developable surface

Fig. 15. Ourmethod is robust to noise on developable inputs. These examples

show our fourth example from Fig. 16, but with random vertex displacements

applied. Left: a displacement of maximally 12.5% of the average edge length

is applied, right: maximally 25% of the average edge length. Our method still

recovers a meshing that is compatible with the original principal directions.

Fig. 16. Different triangulations of a quad mesh lead to different remeshing

results, mainly in the near-planar regions. Nevertheless, all of the resulting

meshing directions on the planar region are valid.

piece), there is no guarantee that the curved folded surface as a

whole remains developable in one piece. An interesting direction for

future work would be to incorporate known geometrical constraints

at curved folds into our method.

If a cone apex is present in the mesh (see Sec. 3.1), the natural

behaviour encouraged by our algorithm is to place a singularity

on the crease to compensate for the curvature of the seam (see

the cylinder example in Fig. 21 and Fig. 17, bottom). Nevertheless,

our algorithm may fail to put the singularity exactly on the seam,

depending on discretization. As a result, our optimization might get

stuck, oscillating between nearby solutionswith different singularity

configurations (Fig. 17). Even though our method nominally fails to

converge for the car example in Fig. 17, a reasonable result close to

the expected one is still obtained.
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Our method may struggle with thin features, e.g., as part of a

piecewise developable, as these can often provide no alignment

information at all. In the future it would be interesting to see how

the vector field on surrounding developable pieces can be used to

add constraints to these thin features, since in the final meshing we

wish to guarantee continuity throughout the pieces. As shown in

Fig. 13, our output quality with respect to Hausdorff distance, as

well as mean and maximal planarity error increases as the input

resolution increases. Our method is therefore dependent on the

input resolution but still performs well on low resolution inputs.

Finally, we have no theoretical guarantees that the ruling-aligned

edges in our output mesh do not intersect, although we never see

this happen in our experiments. In torsal regions, the guiding field

discourages overlapping behavior, as rulings on a developable are or-

dered. For planar regions, the guiding field contains more noise, but

here the smoothness requirement for the vector field (and thus the

corresponding parameterization) strongly discourages crossovers.

7 CONCLUSION

We presented an algorithm that converts developable surfaces rep-

resented by triangle meshes to a discrete curvature line parameteri-

zation, i.e., polygonal meshes with planar faces, where all interior

edges correspond to rulings. This conversion from an unstructured

triangulation of a developable surface to a curvature-aligned PQ

mesh is an important step in the developable modeling and fab-

rication pipeline, for which thus far a robust practical solution

was missing. Our method can only be expected to work well for

nearly developable input shapes. We show a non-developable ex-

ample in the inset, where the edge simplification step is omitted

as it would degenerate the mesh. It would be interesting to see

Fig. 17. When a cone apex of non-trivial curvature is present in the input

mesh, our method might get stuck oscillating between solutions with differ-

ent singularity configurations. The top row shows our method struggling

to put the singularity exactly on the crease and oscillating between two

solutions for the circled part of the car model (courtesy of [Kilian et al. 2008],

designed by Gregory Epps). The middle row shows the input mesh and our

obtained result. In comparison, the bottom row shows a successfully placed

singularity on the crease of the cylinder model from Fig. 21.

Fig. 18. Sphericons and D-forms are piecewise developable surfaces with

creases connecting the individual pieces, and therefore can be remeshed

with our method. The top two models are courtesy of [Jiang et al. 2020], the

bottom two are courtesy of [Tang et al. 2016].

Fig. 19. Our method applied to glued developable surfaces that include cone

apexes. The bottom model contains open creases that end in cone apexes.

These models are courtesy of [Jiang et al. 2020].
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Fig. 20. Our method can handle open creases when they are defined as

mesh boundaries. Examples of open creases can be seen on the forehead

of the mask or on the top of the faucet. Since these creases are defined as

mesh boundaries, seamless parameterization and meshing across them is

no longer guaranteed. The red lines highlight the set of crease edges E𝑐 .

The models are courtesy of [Stein et al. 2018].

how we can adapt our remeshing algorithm to be usable for the

approximation of non-developable surfaces by developable patches.

Another venue for further study would be

the automatic tuning of the values 𝜔𝑠 and

𝜔𝑎 based on the noise levels of the esti-

mated input rulings. Finally, it is conceiv-

able to adapt the output mesh resolution

based on the local curvature, allowing a

denser representation in more curved areas.

Fig. 21. Our method can handle piecewise developable surfaces with or

without boundary and of different genera. These models are courtesy of

[Tang et al. 2016].
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Fig. 22. For surfaces with curved folds our method produces meshes with faces that align well along the folds. Models courtesy of [Rabinovich et al. 2019].

Fig. 23. Our output meshes can be physically fabricated from planar sheets of stiff material. For this experiment, we parameterize our output mesh to the

plane and etch the flattened mesh edges into cardboard using a laser cutter. Appropriately bending the sheet of cardboard along the edges then gives a shape

that matches our output.
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Fig. 24. Various remeshing results obtained with our method. Note that our method can handle a wide variety of developable geometry and topology, including

cylindrical topology, multiple holes and sophisticated boundary shapes.
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Table 3. Statistics of our results, reported by figure number (in scanline order within figures that show multiple results). We record the number of output mesh

vertices |V′ | and faces |F′ |, the number of optimization iterations needed to reach convergence, as well as the maximum and mean face planarity error 𝑝 (in

percentage of the average diagonal length of the face). We also report the Hausdorff distance between the input and output mesh. Many of our meshes meet

the common planarity tolerance of ≤ 1% without any planarization optimization.

Fig. |V ′ | |F ′ | Iter. 𝑝max [%] 𝑝mean [%] ℎ[%]

1 693 137 47 0.38 0.06 0.46

3 270 74 5 1.80 0.41 0.67

5 180 51 8 1.53 0.28 0.45

5 206 44 5 0.59 0.15 0.85

5 218 50 9 0.88 0.18 1.07

5 190 48 5 0.95 0.19 2.55

7 190 48 5 0.95 0.19 2.55

8 208 45 4 0.41 0.11 0.66

8 206 44 5 0.59 0.15 0.85

8 210 46 3 0.54 0.16 0.41

8 208 45 4 0.45 0.17 1.39

8 218 50 9 0.88 0.18 1.07

9 288 107 52 11.84 1.98 0.48

9 288 107 - 0.00 0.00 0.95

10 520 110 6 2.58 0.71 0.09

11 1115 275 16 1.62 0.19 0.28

11 1603 747 14 0.31 0.06 1.90

11 3117 1202 299*** 7.63 0.21 4.03

11 1473 294 10 1.84 0.12 0.18

12 164 23 3 0.52 0.24 0.47

12 210 46 3 0.54 0.16 0.41

12 298 90 3 0.32 0.10 0.41

13 384 68 7 1.08 0.34 0.31

13 632 67 7 1.22 0.10 0.26

13 1130 66 36 0.25 0.02 0.24

15 176 29 18 3.64 1.04 0.56

15 156 19 22 5.42 2.51 1.34

16 254 68 19 3.83 0.42 0.63

16 254 68 23 3.82 0.42 0.66

16 242 62 51 4.12 0.50 0.23

16 258 70 23 3.34 0.48 0.21

17 2194 447 299*** 4.78 0.34 2.90

18 202 100 12 0.14 0.05 0.20

18 324 100 10 0.46 0.14 0.22

18 858 274 9 1.66 0.09 1.15

18 966 272 6 1.14 0.08 0.13

Fig. |V ′ | |F ′ | Iter. 𝑝max [%] 𝑝mean [%] ℎ[%]

19 306 54 2 0.15 0.04 0.15

19 438 54 6 0.14 0.04 1.91

19 578 93 41 2.55 0.30 1.09

20 2455 440 46 2.65 0.25 3.29

20 3833 1599 46 3.19 0.17 1.37

20 972 195 17 1.71 0.26 0.53

20 1677 752 17 2.16 0.13 0.75

21 288 170 18 0.19 0.05 0.09

21* 1970 567 49 0.82 0.05 0.04

21** 1947 636 18 0.26 0.05 0.01

21 738 211 15 0.84 0.10 0.14

22 258 98 4 1.16 0.24 0.23

22 243 80 44 0.67 0.20 0.62

22 280 115 6 1.98 0.16 0.35

22 232 82 21 2.24 0.32 0.42

22 693 137 47 0.38 0.06 0.46

23 196 52 4 2.39 0.37 0.26

23 210 28 9 3.49 0.43 1.47

24 254 68 15 3.63 0.41 0.65

24 210 46 4 1.25 0.19 0.23

24 204 43 20 7.18 0.50 0.34

24 212 47 3 0.56 0.33 0.60

24 390 70 7 3.93 0.31 0.67

24 204 43 3 0.69 0.14 0.10

24 422 88 5 3.35 0.56 0.85

24 208 45 7 0.43 0.10 0.46

24 226 63 8 0.40 0.12 0.18

24 328 75 40 0.78 0.18 0.69

24 1033 71 7 1.72 0.34 0.38

24 218 50 4 2.35 0.20 0.32

24 242 58 4 0.80 0.36 1.29

24 288 107 52 11.84 1.98 0.48

24 208 45 4 0.38 0.11 0.20

24 214 48 9 0.15 0.05 0.08

24 502 53 16 0.32 0.06 0.09

24 194 45 3 1.19 0.24 0.40

24 609 47 7 2.89 0.60 0.21

24 204 43 7 0.49 0.13 0.39

24 288 67 16 1.31 0.20 0.82

* Same model displayed from 3 viewing angles.
** Same model displayed from 2 viewing angles.
*** Maximal number of iterations, not converged.
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