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We present a discrete theory for modeling developable surfaces as quadri-

lateral meshes satisfying simple angle constraints. The basis of our model is a

lesser known characterization of developable surfaces as manifolds that can

be parameterized through orthogonal geodesics. Our model is simple, local,

and, unlike previous works, it does not directly encode the surface rulings.

This allows us to model continuous deformations of discrete developable

surfaces independently of their decomposition into torsal and planar patches

or the surface topology. We prove and experimentally demonstrate strong

ties to smooth developable surfaces, including a theorem stating that every

sampling of the smooth counterpart satisfies our constraints up to second

order. We further present an extension of our model that enables a local defi-

nition of discrete isometry. We demonstrate the effectiveness of our discrete

model in a developable surface editing system, as well as computation of an

isometric interpolation between isometric discrete developable shapes.
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1 INTRODUCTION
The concept of isometry lies at the core of the study of surfaces.

Loosely speaking, two surfaces are isometric if one can be obtained

by bending but not stretching the other. The deforming map is then

called an isometry, and the properties of a surface that are invariant

to isometries are called intrinsic properties. A local isometry is such

a mapping in a neighborhood of some point on a surface.

Surfaces that are locally isometric to a plane are called developable

surfaces. In the physical world, these surfaces can be formed by

bending thin flat sheets of material, which makes them particularly

attractive in manufacturing [Pérez and Suárez 2007], architecture

[Shelden 2002] and art [Wertheim 2004]. Consequently, the design

of freeform developable surfaces has been an active research topic

in computer graphics, computer aided design and computational

origami for several decades.
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Fig. 1. We propose a discrete model for developable surfaces. The strength
of our model is its locality, offering a simple and consistent way to realize
deformations of various developable surfaces without being limited by the
topology of the surface or its decomposition into torsal developable patches.
Our editing system allows for operations such as freeform handle-based
editing, cutting and gluing, modeling closed and un-oriented surfaces, and
seamlessly transitioning between planar, cylindrical, conical and tangent
developable patches, all in a unified manner.

The scope of our work is modeling developable surfaces through

deformation, which can be applied in a design and fabrication pipeline.
This is in contrast to contour interpolation works [Frey 2004; Rose

et al. 2007], which compute a developable surface passing through

an input set of curves, as well as shape approximation through de-

velopable surfaces [Chen et al. 1999; Pottmann and Wallner 1999].

Our goal is to model smooth deformations, such as the rolling and

bending of a planar sheet into a cone, rather than C0
origami-like

folding and creasing [Tachi 2009].

Smooth developable surfaces are well studied in differential geom-

etry [do Carmo 1976] and are often characterized as surfaces with

vanishing Gaussian curvature, or, equivalently, as ruled surfaces

with a constant normal along each ruling.

A given smooth developable surface S can be naturally discretized
as a ruled surface, as it can be locally represented by a single curve

and its orthogonal rulings (see inset). For this

reason, many discrete developable models en-

code rulings explicitly [Bo and Wang 2007;

Liu et al. 2006]. However, this representation

has limitations when it comes to interactive

modeling of a developable surface. In this

process, the user starts with an initial devel-

opable surface S0, for instance a planar surface, and interactively

manipulates it to obtain a desired surface S (see Figs. 1, 2). Since

the output surface is not necessarily known precisely in advance,

one would like to explore the entire space of attainable developable
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Fig. 2. A lantern shaped developable surface, demonstrating how our discrete model can seamlessly and effortlessly model developable surfaces with nontrivial
topology. This figure was created from an alternating cut pattern on a square sheet (left). The shapes in the middle were formed by pulling the central vertex
up while constraining the corners to stay on their initial plane. Right: A physical model made of paper with the same cut pattern (we glued the corners to the
table and lifted the center point using a thin thread).

surfaces in this interactive setting. As stated in [Tang et al. 2016],

explicitly including the rulings in the surface representation limits

the space of possible deformations of S0. From a user’s point of view,

it may be more intuitive to manipulate local point handles to edit

the surface, rather than editing its global rulings.

We show that such developable shape space exploration is made

possible by discretizing a lesser known, local condition for devel-

opability: The existence of an orthogonal geodesic parameterization.

We propose an alternative way to understand developable surface

isometries by looking at their invariants, rather than the rulings.

1.1 Contributions
– We introduce discrete orthogonal geodesic nets to model devel-

opable surfaces as quadrilateral nets with angle constraints.

Our conditions are simple and local, and our model does not

depend on the explicit encoding of the rulings or the surface

topology.

– We use this model to build a simple editing system for devel-

opable surfaces with point handles as user interface. Our sys-

tem can smoothly transition between a wide range of shapes

while maintaining developability, and, unlike previous meth-

ods, does not require the user to specify global rulings or any

other global structure of the unknown desired shape.

– We further study our new discrete model and draw parallels

to smooth developable surfaces. We prove that our discrete

constraints are satisfied in the smooth case up to second

order, analyze our model’s degrees of freedom, discretize

quantities such as tangents and normals and propose a local

scheme to approximate the rulings. We formulate and prove

a discrete analogue to a known continuous theorem linking

curvature line parameterizations, geodesic parameterizations,

and developable surfaces.

– We introduce a generalization of our nets, called discrete 4Q
orthogonal geodesic nets, which allows us to define local dis-

crete isometry between our surfaces. We demonstrate the

effectiveness and flexibility of such 4Q nets by computing

an isometric interpolation between isometric developable

shapes.

2 PRELIMINARIES

2.1 Nets in discrete differential geometry
In the spirit of previous works in discrete differential geometry

[Bobenko and Suris 2008; Crane and Wardetzky 2017; Desbrun et al.

2005], we discretize a developable surface as a quad grid mesh, re-

ferred to as a net, which can be viewed as a discrete analogue to a

smooth parameterization (often termed smooth net). This approach
has been previously taken to discretize and construct a variety

of surface types, including constant Gaussian curvature surfaces

[Bobenko and Pinkall 1996; Wunderlich 1951], minimal surfaces

[Bobenko et al. 2006] and isothermic surfaces [Bobenko and Suris

2009]. Just as a smooth surface can be locally represented by a

parameterization f : R2 → R3
, a discrete surface can be locally

represented by a discrete map F : Z2 → R3
(Fig. 3). This structural

view is especially appealing, as it can be used to convert between

smooth and discrete notions on surfaces, such as tangents, normals

and surface transformations, and to analyze the construction of

discrete surfaces and their convergence to the continuous counter-

parts. Discrete analogues of smooth differential geometry theorems

are systematically studied in the context of nets; see the review in

[Bobenko and Suris 2008].

Fig. 3. A smooth net f : R2 → R3 and a discrete net F : Z2 → R3.

The same smooth surface can be represented bymany different pa-

rameterizations, or nets, and some are more convenient than others.

These typically differ by the properties of their coordinate curves

f (x0 + t ,y0), f (x0,y0 + t ). Prominent examples include curvature

line nets, where the coordinate curves are principal curvature lines,

and asymptotic nets, whose coordinate curves trace the asymptotic

directions of a surface. The freedom to choose various nets exists

also in the discrete setting, and usually a discrete model of a sur-

face is coupled with a given parameterization. For example, discrete
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cylindrical surface conical surface tangent surface

Fig. 4. Different types of developable surfaces and their rulings. Left: A
cylindrical shape with parallel rulings. Center: all rulings meet in a point in
a conical surface. Right: a tangent developable surface where the rulings
meet at a curve.

minimal surfaces have been defined through curvature line nets,

and discrete constant negative Gaussian curvature surfaces through

nets of asymptotic lines [Bobenko and Pinkall 1996; Bobenko et al.

2006]. Each choice of parameterization implies certain conditions

on the discrete surface, formulated in terms of the values of F , i.e.,
the positions of the net’s vertices.

2.2 Developable surfaces through conjugate nets
The neighborhood of a non-planar point p on a developable surface

S can be locally parameterized by its rulings, which are straight lines

contained in the surface. This means that there exists a neighbor-

hood U ⊆ S such that p ∈ U and all points in U are parameterized

by

x (s, t ) = γ (s ) + t r (s ),

where r (s ) corresponds to the direction vector of a ruling, and fixing

the parameter t gives us another curve on the surface with non-

vanishing curvature, γ (s ), from which the rulings emanate.

The subsetU ⊆ S is called a torsal surface. A torsal surface can be

classified based on the directions of its rulings: if they are parallel,

it is said to be cylindrical, if they all intersect at a single point, it is

a generalized cone, and otherwise it is a so-called tangent surface

(see Fig. 4).

A parameterization of a developable surface through its rulings

is called a developable conjugate net [Liu et al. 2006]. To clarify the

previous statement, we elaborate on the definition of a conjugate

net in a more general context, where f is a smooth net that is not

necessarily developable. A smooth parameterization f is a conjugate
net if

⟨nx , fy ⟩ = 0, where n =
fx × fy




fx × fy




.

Here, n is the normal map of f , and a subscript denotes differentia-

tion with respect to the coordinate in the subscript. In this case the

tangents fx , fy are said to be conjugate directions. The condition is

equivalent to fxy ∈ span{ fx , fy }. Intuitively, in such a parameteri-

zation, infinitesimally small squares in the parameter domain are

mapped to planar quads on the surface up to second order. Hence,

planar quad meshes are seen as a discretization of conjugate nets

[Bobenko and Suris 2008]. Note that curvature line nets are a spe-

cial case of conjugate nets. In the case of a developable surface, the

normal n is constant along a ruling, and therefore any developable

net parameterized through rulings is in fact a conjugate net. A well

Cylinder

Planar

Cylinder Cylinder

Cylinder

Conical

Fig. 5. Two isometric shapes (top row) that are composed of different con-
figurations of torsal surfaces, as illustrated in the bottom row. Our method
does not rely on explicit encoding of this combinatorial structure of the de-
velopable surface, and can seamlessly model the transition between shapes
without additional input from the user.

established discretemodel for a conjugate developable net is a planar

quad strip [Liu et al. 2006; Pottmann and Wallner 2001; Sauer 1970].

2.3 The combinatorics of a developable surface
The possible presence of planar parts in developable surfaces further

complicates their representation. A general developable surface is

a composition of (possibly infinite) torsal and planar patches. The

works of Liu et al. [2006] and Kilian et al. [2008]model torsal surfaces

by discrete conjugate nets, i.e., planar quad strips where the rulings

are explicitly given by the transversal quad edges. Accordingly, the

discrete representation in [Kilian et al. 2008; Liu et al. 2006; Tang

et al. 2016] consists of multiple discrete torsal patches connected

together to form a discrete developable surface. The connectivity

between those patches is represented by a combinatorial structure

termed decomposition combinatorics [Tang et al. 2016]. As stated

in [Tang et al. 2016], this fixed combinatorial structure requires

the user to manually specify the said combinatorial structure of

the modeled developable surface, and it is not possible to model a

smooth transition between different combinatorial decompositions.

We call this problem the combinatorial problem (see Fig. 5).

2.4 Developable surface isometry
A common task in a developable surface editing system is modeling

isometries, which are non-stretching deformations that preserve

distances on the surface. Since we are interested in modeling and

editing shapes while staying within the shape space of developable

surfaces, surface representations by conjugate or curvature lines
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Fig. 6. Two isometric developable surfaces (a cylindrical and a conical one)
in curvature line parameterization (top row), and their isometrically flat-
tened versions (bottom row), which reveal the intrinsic geometry of the
curvature lines. These families of lines are intrinsically different, and there
is no isometric mapping from one family to the other.

are not good candidates for this application, because they are not

invariant under isometries, as we explain next.

Isometrically unrolling a developable surface onto the plane re-

veals the innate shape of its curves (see Fig. 6). In the following, we

often display a developable surface next to its flattened, isometric

planar version, and refer to the geometry of a thereby flattened

curve as the curve’s intrinsic geometry. For instance, geodesics on

a developable surface are curves that are intrinsically straight. The

intrinsic shape of a curve is determined by its geodesic curvature κд ,
which does not change under isometry. As an example, all curvature

lines of a cylinder are intrinsically straight, and for a cone they are a

family of concentric circles and radial straight lines emanating from

a single point (see Fig. 6). Rulings and their conjugate directions

are altered by isometries, but an isometry always maps geodesics

to geodesics and intrinsic circles to circles of the same geodesic cur-

vature. Therefore, a discrete isometry cannot be plausibly defined

based on a mapping between conjugate curves on two developable

surfaces.

2.5 Developable surface through orthogonal geodesic nets
We propose to look at a different type of parameterization of devel-

opable surfaces, which is better suited for our interactive editing

goals and is a more natural starting point to define discrete isometry.

Imagine taking a flat piece of paper with a square grid texture and

watching the vertices of the squares while curving and rolling the

paper. Squares, which started as planar, transform, but the intrinsic

distances between all points stay the same, as long as one does not

tear or stretch the paper. This is analog to our model. We propose

a discrete model of developable surfaces through intrinsic entities:

Fig. 7. Tracing orthogonal geodesics while rolling a planar surface into a
circular cone.

geodesics, which are invariant under isometries. A net f is a geo-

desic net if its coordinate curves trace geodesics on the surface. On

a developable surface, geodesics are straight lines when developed

onto the plane. As we still have a degree of freedom in choosing

the directions of the intrinsic lines, we set them to be of the sim-

plest form – orthogonal – as in a rectangular grid (see Fig. 7). By

employing geodesics rather than rulings and conjugate directions,

we overcome the aforementioned combinatorial problem and are

able to define a notion of discrete isometry for such surfaces.

3 RELATED WORK

3.1 Developable surfaces
The theory of surfaces formed by local C2

isometries of the plane

is covered in the differential geometry literature [do Carmo 1976;

Spivak 1999] and traces back to the works of Euler and Monge in the

eighteenth century [Lawrence 2011]. Gauss’ Theorema Egregium

coupled withMinding’s theorem shows thatC2
developable surfaces

are surfaces with zero Gaussian curvature. Intuitively, this means

that the image of their Gaussmap is a curve or a point. Another point

of view is the characterization of developable surfaces as special

ruled surfaces, namely, those with constant tangents along rulings

[Pottmann andWallner 2001]. Hence, a developable surface is locally

a planar or a torsal surface. A torsal surface can be constructed by a

single curve: For example, one can pass a torsal surface through a

curvature line curve and its parallel Bishop frame [Bishop 1975], or

through a geodesic and its Frenet frame [Graustein 1917].

The study ofC1
andC0

developable surfaces is a much newer area,

stirred by the beautiful models and work of Huffmann [Huffman

1976; Wertheim 2004] and more recently by the field of compu-

tational origami [Demaine and O’Rourke 2007], which examines

shapes created by straight and curved folds. Straight folds are C0

creases through lines on a paper. Any shape created by repeated

application of these folds is piecewise planar [Demaine et al. 2011].

Curved folds are C0
creases through arbitrary curves on a paper.

These are more rigid than straight folds, as splitting a surface into

two parts by a curve and folding the surface on one side of the curve

locally determines the shape of the other part [Kilian et al. 2008].

The study of smooth developable surfaces is analytic in nature,

whereas the study of origami folds is in essence combinatorial. As

previously stated, our work focuses on modeling smooth deforma-

tions.

3.2 Modeling with developable surfaces
Works on deformations of developable surfaces can be largely cate-

gorized into geometric and physics based.
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Geometric approaches are not tied to a physical representation

such as a paper sheet or a metal plate. They mainly consider and

discretize the geometry of a smooth developable surface. The foun-

dation of these works is a discrete developable surface model, i.e.,

an exact definition of the set of discrete developable surfaces. The

definition should be flexible enough for the user to explore a wide

range of shapes, while capturing important properties of the smooth

surface. The works of Liu et al. [2006] and Kilian et al. [2008] model

torsal surfaces as planar quad strips, which are a discretization of

developable conjugate nets. In [Tang et al. 2016] the authors model

smooth torsal surfaces as developable splines. These are represented

as ruled surfaces connecting two Bézier curves satisfying a set of

quadratic equations that guarantee a constant normal along rul-

ings. The work of [Bo and Wang 2007] models a torsal surface

by a single geodesic curve and rulings emanating from it, i.e., the

rectifying developable of a curve. The work of [Hwang and Yoon

2015] constructs developables by successive mappings to cones and

cylinders. All works above model a general developable surface as a

composition of multiple torsal surfaces, explicitly encoding rulings

and sharing the combinatorial problem we discussed in Sec. 2.3.

Moreover, by construction these approaches cannot model isometry

between different torsal shapes, such as a cylinder and a cone, as

explained in Fig. 6. We refer the reader to the ’Limitations’ and

’Future work’ paragraphs in Section 7 of [Tang et al. 2016] for an

in-depth discussion of these shortcomings.

The work of [Solomon et al. 2012] presents an origami based edit-

ing system for developable surfaces, allowing the user to navigate

through the highly nonlinear space of admissible folds of a sheet.

By involving a mean curvature bending energy, the user can further

ask to relax the folds, resulting in a smoother looking, yet always

piecewise planar surface [Demaine et al. 2011]. Due to the reliance

on global folds, this method shares a similar dependency on rulings

with the previously mentioned works, which also complicates the

user interface. Our proposal can be seen as a follow-up to all these

works, removing the dependency on rulings and adding a notion of

discrete isometry that is capable of smoothly interpolating between

a wide range of shapes.

In contrast to geometric models, physics basedmodels are coupled

with a fixed reference surface. They model a material’s behavior

through energy minimization, simulating isometries of physical

shapes when applying forces. Isometries are only a small subset of

the set of deformations keeping a surface developable. This confines

the user when designing a developable surface, as the geometry of

the desired flattened shape is not necessarily known in advance.

Physics based methods do not define a precise notion of a discrete

developable surface, nor do they aim at the exploration of the entire

shape space of developable surfaces without straying off constraints.

The focus of these works is the physics of an object, such as an

elastic simulation [Burgoon et al. 2006], or paper crumpling and

tearing [Narain et al. 2013; Schreck et al. 2017, 2015]. Isometries

of developable surfaces can be indirectly approximated by discrete

shell models [Fröhlich and Botsch 2011; Grinspun et al. 2003] when

starting from a flat sheet and setting a very high penalty in the

stretch component of the elastic energy. The work of [English and

Bridson 2008] animates approximated isometries of developable

surfaces using nonconforing elements, coupled with a “ghost” con-

forming mesh. We view the physics based approaches as tangential

to the geometric models, and they can also potentially benefit from

new discrete surface models.

3.3 Developable surfaces in discrete differential geometry
As mentioned in Sec. 2, the work of Liu et al. [2006] discretizes

developable surfaces through conjugate line nets as planar quad

strips, where the transversal quad edges lie on rulings. In contrast,

our proposed discretization is through orthogonal geodesic nets,

which is especially convenient when modeling deformations and

isometries of developable surfaces. Our discretization is inspired

by the work of Wunderlich [1951] on discrete Voss surfaces, which

are surfaces parameterized through conjugate lines that are also

geodesics. Voss surfaces include surfaces that are not necessarily

developable, and modeling with conjugate orthogonal geodesics is
quite limiting, since any such net is in fact a cylindrical shape. There-

fore, as a base for our model we use the same notion of a geodesic

net set by Wunderlich but drop the conjugacy requirement, which

means that our model allows for non planar quads. This notion

emphasizes geodesics as curves that are as straight as possible, sim-

ilar to the work of [Polthier and Schmies 2006], which discretizes

geodesics on polyhedral surfaces. The work of [Hoffmann et al.

2017] unites various discrete surface parameterizations by introduc-

ing edge-constraint nets, containing points and normals coupled

by simple constraints. This results in a new discrete parameterized

surface theory inR3
, including a discrete definition for Gaussian

curvature based on offset surfaces, where edge-constraint nets with

vanishing Gaussian curvature are viewed as discrete developable

surfaces. The authors note that the only examples of such devel-

opable nets shown in that work are ruling based, besides a single

Schwarz lantern. A few works in DDG cover discrete isometries of

specific classes of surfaces, such as those of Voss surfaces [Schief

et al. 2008], where conjugate geodesics are preserved. We are not

aware of a method that covers the entire range of developable sur-

face isometries. As mentioned, developable Voss surfaces form only

a limited subset of developable surfaces, and our isometry defini-

tion subsumes this subset, covering general developable surfaces in

orthogonal geodesic parameterization.

4 NOTATIONS AND SETUP
As briefly introduced in Sec. 2, we denote continuous maps in lower

case letters and their discrete equivalents by upper case. The nota-

tion f (x ,y) : U → R3
, where U ⊆ R2

, refers to a (local) regular

Fig. 8. The shift notation on a quad (left) and a star (center); edge directions
and star angles (right).
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parameterization of a smooth surface, and n(x ,y) : U → S2
is its

normal map. Derivatives with respect to the coordinates x and y are

denoted by subscripts, e.g., tangent vectors fx , fy and derivatives

of the normal nx ,ny . We denote the unit tangents of the coordinate

lines by t1 = fx /∥ fx ∥, t2 = fy ∥ fy ∥, which are linearly independent

as f is an immersion.

A natural discrete analogy for a local parameterization f is a map

F : V → R3
, where V ⊆ Z2

. We refer to F as our discrete net, and

likewise N : V → S2
denotes our discrete Gauss map. Discrete unit

tangents are denoted by T1,T2. We define these quantities in the

following for our particular setting, namely discrete geodesic nets.

As is customary in discrete differential geometry, we slightly

abuse the naming and employ shift notation to refer to vertex posi-

tions on our net, denoting

F = F (j,k ), F1 = F (j + 1,k ), F2 = F (j,k + 1),

F12 = F (j + 1,k + 1), F
1̄
= F (j − 1,k ), F

2̄
= F (j,k − 1),

where j,k ∈ Z, i.e., the lower index denotes the coordinate number

to shift, and a bar above it indicates a negative shift (see Fig. 8).

The unit-length directions of edges emanating from a point F are

denoted as δ1F , δ2F , δ1̄
F , δ

2̄
F , i.e.,

δ1F = (F1 − F )/∥F1 − F ∥, δ
1̄
F = (F

1̄
− F )/∥F

1̄
− F ∥,

δ2F = (F2 − F )/∥F2 − F ∥, δ
2̄
F = (F

2̄
− F )/∥F

2̄
− F ∥.

We denote the inner angles around a star at F as αi , ordered consecu-
tively (see Fig. 8). We assume our net is a discrete immersion, which

means that the edge directions δiF ,δīF are distinct. In practice, we

represent our discrete nets as pure quad grid meshes, where the

valence of every inner vertex is 4. We refer to an inner vertex, its

four neighbors and its four emanating edges as a star. Our discrete
nets neither require nor assume any global orientation on the mesh.

The shift notation requires only a local arbitrary orientation per

quad or star, and is used for convenience.

5 DISCRETE ORTHOGONAL GEODESIC NETS
We are interested in defining conditions on F , i.e., on the positions

of our mesh vertices, such that it represents a discrete developable

surface parameterized by orthogonal geodesic lines. In the following,

we develop the necessary definitions and their properties, to arrive

at the following condition:

Definition 1. A discrete net F is said to be a discrete orthogonal
geodesic net, if for every star all angles between consecutive edges are
equal, i.e. α1 = α2 = α3 = α4.

See Fig. 8 for notation. To develop the rationale for the condition

above, we start by looking at smooth developable geodesic nets.

5.1 Smooth developable geodesic nets
When is a geodesic net a developable net? Let f : R2 → R3

be a

geodesic net and P = {(x ,y) ∈ R2 | x0 ≤ x ≤ x1, y0 ≤ y ≤ y1} an

axis-aligned rectangle. The rectangle is mapped by f to a “curved

rectangle” f (P ). Let θ j , j = 1, . . . , 4, be the interior angles at the

vertices of f (P ), measured as the angles between the respective

tangent directions, e.g., θ1 = ∢
(
fx (x0,y0), fy (x0,y0)

)
.

Lemma 5.1. A geodesic net f is developable if and only if for every
axis-aligned rectangle P ⊂ R2, the angles of the mapped curved
rectangle f (P ) satisfy:

4∑
j=1

θ j = 2π . (1)

Proof. Applying the local Gauss-Bonnet theorem to P (see [do Carmo

1976]), we get∫
f (P )

K dA +

∫
∂f (P )

κд ds =
4∑
j=1

θ j − 2π , (2)

where K is the Gauss curvature and κд is the geodesic curvature.

Since f is a geodesic net, the images of P ’s edges under f are

geodesics, and soκд = 0 on the curves of ∂ f (P ), hence
∫
∂f (P ) κд ds =

0.

[⇒] Assume f (P ) is developable. ThenK vanishes and

∫
f (P ) K dA =

0, hence

∑
4

j=1
θ j = 2π .

[⇐] Assume f (P ) is not developable. Then there exists a point

p = f (x∗,y∗) such that K (p) , 0; assume w.l.o.g. K (p) > 0. There

is a sufficiently small neighborhood U with (x∗,y∗) ∈ U such that

K > 0 on f (U ). Let P ⊂ U be an axis-aligned rectangle, then∫
f (P ) K dA > 0 and from (2) we have

∑
4

j=1
θ j > 2π , contradicting

our condition (1). □

Corollary 5.2. An orthogonal geodesic net f , i.e., a geodesic net
with ∢(t1, t2) =

π
2
, is a developable net.

An isometry f of a planar regionU ⊆ R2
is an orthogonal geodesic

net, as it maps a regular grid in the plane to orthogonal geodesics.

Therefore the opposite is also true: every developable net can be

parameterized by an orthogonal geodesic net. This is summarized

by the following corollary:

Corollary 5.3. A smooth surface is developable if and only if it
can be locally parameterized by orthogonal geodesics.

We are now ready to discuss discrete geodesic nets and our deriva-

tion of an equivalent condition for their orthogonality.

5.2 Discrete geodesic nets
As a base for our model we use the following definition:

Definition 2. A discrete net F is a discrete geodesic net if each
two opposing angles made by the edges of a star in the net are equal
(see Fig. 9).

This is a modification of a definition set by Wunderlich [1951] in

his work discretizing Voss surfaces, which are surfaces parameter-

ized through conjugate geodesics. By [Wunderlich 1951], a discrete

net F is a discrete Voss surface if it is a planar quad net that also

satisfies the angle condition in Def. 2. We remove the planarity

restriction, as we are interested in discretizing geodesics that are

not necessarily conjugate.
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To obtain an intuition, consider the polylines (F
1̄
, F , F1) and (F2̄

, F , F2)
as two discrete coordinate curves passing through point F . A geo-

desic curve is “as straight as possible”, dividing the angle deviation

from π on both sides equally, i.e., α1 + α2 = α3 + α4 for the first

curve and α2 + α3 = α4 + α1 for the second, where α1, . . . ,α4 are

the angles around the star of F (see Fig. 9). Together, these two

conditions are equivalent to α1 = α3 and α2 = α4, as in Def. 2.

We define tangents and normals on discrete geodesic nets through

their (discrete) coordinate lines, mimicking the properties of their

continuous counterparts. On a smooth geodesic net f , let p =
f (x0,y0) be some point and γ1 (t ) = f (x0+t ,y0), γ2 (t ) = f (x0,y0+

t ) the coordinate lines through p. The curves γ1 and γ2 are geodesics

emanating from p at two linearly independent directions γ ′
1
(0) =

fx , γ
′
2
(0) = fy . If γ1 (t ) is regular and non-degenerate at 0, i.e.,

γ ′
1
(0),γ ′′

1
(0) , 0, it has a well defined Frenet frame {t1,n1,b1} and

an osculating plane Π1 spanned by t1,n1. Since γ1 (t ) has zero geo-

desic curvature, its curvature is equal to the normal curvature of

the surface, which implies that the curve’s normal is in fact parallel

to the surface normal at p: n1 ∥ n (where n = t1×t2

∥t1×t2 ∥
). If also γ2 has

non-vanishing first and second derivatives, the surface normal n is

parallel to the intersection line between the two osculating planes

Π1,Π2. We can find a natural discrete model for those quantities for

a discrete geodesic net F .
Let F be a vertex on a discrete geodesic net, and let Γ1, Γ2 be

discrete geodesic curves through F
1̄
, F , F1 and F

2̄
, F , F2, respectively.

We say that the curve Γj is non-degenerate if the three points F j̄ , F , Fj
are not collinear. In that case, we can define the osculating plane

and Frenet frame:

Definition 3. The osculating plane Πj , j = 1, 2, of a non-degenerate
discrete curve Γj through vertices F j̄ , F , Fj is the plane passing through
these three points. The Frenet frame of Γj at F is denoted by {Tj ,Nj ,Bj },
where

Tj =
δj F−δ j̄ F



δj F−δ j̄ F





, Nj = −

δj F+δ j̄ F



δj F+δ j̄ F





, Bj = Tj × Nj .

See Fig. 10 for an illustration. Note that Tj are well defined also

when F j̄ , F , Fj are collinear, and are never zero as our net is assumed

to be a discrete immersion.

Definition 4. The discrete Gauss map of a geodesic net F is

N =
T1 ×T2

∥T1 ×T2∥
,

where T1,T2 are defined as above.

Fig. 9. Left: A star in a discrete geodesic net has equal opposing angles.
Right: On a geodesic star, the intersection of the osculating planes of the
discrete coordinate curves is the surface normal.

Fig. 10. A discrete coordinate curve Γj at F (in black), its osculating plane Πj
spanned by the edges of Γj , the Frenet frame (in blue): tangentTj , normal Nj
and binormal Bj . The dashed red vector is δj F − δ j̄ F .

Just as in the continuous case, the principal normals of discrete

geodesic curves and the surface normal agree, as shown by the

following lemma:

Lemma 5.4. Let Γ1, Γ2 be two non-degenerate discrete curves around
a vertex of a discrete geodesic net F and {T1,N1,B1}, {T2,N2,B2} their
discrete Frenet frames. Then N1,N2 and the discrete surface normal N
(see Def. 4) are all parallel and lie on the intersection of the osculating
planes Π1 and Π2.

Proof. By construction, N1⊥T1, and by direct computation us-

ing the opposite angles condition (Def. 2) we have ⟨N1,T2⟩ = 0.

Therefore N1 ∥ N . Similar computation shows N2⊥T1 and therefore

N2 ∥ N . □

Note that N is the angle bisector of both discrete curves meeting

at F , see Fig. 9.

5.3 Discrete developable geodesic net
Using the tangents defined above, we are now ready to define dis-

crete developable surfaces through nets of orthogonal geodesics:

Definition 5. A discrete orthogonal geodesic net is a discrete geo-
desic net where at every star, the discrete tangents of the two discrete
coordinate curves are orthogonal: T1⊥T2. Such a net is a discrete de-
velopable surface in orthogonal geodesic parameterization.

This definition obviously reflects the smooth case, where an ex-

istence of an orthogonal geodesic net on a surface is equivalent

to developablity (Cor. 5.3). The following theorem provides useful

interpretations of our net and helps to see why this definition is

equivalent to Def. 1 (see also Fig. 11).

Theorem 5.5. Assume a star has equal opposing angles, i.e., it
fulfills the angles condition for discrete geodesic nets (Def. 2). Then the
following conditions are equivalent:

(1) The discrete tangents of the coordinate curves are orthogonal:
T1⊥T2.

(2) The edges of the star form a right-angle cross when projected
into the discrete tangent plane, which is the plane orthogonal
to the discrete normal N .

(3) All angles between consecutive edges of the star are equal.
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Proof. By Lemma 5.4, N is a bisector of the unit-length vectors

δ1F ,δ1̄
F , as well of the unit-length vectors δ2F ,δ2̄

F . Adding the

formulas for T1,T2 from Def. 3 we have

δ1F + δ1̄
F = ã N , δ2F + δ2̄

F = c̃ N ,

δ1F − δ1̄
F = ˜bT1, δ2F − δ2̄

F = ˜d T2,

for some ã, ˜b, c̃, ˜d ∈ R. By adding/subtracting the respective equa-

tions of the second row to/from the first row, we can write the star’s

edge directions as

δ1F = a N + bT1, δ2F = c N + d T2,

δ
1̄
F = a N − bT1, δ

2̄
F = c N − d T2,

for some a,b, c,d ∈ R.

[ (1)⇐⇒ (2) ] Projection to the tangent plane is equivalent to remov-

ing the normal component N from each vector, hence the direction

vectors of the projected star edges are bT1,−bT1,dT2,−dT2 and the

claim follows.

[ (3)⇐⇒ (1) ] As we assume opposing angles in the star are equal,

(3) ⇐⇒ ⟨δ1F , δ2F ⟩ = ⟨δ1̄
F , δ2F ⟩ ⇐⇒ ⟨aN + bT1, cN + dT2⟩ =

⟨aN − bT1, cN + dT2⟩, which is equivalent to T1⊥T2 for a non-

degenerate star. □

Note that the third condition (all angles in the star are equal)

subsumes the condition for a discrete geodesic net (Def. 2) and

conveniently encapsulates discrete orthogonal geodesic nets, as we

expressed in Def. 1.

6 MODELING DEFORMATIONS OF DISCRETE
DEVELOPABLE SURFACES

Our definition of discrete developable surfaces (Def. 1) is simple

and local, such that it can be easily used in applications. We demon-

strate this in an interactive editing system for discrete developable

surfaces. Starting from a given discrete orthogonal geodesic net F 0
,

e.g., an orthogonal planar grid or a cylinder, the user can fix and

move vertices around, as well as glue together or sever vertices. The

latter is permitted only in case the operation keeps the mesh a (not

necessarily oriented) manifold. We denote the set of vertices manip-

ulated by the user (the handles) by H. Whenever the user moves

the handle vertices, the system computes a result from the space of

discrete orthogonal geodesic nets, which is as close as possible to

the prescribed handle positions. We analyze this shape space in Sec.

8. To choose a good, or intuitive solution, our optimization includes

Fig. 11. These three conditions on a geodesic star are equivalent: the two
osculating planes are perpendicular to each other (left), the projection of
the star’s edges onto the tangent plane forms an orthogonal cross (middle),
all angles around the star are equal (right).

isometry and smoothness regularizers, as well as constraints for

boundary vertices.

6.1 Orthogonal geodesic constraints
Def. 1 gives us the feasible shape space through a set of constraints

on each inner vertex of F and a generalization for boundary vertices.

We constrain every vertex to have all its corner angles equal. Let

ej , j = 1, . . . , l , be the set of edges originating at a vertex v , or-
dered such that consecutive edges share a quad. Then the condition

∢(ej , ej+1) = ∢(ej+1, ej+2) is equivalent to:

⟨ej , ej+1⟩∥ej+2∥ − ⟨ej+1, ej+2⟩∥ej ∥ = 0. (3)

In case of a corner boundary vertex with only two incident edges

e1 and e2 and one angle, we constrain the angle to remain as in the

reference shape:

⟨e1, e2⟩

∥e1∥ ∥e2∥
− arccos(α ) = 0, (4)

where α = ∢(e1, e2) in F 0
. We denote the constraints (3), (4) as

ci (F ) = 0, i = 1, . . . ,m, where i enumerates all the inner and

boundary vertices and their relevant incident edges.

6.2 Smoothness and isometry regularizers
The constraints above do not encode smoothness or isometry, and

simply projecting a given initial guess onto the feasible space might

lead to unintuitive results. To generate smooth and aesthetically

pleasing deformations, we seek a feasible solution that minimizes

a deformation energy E (F ). We employ a simple smoothness term,

namely the Laplacian energy of the displacement w.r.t. the current

state of the shape, or the current “frame”, Fk :

E
smooth

(F ) = 


L(F ) − L(F
k )




2

, (5)

where we use the simple uniform Laplacian L. The second energy

term encourages maintaining isometry of the boundary, intuitively

helping to control the scaling of the deformation:

Eiso (F ) =
∑

ej ∈∂F

(∥ej ∥ − lj )
2, (6)

where ∂F is the set of boundary edges of F , and lj ’s are the edge
lengths in F0. Finally, we add the positions of the handle vertices as

soft constraints, since the user is likely to manipulate the handles

in ways that are at odds with the developability constraints. The

overall deformation energy is therefore

E (F ) = E
smooth

+wisoEiso (F ) +wpos

∑
v ∈H

∥v −vc ∥
2 , (7)

where vc are the handle positions prescribed by the user andwiso,

wpos are scalar weights.

6.3 Optimization
In each frame, we solve the following optimization problem:

arg min

F
E (F )

subject to ci (F ) = 0, i = 1, . . . ,m.
(8)
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a) b) c) d) e) f) g)

Fig. 12. Developable surfaces created using our vertex-handle based editing system. These examples were designed by deforming a flat sheet.

a)

c)

b)

Fig. 13. An example of developable shapes with nontrivial topology, created
in our interactive editing system (rendering done offline). Inspired by Frank
Gehry’s design of the Lou Ruvo Center for Brain Health (lower right). The
texture coordinates for our model are simply obtained from the vertex
coordinates of a planar rectangular grid with the same boundary edge
lengths.

We use the quadratic penalty method [Nocedal and Wright 2006],

which converts the above constrained minimization to a series of

unconstrained problems of the form

arg min

F
w E (F ) +

∑
i
ci (F )

2. (9)

The above is iterated starting withw = w0 and halving the weight

w in each subsequent iteration, until the constraints are satisfied

numerically, i.e.

∑
i ci (F )

2 < ϵ . The minimizations (9) are solved

using using L-BFGS [Nocedal 1980], where we use ARAP [Sorkine

and Alexa 2007] with the given positional constraints to get an initial

guess. The figures in this paper and the accompanying video were

generated with the parameters w0 = 1, wiso = 1, wpos = 0.1, ϵ =
1e−12, and the input mesh was first scaled to have an average edge

length of 1.

6.4 Results
We implemented our editing system on a 3.4 GHz Intel Core i7 ma-

chine, on which our single threaded implementation can handle

around 1000 vertices interactively. The results in Fig. 12 demon-

strate a variety of rolled, paper-like shapes similar to the results of

[Solomon et al. 2012], but made with a more intuitive, vertex-handle

based editing system (see also the accompanying video). Our system

Table 1. Approximated Gaussian curvature

Model Mean approx. |K | Max approx. |K |

Fig. 12-a 1.967 × 10
−4

0.0059

Fig. 12-b 5.922 × 10
−4

0.0169

Fig. 12-c 4.016 × 10
−4

0.0087

Fig. 12-d 2.041 × 10
−4

0.0026

Fig. 12-e 9.257 × 10
−4

0.0208

Fig. 12-f 2.648 × 10
−5

0.000043

Fig. 12-g 5.202 × 10
−4

0.0151

Fig. 13-a 3.659 × 10
−4

0.0067

Fig. 13-b 2.542 × 10
−4

0.0051

Fig. 13-c 2.543 × 10
−4

0.0051

Fig. 14 1.716 × 10
−4

0.0072

Gaussian curvature approximation using the finite

difference based method of [Rusinkiewicz 2004] on

our coarse models, with an average of less than 1000

vertices.

can seamlessly handle surfaces with nontrivial topology, as well as

non-orientable surfaces, as shown in Figs. 1, 2, 13.

Similarly to other nets in DDG, e.g., discrete K-surfaces, the geo-
metric information of our net is only the vertex positions. Edges

should not be seen as part of the surface, and the non-planarity of

the quads in our model implies that we can only render and fabri-

cate our surfaces by arbitrarily triangulating them. Note that this

would also be the case for a dense sampling of a general smooth

orthogonal geodesic net, which approximates our model, as shown

later in Sec. 8.1. Nevertheless, we demonstrate in Fig. 14 that our

discrete model could be used for fabrication purposes. We supply

further measurements supporting this claim in Table 1, computing

approximated Gaussian curvatures for the models presented in this

section using the finite difference based method of [Rusinkiewicz

2004].

7 NORMALS AND RULINGS
We continue investigating our discrete developable surface model by

looking at the Gauss map and a simple local definition of the rulings.

Although our model does not explicitly enforce any properties of

these two objects, we empirically see that their behavior corresponds

well to the expected properties of a developable surface.

7.1 One-dimensional Gauss map
In the continuous case, a smooth developable surface f has van-

ishing Gaussian curvature. Since it corresponds to the area of the

Gauss map, it means that the normal map n of f is one-dimensional
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Fig. 14. Validation by fabrication. We 3D-printed a “sandwich” (top row)
whose inner cut surface is the result of deforming a flat square using ARAP
(left column) and our editing system for discrete developable surfaces (right
column) using the same (soft) positional constraints. We cut two squares
out of a thin copper sheet with the dimensions of the initial model before
deformation, and we sandwiched these squares in the fabricated pieces
(second row). Not surprisingly, since the ARAP result is not developable,
the sheet wrinkles and buckles (bottom left), while our result exhibits pure
bending (bottom right). Note that our result is smooth everywhere except
at the boundary, where a cone-like kink is created in the digital model to
remedy the doubly curved ARAP surface.

[do Carmo 1976]. Def. 4 supplies us with a discrete per-vertex nor-

mal on a discrete geodesic net F , and we can view the collection of

all vertex normals with the connectivity of F as a discrete net N .

We show in Fig. 15 and the supplementary video that editing with

our system results in a discrete Gauss map that is approximately

one-dimensional.

7.2 Vertex based rulings
Intuitively, rulings are line segments on a surface generated by the

intersection of infinitesimally close tangent planes. As mentioned

above, the Gauss map n of a smooth developable net f has a one-

dimensional image, or, equivalently, parallel partial derivatives:nx ∥
ny . There is a unique ruling emanating from every non-planar point

on the surface in a direction r that is orthogonal to n. The ruling is

a curvature line, hence it is also orthogonal to the other principal

direction nx ∥ ny [do Carmo 1976]. Therefore, if w.l.o.g. ⟨nx ,ny ⟩ ≥
0, then r ∥ n × (nx +ny ). This holds even if one of the terms nx , ny
vanishes. This can be readily discretized:

Fig. 15. Left: The result of moving the lower left corner of a planar mesh
towards the upper right corner using ARAP deformation [Sorkine and Alexa
2007]. Right: the same positional constraints are employed in our devel-
opable surface deformation system (Sec. 6), using the result of ARAP on
the left as the initial guess. In this case the soft positional constraints are
satisfied up to high precision. Below each net we display the image of its
Gauss map N (which in this case is virtually indistinguishable from the
standard vertex-based normals of a triangle mesh obtained by triangulating
the quad net). Note that our Gauss map tends to be one-dimensional.

Definition 6. The direction of a discrete ruling, emanating from
a point F of a discrete geodesic developable net is

R = N × (Nx + Ny ),

whereNx = N1−N1̄
andNy = N2−N2̄

, oriented such that ⟨Nx ,Ny ⟩ ≥ 0.

Def. 6 is entirely local, however in practice the discrete rulings

tend to fit the surface globally, see Fig. 17. Note that the definition

above is only valid at inner vertices with all neighbors being in-

ner vertices as well, such that Nx ,Ny are defined. Unlike in the

continuous case, Nx and Ny are not necessarily parallel.

8 ANALYSIS AND PARALLELS WITH THE SMOOTH
MODEL

In this section we further study discrete geodesic nets, drawing

parallels between the discrete and continuous cases. We analyze

the variety of shapes that can be modeled by discrete orthogonal

geodesic nets given in Def. 1. Loosely speaking, a good discrete

developable model should be sufficiently flexible to approximate

every smooth developable surface, which we show by the Taylor

expansion analysis in Sec. 8.1. The model should also be sufficiently

restrictive, or rigid, to avoid unreasonable shapes. To that end, in

Sec. 8.2 we show that our discrete orthogonal geodesic nets share

a similar rigid behavior with a smooth developable surface. In Sec.

8.3 we prove a discrete analogue for a simple theorem connecting

curvature line nets, geodesic nets and orthogonal geodesic nets.
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8.1 Approximation of an analytical, smooth orthogonal
geodesic net

Let f be an arbitrary analytical smooth net and p = f (x ,y) a point
on the surface. Imagine sampling points around p to generate a

discrete star. We show that this star is a discrete orthogonal geodesic

star as in Def. 1 up to second order if and only if f is an orthogonal

geodesic net (Fig. 16).

Let ϵ > 0 and let f = f (x ,y), f1 (ϵ ) = f (x + ϵ,y), f
1̄
(ϵ ) =

f (x − ϵ,y), f2 (ϵ ) = f (x ,y + ϵ ), f
2̄
(ϵ ) = f (x ,y − ϵ ).

From here on, we refer to this set of

points as an ϵ-star of the net f around

the point p (see inset). The unit-length

directions of the star edges are denoted

as δj f (ϵ ), δ j̄ f (ϵ ).
By Def. 1, an ϵ-star is a discrete or-

thogonal geodesic star if all its angles

are equal, i.e., if

⟨δj f (ϵ ), δj+1 f (ϵ )⟩ − ⟨δj+1 f (ϵ ),δj+2 f (ϵ )⟩ = 0, (10)

where we use the notation δ3 f (ϵ ) = δ
1̄
f (ϵ ) and δ4 f (ϵ ) = δ

2̄
f (ϵ )

to enumerate all incident edges. We show that our discretization is

indeed loyal to the smooth case in the following theorem.

Theorem 8.1. Equal angles on ϵ-stars.
(1) An analytic net f is an orthogonal net, meaning fx⊥fy , if and

only if all its ϵ-stars are discrete orthogonal geodesic stars up to
first order, i.e., ⟨δj f (ϵ ), δj+1 f (ϵ )⟩ − ⟨δj+1 f (ϵ ), δj+2 f (ϵ )⟩ =
o(ϵ ).

(2) An analytic net f is an orthogonal geodesic net if and only if
all its ϵ-stars are discrete orthogonal geodesic stars up to second
order, i.e., ⟨δj f (ϵ ), δj+1 f (ϵ )⟩−⟨δj+1 f (ϵ ), δj+2 f (ϵ )⟩ = o(ϵ

2).

The proof is detailed in Appendix A.

8.2 Rigidity through developable surface extension
Applying a deformation on a smooth developable surface locally

generally dictates its shape globally. One way to see this is by look-

ing at the rulings: on a smooth developable surface, the rulings are

global, in the sense that they either extend infinitely, or their end-

points must hit the boundaries of the surface [Spivak 1999]. Flipping

this point of view, one can ask how to extend a developable surface

at its boundary: the possibilities are generally quite limited, since

the points along the rulings are uniquely determined (see Fig. 17).

Note that arbitrarily extending rulings often results in singularities.

Our discrete model shares a similar rigid structure, as shown in the

following.

Fig. 16. A series of samplings of a smooth orthogonal geodesic net f with
increasing sampling density. By Theorem 8.1, the stars of these discrete
nets have equal angles up to second order, hence a discrete orthogonal
geodesic net F can also be viewed as an approximate sampling of a smooth
orthogonal geodesic net f .

8.2.1 Extension of a discrete orthogonal geodesic net. Assume

we have a vertex F in our discrete net, as well as some neighboring

vertices to its left (or right) and bottom (Fig. 18, right). The position

of the top neighbor F2 is then generally uniquely determined, as

shown by the following two lemmas. Therefore, a given discrete

orthogonal net can generally be extended at its boundary by setting

only a small number of parameters, as illustrated in Fig. 19. The

process is analogue to the smooth case explained above, but it is not

based on rulings.

Lemma 8.2. (Direction propagation). Let F be a vertex in an orthog-
onal geodesic net that has only three neighbors F1, F2̄

, F
1̄
such that

the discrete curve Γ1 through F , F1, F1̄
is non-degenerate, and the two

angles around F are equal. Then there is a unique direction δ2F such
that F , F1, F2̄

, F
1̄
, F2 is an orthogonal geodesic star (where F2 lies on

the ray through δ2F ; see Fig. 18).

Proof. By Theorem 5.5, the vector δ2F must be in the direction

of the reflection of δ
2̄
F w.r.t. the plane Π1 spanned by F , F1, F1̄

. □

In the case where Γ1 is a straight line, there is a family of solutions

consisting of all vectors that are orthogonal to Γ1.

Lemma 8.3. (Cone-ray intersection). Given a vertex F in an orthogo-
nal geodesic net that has at least all the neighboring vertices denoted as
in Fig. 18 (right side). LetC be the cone or plane generated by revolving
the ray s emanating from F

1̄2
through F∗ about the axis a = F

1̄
− F

1̄2

(see Fig. 18). Then, the vertex F2 has to lie on the intersection of C and
a line emanating from F (Fig. 18).

Proof. By Def. 1, the angle α between the net edges a = F
1̄
− F

1̄2

and F2 − F1̄2
must be equal to the angle between a and F∗ − F1̄2

, and

so F2 must lie on C . □

Given the construction for F2 above, we see that, speaking infor-

mally, extending a discrete orthogonal geodesic net by one vertex at

its boundary is a determined process if we already have neighbors

below and to the left or to the right. The only degrees of freedom are

available when one begins adding a new row to the grid, without

yet having neighbors on the left or right but only below, see Fig.

19. Assuming general position, we first use Lemma 8.2 to compute

the directions of the new net edges that point upwards. We can

then select the length l of the first new edge, effectively setting a

vertex of the new row, as well as the cone half-angle α for the first

cone C of the new row. Then, the remaining vertices of the row are

determined using Lemma 8.3, as illustrated in Fig. 18 and Fig. 19.

8.3 Relation to curvature line nets
Here we prove a discrete version of the following simple theorem

and connect discrete geodesic nets, conical nets and discrete orthog-

onal geodesic nets.

Theorem 8.4. A smooth geodesic net f that is also a curvature line
net is an orthogonal geodesic net, and therefore a parameterization of
a developable surface.

Proof. If f is a curvature line net then fx and fy are orthogonal,

hence by Cor. 5.2 f is developable. □
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Fig. 17. Discrete developable geodesic nets and their vertex based rulings. From left to right: Two cylinders, two cones, a planar region connected to four
cylinders, two tangent developable surfaces. Remarkably, the rulings tend to fit the shapes globally, despite their entirely local definition (Def. 6). They are,
however, less stable around planar regions due to the calculation of Nx , Ny (see the red ruling in the center). We visualize the rulings sparsely for clarity. See
the accompanying video for a three dimensional view.

Conical meshes [Liu et al. 2006] are known to be a discrete ana-

logue of curvature line nets. An inner vertex v is conical if all the

four oriented face planes meeting at v are tangent to a common

oriented cone of revolution, and a mesh is conical if its quads are

planar and all of its inner vertices are conical.

Theorem 8.5. A discrete geodesic net F that is also a conical net is
a discrete orthogonal geodesic net.

Proof. Using the notation of Fig. 9, a net is conical if and only if

its quads are planar and every inner vertex satisfies the angle balance

α1 + α3 = α2 + α4 [Wang et al. 2007]. Since the net is also a discrete

geodesic net, α1 = α3 and α2 = α4 and therefore α1 = α2 = α3 = α4,

as in Def. 1. □

Fig. 18. Left: By Lemma 8.2 the direction δ2F is the reflection of δ
2̄
F w.r.t.

the plane Π1. Right: By Lemma 8.3, the same direction δ2F intersects a cone
C with the apex at F

1̄2
, determining the position of the point F2.

Note that both in the discrete and the smooth case, a (discrete)

orthogonal geodesic net that is also a (discrete) conjugate net has

planar coordinate curves.

9 DISCRETE ISOMETRY
So far we have defined amodel for discrete de-

velopable surfaces, but we have not touched

upon the subject of their discrete isometries.
Our net can describe a variety of surfaces

with different scales, shapes and lengths (see

inset for two orthogonal geodesic nets with

the same connectivity). Though our editing

system uses smoothness and isometry regularizers, which generally

prevents large stretch in deformations, in this section we are looking

for a definition of discrete isometry that specifies when two nets

are “the same” in a precise manner. Two smooth surfaces S1, S2 are

said to be isometric, denoted S1 � S2, if there exists an isometry

map ϕ : S1 → S2, i.e., a bijective map that preserves distances on

the surfaces, or equivalently the lengths of all geodesics.

9.1 Global isometry for disc topology nets
In the special case of two developable surfaces with disc topology,

one can test whether they are isometric by looking at their bound-

aries, as justified by the following lemma.

Lemma 9.1. Let S1 and S2 be two smooth developable surfaces
with disc topology and equal-length boundaries. Let γ1 (s ), γ2 (s )
be their closed boundary curves in arc length parameterization and
κд1 (s ), κд2 (s ) the geodesic curvatures of these curves on S1 and S2,
respectively. Then S1 � S2 ⇐⇒ κд1 (s ) = κд2 (s ).
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Input Directions propagation Cone-ray intersection Cone-ray intersection OutputEdge length and angle
selection

Fig. 19. Extension of a discrete orthogonal net. Given a choice of two parameters: edge length l and one angle α , the row propagates by Lemmas 8.2 and 8.3.

Fig. 20. An application of Lemma 9.1: A developable surface with disc topol-
ogy and piecewise geodesic boundary with π

2
-corners is isometric to a flat

rectangular shape on the plane. Two such surfaces with equal lengths of
the boundary pieces are isometric, as their flattened shapes are isometric.

Proof. See Appendix B. □

This lemma can be extended to the case of piecewise geodesic

boundary, where the lengths of matching boundary pieces on the

two surfaces are equal and the angles of the turns (or “corners”)

match as well, see Fig. 20. This is simple to discretize: two discrete

developable nets F1 and F2 with disc topology and piecewise geo-

desic boundaries can be considered isometric if each matching pair

of boundary pieces have equal lengths and the matching corners’

angles agree.

Such a global definition of isometry cannot be easily generalized

to non-disc topologies and it does not provide us with the isometry

map in the discrete case. One can easily find a situation where

two discrete nets F1, F2 with the same connectivity are deemed

isometric by the global definition above, but there is no vertex-to-
vertex map Φ : F1 → F2 that we can reasonably call an isometry.

For example, the inset shows a case of two iso-

metric rectangles represented by two differ-

ent discrete orthogonal geodesic nets, where

the discrete mapping Φ that matches cor-

responding vertices does not preserve any

edge lengths. Consequently, a smaller piece

F ′
1
⊂ F1 of the first surface is not isometric

to the corresponding piece Φ(F ′
1
) ⊂ F2 of the second surface. In

practical terms, this means that the global criterion is too limited

for the purposes of isometric shape modeling, and we need a local
definition of isometry that tells us when a mapping between two

discrete nets is isometric.

9.2 A local model for isometry: discrete orthogonal 4Q
geodesic nets

A natural attempt to define local isometry is to employ the global

definition above to each local neighborhood on a surface. For our

discrete nets, the first idea would be to look at the level of each single

quad and impose length constraints. Unfortunately, the analysis in

Sec. 8.2 implies that we cannot add this many constraints to our

net. Fig. 19 depicts how the cone-ray intersection discussed in Sec.

8.2 propagates and determines a whole quad strip, leaving us solely

one edge length and one angle per strip as degrees of freedom.

We therefore have to expand our notion of local neighborhood on

discrete nets and loosen the developable net definition somewhat.

We define a new class of nets called 4Q orthogonal geodesic nets,
composed of 4Q orthogonal patches, defined as follows:

Definition 7. An orthogonal 4Q patch is a composition of four
quads (see Fig. 22), such that:

(1) Odd vertices have discrete orthogonal geodesic stars (Def. 1);
(2) Even vertices have discrete geodesic stars (Def. 2);
(3) The lengths of opposing sides (each a sum of two edges) of
the 4Q patch are equal.

Conditions (1) and (2) imply that an orthogonal 4Q patch can be

seen as discrete developable, since its boundary can be interpreted as

a set of four geodesic curves intersecting orthogonally, resulting in a

vanishing integrated Gaussian curvature in the interior of the patch.

Condition (3) implies that the 4Q patch can be seen as isometric to

a rectangle, in the sense of the extension of Lemma 9.1 discussed

above. In the same spirit, we can model (global) isometries of the

4Q patch by requiring the conservation of the lengths of its sides.

An orthogonal 4Q geodesic net F is a discrete net composed of

orthogonal 4Q patches. Two orthogonal 4Q geodesic nets are iso-

metric if there exists a one-to-one correspondence between their 4Q

patches, such that for each pair of matching patches, the correspond-

ing side lengths are equal. Modeling isometric deformations on an

orthogonal 4Q net amounts to keeping these lengths fixed, enabling

us to model isometries on a wide range of surfaces, unconstrained

by their topology.

In Appendix C we analyze the rigidity of orthogonal 4Q nets by

looking at the construction of a 4Q net from a single strip, similarly

to the analysis of orthogonal geodesic nets in Sec. 8.2. We observe

that orthogonal 4Q nets have a similar rigid structure, which implies

that while these nets do offer us additional degrees of freedom to

incorporate local length constraints, they are not too permissive

and still reasonably represent the space of developable surfaces.
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Fig. 21. Our local isometry model allows us to deform, glue, and cut a surface while maintaining an exact discrete notion of isometry. In this figure we twist a
long strip twice, glue it, and then cut it along two horizontal sections, creating three interleaved knotted surfaces.

Fig. 22. An orthogonal 4Q patch. Odd (black) vertices are discrete orthogonal
geodesic vertices, even (red) are discrete geodesic vertices. The lengths of
opposing sides of the 4Q patch are equal. An orthogonal 4Q patch is seen
as isometric to a rectangle in the plane with the same side lengths.

9.3 Optimization
To perform isometric surface deformation on orthogonal 4Q nets,

our optimization stays largely similar to Sec. 6.3, with a few minor

differences. We constrain the orthogonal geodesic vertices just as

in Sec. 6.1 (Eq. (3)). Condition (2) in Def. 7, i.e., equality of opposing

angles around an even vertex can be written as

⟨ej , ej+1⟩∥ej+2∥∥ej+3∥ − ⟨ej+2, ej+3⟩∥ej ∥∥ej+1∥ = 0, (11)

where the ej ’s are the edge vectors emanating from the vertex.

We combine the length constraints (3) in Def. 7 with the isometry

requirement by constraining the length of each side of each 4Q

patch (i.e., the sum of the two respective edge lengths) to retain

the same value as in the input orthogonal 4Q net. We thus do not

need to include an isometry regularizer as in Sec. 6.3, since our

constraints already maintain the lengths of the coordinate curves

exactly.

9.4 Results
Incorporating the constraints in Sec. 9.3 allows us to isometrically

edit orthogonal 4Q nets. We found experimentally that this optimiza-

tion, which includes angle as well as length constraints, is in practice

slower than the optimization in Sec. 6.3, allowing us to interactively

edit coarser models of about 600 vertices. Fig. 21 demonstrates an

editing operation that includes bending, gluing and cutting of a strip,

all done while maintaining the orthogonal 4Q patches isometric to

the reference state.

Additionally, our constraints can be used in combination with a

shape interpolation algorithm such as [Fröhlich and Botsch 2011;

Lipman et al. 2005]. In Fig. 23 we compute a sequence of isometric

shapes, morphing a source shape into an (isometric) target, thereby

simulating isometric bending of developable surfaces that generally

happens not along their rulings. An initial guess for each inter-

polation frame is first computed with [Fröhlich and Botsch 2011],

followed by the optimization of (i.e., projection onto) our constraints,

as specified in Sec. 9.3.

10 LIMITATIONS AND FUTURE WORK
This paper is a first step towards a discrete theory for modeling

developable surface deformations through orthogonal geodesics. As

such, this work focuses on the geometric model, its connections to

the smooth case, and a straightforward integration of the model

in existing applications. Various practical as well as theoretical

problems remain unanswered, opening new avenues for further

research, as detailed below.

Deformation algorithms for discrete developable geodesic nets. Our
most notable limitation is speed, as our editing system can only

handle interactive editing of nets with ca. 1000 vertices. In this

work we used an out-of-the box L-BFGS algorithm, and we leave

it as future work to devise a more efficient deformation algorithm.

In addition, we believe it would be useful to allow for interactive

exploration of our shape space by discretizing various geometric

flows, for instance to enable approximation of arbitrary shapes by

our discrete developable nets.

Boundary conditions. Our theory mainly concerns the internal

vertices of the net, and our boundary constraints derived in Sec. 6.1

can be seen as a generalization of the internal vertex constraints,

specifying that the boundary is a piecewise-geodesic curve, i.e., com-

prised of pieces of straight lines meeting at right angles. Currently,

we can circumvent the jagged appearance of our boundaries by

applying culling using alpha-textures, as was done for the letter G

in Fig. 1 and is further illustrated in Fig. 24. Given that developable

surfaces are fairly rigid and the degrees of freedom in extending

them at the boundary is quite limited, the culling approach is a

reasonable pragmatic solution. Nevertheless, it would be interesting

to derive other boundary conditions, allowing us to model curved

boundaries with prescribed geodesic curvature using coarser models

and represent shapes with curved boundaries by a tighter mesh.

Subdivision and refinement operations. The geometry of our model

consists solely of the vertex positions, and the quad faces are gen-

erally non-planar. Currently we simply arbitrarily triangulate the

quad faces for rendering and fabrication purposes. In particular for

fabrication applications, it would be interesting to look at refine-

ment operations for our model that adhere to our constraints, as well

as the convergence of such refinements to a smooth developable

surface.
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Fig. 23. An interpolation sequence of isometric orthogonal 4Q nets. Note that in all cases, the deformations alter the rulings directions and their combinatorial
structure. See the accompanying video for the entire sequence.

Fig. 24. Editing a flower and an ’O’ shaped developable surface with curved
boundaries. Such boundaries can be approximated up to any precision by an
orthogonal geodesic net. In practice however, for the purpose of interactive
editing, our grid resolution is limited by our L-BFGS optimization. Our
current pragmatic solution to alleviate the jagged boundary appearance
is culling using alpha-textures. In the future we plan to explore the dis-
cretization of general curved boundary conditions and prescribing geodesic
curvature.

Discrete geodesic nets. We leave further study of non-orthogonal

discrete geodesic nets as future work. These can be beneficial for

modeling developable surfaces, as well as deformations and isome-

tries on more general doubly curved surfaces. In particular, we

would like to define a discrete Gaussian curvature on these nets

through an extension of the derivation in Sec. 5.

Non-smooth folds and creases.Ourmodel also supports non-smooth

nets when optimizing without E
smooth

(see Fig. 25), for instance non-

smooth cylinders, as well as many other non-smooth configurations

Fig. 25. Non-smooth discrete orthogonal geodesic nets. Left: A non-smooth
cylindrical shape. Right: A creased surface, created after optimizing without
Esmooth. We plan to examine these configurations in future work.

with creases. Though our discrete conditions are inspired by dis-

crete quantities such as tangents and normals that are analogue to

smooth ones, these do not encode smoothness by themselves. We

leave further examination of these non-smooth configurations as

future work.

Isometry.We are well aware that Sec. 9 is just the tip of the ice-

berg. In terms of applications, modeling isometries is essential for

simulating the bending of physical developable surfaces, and we

have not yet experimented with methods to build or bend real life

objects. We also did not treat the subject of choosing an optimal

interpolation path between two isometric shapes, nor have we de-

vised an interpolation algorithm with smoothness guarantees. We

believe that there is much more theory to explore in order to better

understand the 4Q geodesic nets.
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A PROOF OF THEOREM 8.1
Assuming f is analytic, with the shorthand fx = fx (x ,y), fxx =
fxx (x ,y), we use Taylor expansion to write the nearby points of f
in the form

f1 (ϵ ) = f + ϵ fx +
ϵ2

2

fxx + o(ϵ
3), f

1̄
(ϵ ) = f − ϵ fx +

ϵ2

2

fxx + o(ϵ
3),

f2 (ϵ ) = f + ϵ fy +
ϵ2

2

fyy + o(ϵ
3), f

2̄
(ϵ ) = f − ϵ fy +

ϵ2

2

fyy + o(ϵ
3).

The rest of the proof requires writing the first coefficients of the Tay-

lor expansion of the edge directions δj f (ϵ ),δ j̄ f (ϵ ). Here we derive
the coefficients of δ1 f (ϵ ), and the other coefficients are analogous.
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The edge vector f1 − f can be written as

f1 (ϵ ) − f = ϵ fx +
ϵ2

2

fxx + . . .

and so δ1 f (ϵ ) can be written as

δ1 f (ϵ ) =
ϵ ( fx +

ϵ
2
fxx + . . . )

∥ϵ ( fx +
ϵ
2
fxx + . . . )∥

=
fx +

ϵ
2
fxx + . . .

∥ fx +
ϵ
2
fxx + . . .∥

.

Let ai be the Taylor coefficients of δ1 f (ϵ ), by direct computation:

a0 = δ1 f (0) =
fx
∥ fx ∥

a1 = δ1 f
′(0) = −

⟨fxx , fx ⟩

2⟨fx , fx ⟩3/2

fx +
1

2

√
⟨fx , fx ⟩

fxx .

Similarly performing this for δ
1̄
f (ϵ ),δ2 f (ϵ ),δ2̄

f (ϵ ) and plugging

the expressions in Eq. (10) gets us

⟨δ1 f (ϵ ),δ2 f (ϵ )⟩ − ⟨δ2 f (ϵ ),δ1̄
f (ϵ )⟩ =

2⟨fx , fy ⟩

∥ fx ∥∥ fy ∥
+ o(ϵ )

and by symmetry we get exactly the same for the other angles.

Therefore, the angles of an ϵ-star are equal up to first order if and

only if f is an orthogonal (not necessarily geodesic) net. If f is

orthogonal, then by plugging in ⟨fx , fy ⟩ = 0 we see that:

⟨δ1 f (ϵ ),δ2 f (ϵ )⟩ = ϵ
⟨fx , fyy ⟩ + ⟨fxx , fy ⟩

2∥ fx ∥∥ fy ∥
+ o(ϵ2)

⟨δ2 f (ϵ ),δ1̄
f (ϵ )⟩ = ϵ

−⟨fx , fyy ⟩ + ⟨fxx , fy ⟩

2∥ fx ∥∥ fy ∥
+ o(ϵ2)

⟨δ
1̄
f (ϵ ),δ

2̄
f (ϵ )⟩ = ϵ

−⟨fx , fyy ⟩ − ⟨fxx , fy ⟩

2∥ fx ∥∥ fy ∥
+ o(ϵ2)

⟨δ
2̄
f (ϵ ),δ1 f (ϵ )⟩ = ϵ

⟨fx , fyy ⟩ − ⟨fxx , fy ⟩

2∥ fx ∥∥ fy ∥
+ o(ϵ2)

Equality of all the linear terms implies ⟨fx , fyy ⟩ = 0 and ⟨fy , fxx ⟩ =
0. Together with fx⊥fy , this implies that f is a geodesic orthog-

onal net. To see that, let nx be the principle normal of the x co-

ordinate curve and let fxx = afx + bn
x
for some a,b ∈ R. Then

0 = ⟨fxx , fy ⟩ = ⟨afx + bn
x , fy ⟩ = ⟨bn

x , fy ⟩ and so nx ⊥ fy . By
construction, the principle normal satisfies nx ⊥ fx , which means

that the principle normal of the x coordinate curve is parallel to the

surface normal and so the curve is a geodesic. By a similar calcu-

lation, the principle normal of the y coordinate curve is parallel to

the surface normal.

B PROOF OF LEMMA 9.1
Every developable surface is locally isometric to a planar surface.

By [Tang et al. 2016], a simply connected developable surface is

(globally) isometric to a planar surface. Hence, disc topology devel-

opable surfaces S1, S2 are isometric to some planar surfaces Ŝ1, Ŝ2.

As geodesic curvature is invariant to isometries, the curvatures of

the boundary curves of Ŝ1, Ŝ2 areκд1 (s ),κд2 (s ). By the fundamental

theorem of planar curves, the planar boundary curves differ by a

rigid motion (meaning that Ŝ1, Ŝ2 are exactly the same planar shape

up to rigid motion) if and only if κд1 (s ) = κд2 (s ), hence if and only

if S1 � Ŝ1 � Ŝ2 � S2.

C 4Q NET EVOLUTION
Analogously to our analysis in Sec. 8.2, we show how orthogonal

4Q net constraints propagate from a given horizontal strip, leaving

only a few degrees of freedom, and in practice, for nets representing

smooth shapes, almost none. Recall that we denote by black vertices

the centers of discrete orthogonal geodesic stars, while red vertices

are centers of discrete geodesic stars that are not necessarily orthog-

onal; opposite sums of edges in every 4Q quad are equal. We start

by noting that a vertex and three of its neighbors can be generally

completed to a geodesic star by a point located on a unique ray (Fig.

26), and we refer to this as direction propagation; this is analogous
to the plane reflection Lemma 8.2 that refers to the special case of

orthogonal geodesic stars, and is a direct result of Lemma 5.4. We

analyze the most constrained case, where one 4Q quad is already

given that extends our horizontal strip. This is similar to the choice

of one edge length and angle for discrete orthogonal geodesic nets

in Sec. 8.2, but with a few more degrees of freedom (Fig. 26). By

direction propagation, this first extension 4Q quad must be such

that the two horizontal rays emanating from its middle intersect

the two neighboring vertical rays from the strip (Fig. 26), so that

valid vertices can be formed at the intersection points.

We continue observing how the entire strip propagates by the

orthogonal 4Q geodesic net constraints. We refer the reader to

Fig. 27, where we note that by the previous constraint on the first

extending 4Q quad, two rays intersect at a new vertex. The rest of

the figure shows repeated application of Lemma 8.3, a sequence of

cone-ray intersections. Note that this lemma is also valid when only

one of the vertices is a geodesic, as evident in its proof.

The cone intersection propagation determines all vertices of a

neighboring 4Q quad but one. This vertex must fulfill two conditions:

(1) The sums of edge lengths of the opposing vertical sides of

the 4Q quad are equal;

(2) The sums of edge lengths of the opposing horizontal sides of

the 4Q quad are equal.

input direction propagation first 4Q

Fig. 26. Left: A given 4Q strip. Center: By direction propagation, any vertex
with its three neighbors can be generally completed to a geodesic star by a
point on a unique ray. Right: The first extension 4Q quad must be such that
the horizontal rays emanating from its middle, determined by the direction
propagation, intersect the two neighboring vertical rays emanating from
the strip, such that valid vertices can be formed at the intersection points.

ray-ray intersection cone-ray intersection cone-ray intersection

Fig. 27. A ray-ray intersection and repeated application of Lemma 8.3
determines the location of all but one vertices of a neighboring 4Q quad.
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point on circle
chooses ray on cone

sphere intersection cone-ray intersection

Fig. 28. Left: The upper right corner vertex lies on an intersection of two
spheres. Center: These spheres generally intersect in a circle. Every point on
this circle determines a unique ray by direction propagation, and all these
directions together form a cone. Right: This cone intersects with a given
vertical ray, and the upper right corner vertex is a point on a circle that
propagates the direction of the intersecting ray on the cone.

As all edges except one are already determined, this means that

the missing vertex should lie in a fixed distance from two different

points, or equivalently on an intersection of two spheres (Fig. 28). If

the spheres intersect, they either intersect in a point or a circle; in

practice for a smooth enough net, this generally results in a circle.

Every point on this circle satisfies the length constraint, but does

not in general create a direction that intersects with a given vertical

direction for the net. The set of all of these directions generates a

cone, and so the last 4Q vertex lies on the intersection of this cone

with a given vertical ray (see Fig. 28). This process repeats to reveal

the entire extension strip, as the next vertex of a neighboring 4Q

quad is given by a ray-ray intersection.
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