
Volume 34 (2015), Number 1 pp. 253–264 COMPUTER GRAPHICS forum

A Vectorial Framework for Ray Traced Diffusion Curves

Romain Prévost1,2 Wojciech Jarosz2 Olga Sorkine-Hornung1

1ETH Zurich 2Disney Research Zurich

Abstract
Diffusion curves allow creating complex, smoothly shaded images by diffusing colors defined at curves. These
methods typically require the solution of a global optimization problem (over either the pixel grid or an intermediate
tessellated representation) to produce the final image, making fully parallel implementation challenging. An
alternative approach, inspired by global illumination, uses 2D ray tracing to independently compute each pixel
value. This formulation allows trivial parallelism, but it densely computes values even in smooth regions and
sacrifices support for instancing and layering. We describe a sparse, ray traced, multi-layer framework that
incorporates many complementary benefits of these existing approaches. Our solution avoids the need for a global
solve and trivially allows parallel GPU implementation. We leverage an intermediate triangular representation
with cubic patches to synthesize smooth images faithful to the per-pixel solution. The triangle mesh provides a
resolution-independent, vectorial representation and naturally maps diffusion curve images to a form natively
supported by standard vector graphics and triangle rasterization pipelines. Our approach supports many features
which were previously difficult to incorporate into a single system, including instancing, layering, alpha blending,
texturing, local blurring, continuity control, and parallel computation. We also show how global diffusion curves
can be combined with local painted strokes in one coherent system.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—
Graphics Utilities

1. Introduction

Vector graphics provides several practical benefits over tradi-
tional raster graphics, including sparse representation, com-
pact storage, and resolution-independence. Unfortunately,
with traditional linear and radial gradient fills, incorporat-
ing complex yet controllable effects remains a challenge.
Gradient meshes (GMs) provide a powerful way to create
smooth-shaded vector images with more complex color vari-
ation; however, despite automatic methods to vectorize raster
images into GMs [SLWS07, LHM09], authoring and editing
remain time-consuming due to the dense mesh representation
and complex topological constraints.

Orzan et al.’s [OBW∗08] diffusion curves (DCs) provide
an alternative that is more flexible and easier to manipulate
since it completely removes explicit mesh topology. DCs ex-
press the color variation over an image through its boundaries
and discontinuities, by defining curves with colors on each
side. The images are then created either by solving a differen-
tial equation or by interpolating the curves’ color constraints.
The former requires a global solve over a pixel grid or an

intermediate tessellated representation, while the latter can be
performed by independent, per-pixel computation. Since the
introduction of DCs, several methods have extended this ba-
sic idea by enhancing artistic control, providing higher-order
continuity, or improving performance, among other features.
Unfortunately, combining these improvements into a single
system has remained challenging.

We propose a sparse, multi-layer diffusion curves frame-
work that incorporates many complementary benefits of these
existing approaches. Our solution avoids the need for a global
solve and trivially allows parallel GPU implementation. The
general integral formulation allow us to provide support for
features such as texturing, instancing, layering, curve conti-
nuity control, and curves with local support.

2. Background and Related Work

PDE Approaches. Orzan et al. [OBW∗08] initially formu-
lated the image color as the solution to the Laplace equation,
while constraining the color value on the curves. Concur-
rently, McCann and Pollard [MP08] formulated an equiv-

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Romain Prévost, Wojciech Jarosz & Olga Sorkine-Hornung / A Vectorial Framework for Ray Traced Diffusion Curves

alent, but rasterized, process as a gradient-domain paint-
ing operation. These techniques were inspired by meth-
ods that solve Laplace or Poisson equations in other con-
texts [FLW02, PGB03, SJTS04] to create smooth functions
with constrained values or gradients.

Over the past few years, researchers have significantly
extended this idea by improving quality or speed [JCW09,
BBG12]. Nevertheless, these improvements rely on a global
solve which has several practical drawbacks. Firstly, though
multi-grid and parallel solvers exist, such general optimiza-
tions do not exploit specific knowledge of the diffusion curve
problem, therefore limiting the potential speedup. Secondly,
since it is not feasible to solve the PDE on an unbounded do-
main, some boundary conditions need to be prescribed, which
can lead to artifacts when panning or zooming. Finally, it can
be tedious to extend upon this approach to create additional ef-
fects, since either the system needs to be tweaked [BEDT10]
or higher-order equations need to be used to incorporate ad-
ditional types of constraints [FSH11, BBG12].

Explicit Approaches. Several recent approaches [BLW11,
SXD∗12, PQC∗12] have abandoned the implicit PDE formu-
lation. Based on observations of Farbman et al. [FHL∗09], the
global solve can be circumvented by interpolating the bound-
ary constraints using mean-value coordinates. The value of a
pixel in a DC image is then expressed explicitly as a weighted
average of colors specified on the curves. Though this pro-
vides a different solution than the PDE approach, it produces
qualitatively similar smooth color functions that interpolate
the constraints. More importantly, this formulation allows
independent computation of pixels, making it trivial to paral-
lelize.

Bowers et al. [BLW11] proposed a ray tracing approach
to evaluate the color contributions of each DC for a given
pixel. Additionally, by generalizing curve colors into curve
shaders, Bowers et al. provide an elegant and flexible way to
incorporate both traditional gradient fills and raster textures
into a DC framework. However, the solution is computed on
the pixel grid, which breaks the vector graphics paradigm and
leads to relatively slow computation, even when parallelized
on the GPU. More recently, Pang et al. [PQC∗12] used a
triangulation to sparsely sample the solution, computed using
rasterization instead of ray tracing. Unfortunately, their sys-
tem discards most of the new flexibility introduced by Bowers
et al., and the benefits of rasterization over ray tracing dimin-
ish with increasing complexity. Our approach combines the
benefit of Pang et al.’s sparse triangulation with the flexibility
of Bowers et al.’s method while additionally incorporating
several other features.

Recently Sun et al. [SXD∗12] used a boundary element
method for the Laplace equation, which formulates the so-
lution as a sum of Green’s functions. This approach is quite
fast and enables integrating the solution over a square region,
which allows anti-aliasing. On the other hand, for complex

boundary conditions such as diffusion curves, analytic for-
mulas of Green’s functions are not known, and need to be
approximated. Moreover, Sun et al. approximated occlusion
with a culling heuristic which could lead to visual artifacts in
the resulting images.

Vectorial Representation. Despite optimized multi-grid
methods to solve the Laplace equation or GPU implemen-
tations for computing color interpolation, both approaches
become too slow for high resolution output when computing
the solution on the pixel grid. Furthermore, such per-pixel
solutions need to be recomputed even after basic operations,
such as panning or zooming. However, since the color vari-
ations are relatively smooth, one can hope to more sparsely
sample the solution.

The main difficulty is to find a representation able to re-
spect discontinuities across curves. One strategy is to dis-
cretize the domain using a constrained Delaunay triangula-
tion (CDT), in which the curves are now divided into tiny
segments which then become a subset of the edges of the
triangulation. In such a representation, we can compute the
values only at the vertices, and then interpolate inside the
triangles. Takayama et al. [TSNI10] were the first to use
such a triangulation in the context of diffusion curves. They
compute a CDT in a 2D cut-plane, where the diffusion sur-
faces (3D equivalent version of DCs) are now curves. They
evaluate the color at each vertex by rasterizing the diffusion
surfaces, and then interpolate the values inside the triangles
using barycentric coordinates. The aforementioned method
by Pang et al. [PQC∗12] proposed a very similar method in
the case of 2D DCs. Previously, Boyé et al. [BBG12] used
a triangulation to compute an FEM-based solution to the
PDE approach with a biharmonic equation. They solve and
interpolate the solution using a quadratic basis.

The benefits of such a vectorial representation against a
per-pixel solution are numerous. In particular, many basic
editing operations (e.g. panning, zooming) do not require re-
computing the solution. Moreover, with a well-defined alpha
blending framework, it enables multi-layering and instanc-
ing support. Unfortunately, sparse CDT sampling cannot be
trivially applied to Bowers et al.’s method since their general
curve shaders can introduce arbitrarily high-frequency varia-
tion. We show how to overcome this problem. Furthermore,
we use a cubic interpolation scheme within each triangle to
produce high-quality images that faithfully approximate the
per-pixel solution.

Artistic Control. Several researchers have investigated addi-
tional artistic control for DCs. The already mentioned method
of Bowers et al. provides a way to incorporate raster graph-
ics and texturing into a DC framework using curve shaders.
Winnemöller et al. [WOBT09] and Jeschke et al. [JCW11],
on the other hand, leveraged a DC framework for diffus-
ing UV coordinates and noise parameters to create texturing
effects in the context of DC images. Additionally, though

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Romain Prévost, Wojciech Jarosz & Olga Sorkine-Hornung / A Vectorial Framework for Ray Traced Diffusion Curves

diffusion curves only allow creating sharp discontinuities be-
tween their two sides, it is often desirable to produce smooth
transitions while controlling the continuity across curves.
Orzan et al. originally proposed attaching blur values, cor-
responding to the radius of a blurring kernel, to the curves.
After diffusing these values, the resulting blur radius map is
apply as a post-processing step to the final image. Unfortu-
nately, this approach requires the solution be rasterized first
and incurs a steep performance cost; hence, it is often dis-
abled during the creation stage. Other strategies consists of
somehow changing the PDE, either by adding cleverly cho-
sen soft constraints [BEDT10] or by moving to higher-order
equations [FSH11, BBG12], in order to define constraints
not only on the values but also on the gradients. Perhaps the
most general and sophisticated of these extensions is Finch
et al.’s [FSH11] method; however, their approach relies on the
PDE formulation with its associated performance limitations.
Additionally, while the method offers a rich grammar of pos-
sible curve continuity constraints, these additional controls
increase the complexity presented to the user. We describe
a novel approach to allow continuity control, which seam-
lessly fits into the explicit formulation without computational
overhead.

Contributions. In this paper, we present a new framework
to create diffusion curve images. We show how to efficiently
combine a triangular representation with an extended ray
tracing formulation. Sampling the solution only at a sparse
set of locations on a triangular mesh allows to efficiently re-
construct the color function, simultaneously capturing sharp
discontinuities across curves while avoiding oversampling
of smooth regions. The explicit approach additionally makes
the diffusion process a local computation which is trivially
parallelizable. Furthermore, these choices allow us to natu-
rally extend upon this framework, and support features which
were impossible to combine in previous work: general curve
shaders, curve continuity control, spatially-varying blur with-
out any post-processing, multi-layering with instancing, and
free-hand strokes similar to diffusion curves but with local
influence. In the end, we achieve high-quality results with
high performance while improving artistic expressiveness.

3. System Setup

Input. A diffusion curve, as introduced by Orzan
et al. [OBW∗08] is geometrically described by a 2D spline
C(t) with some colors attached along each side. Colors are
usually defined only at a discrete set of control points along
the curve for each side and then interpolated in the parameter
domain of the curve.

Color Computation. While diffusion curves traditionally
serve as constraints in a Laplace equation, we chose the
alternate formulation proposed by Bowers et al. [BLW11] as a
starting point. Based on ray tracing, this approach numerically

Figure 1: The curves are discretized into segments which
serve as input to the constrained Delaunay triangulation.
Colors are computed with raytracing in order to gather and
weight the contributions of the surrounding curves.

integrates the contribution of the surrounding visible curves
(see Figure 1).

Given a point p and an angle θ ∈ Θ = [0;2π], (p,θ) fully
defines a 2D ray for which we can find the closest intersection
(if any) with the set of diffusion curves:

hit(p,θ) = C(t) = p+ r(p,θ)
(

cosθ

sinθ

)
(1)

where r(p,θ) is simply the distance between p and the hit
point.

The attribute (color or opacity) value Z(p) at the point p is
then computed by the following normalized integral:

Z(p) = 1
W (p)

∫
Θ

w(p,θ)z(p,θ)dθ, with (2)

W (p) =
∫

Θ

w(p,θ)dθ (3)

where z(p,θ) is the value returned by the attribute shader
attached to the curve side hit by the ray, and the weight of
the ray w(p,θ) is traditionally given by the inverse squared
distance r(p,θ)−2 (though none of our derivations restrict us
to this particular weighting function).

Like Bowers et al. [BLW11], we support two general types
of shaders:

• Curve-domain shaders return an attribute value depending
on the point C(t) of a curve: C(t)→ z(C(t)). This includes
the default shaders where the user defines attributes along
the curves which are then interpolated in the curve param-
eter domain.

• Image-domain shaders return an attribute value depend-
ing on the point p of the 2D image domain: p→ z(p). This
includes the additional shaders introduced by Bowers et al.,

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Romain Prévost, Wojciech Jarosz & Olga Sorkine-Hornung / A Vectorial Framework for Ray Traced Diffusion Curves

namely the texture shaders and gradient fill shaders, where
z is a texture lookup or a gradient interpolation.

To summarize, the ray contribution z(p,θ) will be z(hit(p,θ))
if the ray hits a curve-domain shader, and z(p) if it hits an
image-domain shader.

We numerically estimate the integral using 2D Monte
Carlo ray tracing with uniformly jittered rays distributed
over the circle. In this formulation, the attribute computation
is completely independent at each point and can be trivially
parallelized.

In our framework, a curve can have shaders for color and/or
shaders for opacity (one for each side of the curve). Option-
ally the user can also attach blur radii, otherwise the blur
radius assumed zero for the whole curve side.

4. A Sparse Vectorial Framework

Triangulation. Computing the solution on the pixel grid
is expensive and often unnecessary, since the final image
presents smooth color variations between the curves. Instead,
we rely on a constrained Delaunay triangulation (CDT) con-
structed from the diffusion curves (see Figure 1). The curves
are discretized into segments which serve as constrained
edges for the triangulation algorithm. While computing the
values just on the vertices and using barycentric interpolation
is an obvious candidate, this can lead to distracting Mach
banding artifacts due to the limited continuity. We also tried
quadratic interpolation, but found cubic interpolation neces-
sary to ensure good smoothness (see Figure 2 for a close-up
comparison). This interpolation scheme requires computing
ten values per triangle (one per vertex, two per edge and one
at the barycenter), as shown in Figure 3.

We reconstruct the final image by rasterizing the trian-
gles with cubic polynomial interpolation implemented in a
fragment shader. This captures the complex variations of the
analytic solution, while avoiding ray tracing for every pixel.

Barycentric Quadratic Cubic
Barycentric
(subdivided)

Figure 2: Barycentric and quadratic interpolation result in
visible artifacts. Cubic interpolation produces smooth results
and provides better continuity than using barycentric inter-
polation on the nine sub-triangles (see Figure 3(c)). We also
show the difference to the ground truth per-pixel solution in
the bottom row (the values were scaled 8 times for better
legibility).

(a) Barycentric (b) Quadratic (c) Cubic

Figure 3: Triangular patches of different interpolation order
and the evaluation points.

Moreover, evaluation points shared by multiple triangles at
vertices and on the edges are only computed once, result-
ing in an effective average of four to five evaluation points
per triangle (instead of ten). We provide the complete set of
interpolation formulas in Appendix A.

The constrained Delaunay triangulation allows to naturally
represent the discontinuities across the curves by keeping
different values for vertices lying on constrained edges. For
example, a vertex of the triangulation lying on a black/white
curve will be black or white depending on the triangle we are
considering. The only ambiguity arises at the endpoint ver-
tices. Whereas Boyé et al. [BBG12] used a special interpola-
tion scheme for these triangles to have radially varying colors,
we obtain a similar result by assigning an angle-dependent
value to these vertices. For example, if the two colors of
the singularity are black and white, then, in each of the one-
ring triangles, the color of the endpoint vertex is a different
shade of grey depending on the angle between the triangle
and the curve. Figure 4 provides a visual explanation of this
process. While this solution theoretically creates small C0-
discontinuities between the radial edges, in practice their
small size makes them hard to notice. Additionally, it allows
us to use a single interpolation scheme for all the triangles
without having to deal with special cases in the rendering.

Figure 4: The bold curve is constrained to white color on
one side and black color on the other side, creating a singu-
larity at the endpoint. Using the angle between the triangles’
barycenters and the curve segment, we radially interpolate
and use shades of grey for the endpoint vertex in each trian-
gle. The rest of the points (in blue) are unconstrained, so they
are computed using ray tracing.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Romain Prévost, Wojciech Jarosz & Olga Sorkine-Hornung / A Vectorial Framework for Ray Traced Diffusion Curves

This representation is very well-suited for vector graphics,
since it is fully vectorial and thus naturally supports oper-
ations such as panning, zooming, rotating, and instancing
without any recomputation. To ensure sufficient quality of
the reconstructed image, we can adjust triangulation quality
parameters such as maximal area or minimal angle. Since
the ray tracing computation is local, only the viewport needs
to be triangulated, in contrast to PDE approaches which re-
quire prescribed boundary conditions to avoid discretizing
the entire 2D plane.

Curve Shaders Support. One of the benefits of the ray
tracing approach lies in the introduction of additional curve
shaders by Bowers et al. [BLW11], namely gradient fill and
texture shaders. In these cases, the attribute values are not de-
fined along the curve but in the image domain, as described in
Section 3. Unfortunately, sparse interpolation of such shaded
values would result in severe under-sampling artifacts, espe-
cially for texture shaders with high-frequency details. Luckily,
though image-domain shaders may have arbitrarily high fre-
quency content, the total weight of each shader varies more
smoothly across the CDT mesh, suggesting a potential for
interpolation.

To support sparse sampling in the presence of image-
domain shaders, we keep track of and interpolate the weights
for each shader, while looking up image-domain shader val-
ues per-pixel during the rendering stage. This can be achieved
by splitting the integral (2) depending on the shader hit:

Z(p) = 1
W (p)

(ZC(p)︷ ︸︸ ︷∫
ΘC

w(p,θ)z(p,θ)dθ

+
S

∑
s=1

∫
Θs

w(p,θ)z(p,θ)dθ

) (4)

where ΘC
⋃(
∪S

s=1Θs

)
⊂ Θ partitions the angular domain

between rays hitting a curve-domain shader and rays hitting
a specific image-domain shader of index s.

Since for image-domain shaders the attribute value
z(p,θ) = zs(p) is independent of the hit point we can pull it
out of the integral,∫

Θs

w(p,θ)z(p,θ)dθ =
∫

Θs

w(p,θ)dθ︸ ︷︷ ︸
Ws(p)

zs(p), (5)

which results in the following simplified formulation:

Z(p) = ZC(p)
W (p)

+
S

∑
s=1

Ws(p)
W (p)

zs(p). (6)

Equation (6) demonstrates that by keeping the accumulated
weights Ws(p) we can postpone the evaluation of the image-
domain shaders. During the numerical integration, each ray
will only contribute to:

• Zc(p) and W (p) if it hits a curve-domain shader
• Ws(p) and W (p) if it hits the image-domain shader with

index s.

For each evaluation point of the triangulation, we compute
and store ZC,W,W1, ...,WS. To reconstruct the value Z(p)
inside the triangles, we use Equation (6) where the ratios
ZC/W(p),W1/W(p), ...,WS/W(p) are interpolated with cubic co-
ordinates and z1(p), ...,zS(p) are evaluated per-pixel from the
shaders (for example by texture lookup). Figure 5 shows an
example with two curves that have varying colors on one side
and a texture on the other side.

5. Artistic Control

In Sections 3 and 4 we presented our sparse vectorial frame-
work for ray traced diffusion curve. In this section, we show
how we leverage this design in order to provide artistic con-
trol in a single unified framework.

Continuity Control. When a ray hits a curve, by default we
only consider the shader located on the front side of the curve.
This leads to sharp discontinuities, if both sides have different
shader values. We now generalize our previous formulation.
By blending the front side and back side shaders depending
on the hit distance we can provide an intuitive way to control
interpolation continuity across curves.

More formally, we have

z(p,θ) = β(p,θ) zF(p,θ)+(1−β(p,θ)) zB(p,θ), (7)

with blending coefficient

β(p,θ) = smoothstep

(
clamp

(
r⊥(p,θ)+R

2R
,0,1

))
(8)

where r⊥(p,θ) is the projected distance between p and
hit(p,θ) along the normal direction, and R is a specified
maximum blur radius. Basically, this function smoothly goes
from 0.5 near the curve to 0 at distance R in the normal direc-
tion, such that if p is further that R it will only use the front
side shader and if it lies near the curve it will blend both the

Figure 5: When image-domain shaders are attached to a
curve, we gather only their weights. This example shows that
this allows arbitrarily high frequency details to be represen-
tated with a sparse computation and interpolation scheme.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Romain Prévost, Wojciech Jarosz & Olga Sorkine-Hornung / A Vectorial Framework for Ray Traced Diffusion Curves

no blur varying blur two-sided blur with a texture shader EG logo

Figure 6: Our system supports having no blur for sharp discontinuities, as well as varying blur radii along curves for smoothness
control, and different blur radii on either side for full control over the normal derivative – for both image-domain and curve-
domain shaders. On the far right we show a simple example where the blur radii help to create smooth color transitions.

front side and the back side shaders. The default behaviour
corresponds to a blur radius equal to zero, i.e. β(p,θ) = 1,
which means that z(p,θ) always returns the front side shader,
as expected.

If we plug Equation (7) inside the integral formula (2), we
obtain:

Z(p) = 1
W (p)

(∫
Θ

β(p,θ)w(p,θ)zF(p,θ)dθ

+
∫

Θ

(1−β(p,θ))w(p,θ)zB(p,θ)dθ

) (9)

which can be split similarly to the derivation in Section 4,
finally leading to the exact same formula:

Z(p) = ZC(p)
W (p)

+
S

∑
s=1

Ws(p)
W (p)

zs(p), (10)

but now with:

ZC(p) =
∫

ΘF
C

β(p,θ)w(p,θ)zF(p,θ)dθ

+
∫

ΘB
C

(1−β(p,θ))w(p,θ)zB(p,θ)dθ,

Ws(p) =
∫

ΘF
s

β(p,θ)w(p,θ)dθ

+
∫

ΘB
s

(1−β(p,θ))w(p,θ)dθ

(11)

Note that we must now partition the angular domain Θ to
consider separate front side and the back side contributions.
We denote this with a superscript Θ

F and Θ
B for the front

and back side respectively. This handles the situation where
a ray (p,θ) might hit a curve-domain shader on the front
and an image-domain shader on the back, or two different
image-domain shaders, and therefore should contribute to
two different integrals.

The user can attach blur radii to each side of a curve using
a curve-domain shader, allowing for varying the blur radius
along the curve. In this case, we replace R in Equation (8)
by RF(p,θ), i.e. the blur radius on the front side of the curve
at the hit location. Though small blur radii can lead to rapid

color variations, we found that our cubic interpolation scheme
can reliably handle these cases (see Figure 6).

The blur radii provide for intuitive control of the type of
continuity across the curve, as well as the normal derivatives
at the curves. In particular, we show in Appendix B that
for any point on a curve the normal derivative is equal to
3(zF−zB)/4RF and is therefore controlled by the blur radius. As
shown in Figure 6, the user is able to create C−1, C0, and C1

transitions across curves with various transition speeds.

Opacity, Instancing, and Multi-Layering. To create com-
plex images, multiple layers are often required. But, to our
knowledge, the only multi-layering system for diffusion
curves proposed attaching RGBA colors to the curves. In
such a framework, every curve influences both opacity and
color. We instead propose a decoupled formulation in which
curves can specify only color, only opacity or both. This ap-
proach gives the user more freedom and flexibility to design
complex opacity masks.

In our system, each layer has its own set of diffusion curves
and its own Delaunay triangulation constrained over all its
curves. Each evaluation point of the triangulation is now ei-
ther on a curve with color, on a curve with opacity, on a curve
with both, or completely free in space. We thus distinguish

Figure 7: The yellow fish are several instances of the same
layer, which is possible thanks to our vectorial representation.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Romain Prévost, Wojciech Jarosz & Olga Sorkine-Hornung / A Vectorial Framework for Ray Traced Diffusion Curves

between these four cases and only compute the missing at-
tribute values. This is done using our ray tracing framework
twice: once for colors, and once for opacity. At this point, all
the color and opacity information is stored on the evaluation
points of the triangulation, and the image can be synthesized.

Concerning multi-layering, our vectorial representation
offers a direct benefit. In fact, it allows to instantiate lay-
ers without any recomputation. Figure 7 shows an example
where the yellow fish is drawn on a separate layer, and then
instantiated with several scales and rotations. In this case, the
opacity is determined by a single curve enclosing the fish
with opacity one on the inside, zero on the outside, and some
blur radius to create a smooth transition.

Local Curves. The influence of a diffusion curve is global
and hence sometimes hard to control. Simple tasks such as
adding a highlight can be quite difficult to achieve in a diffu-
sion curves framework. Though one possible solution would
be to combine several curves with multi-layering, this can
become cumbersome. Instead, we incorporate local curves,
which we define very similarly to our global diffusion curves,
but with a local influence controlled by the user.

A local curve C(t) has its own independent layer (invisible
to the user), and is defined with:

• curve-domain color shaders z(t) (one for each side)
• blur radii R(t) to blend shaders
• influence radii Q(t) to choose the size of our new locally-

supported weighting functions

If we ignore visibility, we can rewrite Equations (2) and
(3) as integrals over a single curve. We can then formulate the
integration over the parameter domain t of the single curve:

Z(p) = 1
W (p)

∫
C

w(p, t)z(p, t)dt (12)

W (p) =
∫
C

w(p, t)dt (13)

where we also defined a new weighting function with smooth
local support:

w(p, t) = 1− smoothstep
(

min
(

r(p, t)
Q(t)

,1
))

(14)

Figure 8: Example of local curves with varying influence
radius and color. (Left) Only Z(p) without opacity, (Right)
Local curve blended on top of an other layer.

where Q(t) is the influence radius varying along the curve.

The shader value z(p, t) stays the same blending between
front and back side, but written as a function of t:

z(p, t) = β(p, t) zF(t)+(1−β(p, t)) zB(t) (15)

β(p, t) = smoothstep

(
clamp

(
r⊥(p, t)+R(t)

2R(t)
,0,1

))
(16)

where R(t) is the blur radius varying along the curve.

With these new definitions, we use Z(p) for the color, and
αW (p) as opacity, where α is a scale factor. Doing so, pro-
duce complex strokes similar to diffusion curves but with
local support (see Figure 8). Since, in this case we ignore
visibility, ray tracing is not needed anymore, and using a
stochastic sampling of the curve, we can compute the solu-
tion per-pixel in a fragment shader. Since the curve has local
support, we only evaluate this for pixels where the contribu-
tion can potentially be non-zero (within the influence radius
of the curve).

This technique holds some similarities with the work by
Sun et al. [SXD∗12], but whereas their weighting functions
are approximated Green’s functions of the Laplace equation,
ours are specifically designed for smooth local support.

6. Results and Discussion

Implementation Details. We implemented our framework
in C++ using CUDA for the ray tracing and parallel color
computation. The images are rendered with a resolution
of about 1 megapixel. The CDT is generated using the
Triangle library [She02]. To obtain a high-quality triangu-
lation, we choose by default a minimal angle of 22 degrees,
and a maximal triangle area of 4% of the artwork size. We
found these values to work well, but they can also be adjusted
by the user. The ray tracing is accelerated using a simple
192× 192 regular grid, constructed on the CPU, and then
transferred as a texture to the GPU.

The final image is rasterized via the graphics pipeline. In
order to do so, we aggregate the values for each evaluation
point in Texture Buffer Objects. We send the triangulation as
a Vertex Buffer Object, which contains the indices to look up
in the texture. The vertex shader proceeds with the lookup and
sends the values to the fragment shader. Finally, the fragment
shader runs the cubic interpolation to compute the color of
the fragment.

Performance & Quantitative Results. We measured per-
formance on a 12-core 3.4 GHz Intel R© CoreTM i7-4930K
CPU with a NVidia R© GeForce GTX780 3GB. Table 1 gathers
timings for the different parts of the algorithm. Our frame-
work is able to handle complex images with hundreds of
curves at interactive rates while not only computing color
but also opacity. Computing the constrained Delaunay trian-
gulation is very fast, which, in addition to quality reasons,

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Romain Prévost, Wojciech Jarosz & Olga Sorkine-Hornung / A Vectorial Framework for Ray Traced Diffusion Curves

Figure 9: (Left) CUPID with our sparse vectorial framework, (Middle) A LILY with a depth of field effect, (Right) An APPLE on
a wood table with textures and a local curve for the highlight.

confirms it is a good candidate for an intermediate sparse
representation of diffusion curves. In the end, we are able to
render high quality images using 64 rays per evaluation point
with timings ranging from tens of milliseconds for simple
examples to hundreds of milliseconds for very complex ex-
amples. Moreover, we support features such as blur radii and
texture shaders, whereas previous frameworks usually need
to disable these to maintain interactive performance.

Without access to previous work’s source code, it is dif-
ficult to draw very precise conclusion, especially since per-
formance is highly correlated to the choice of examples, the
features enabled, as well as the choice of parameters for the
solvers (number of iterations, resolution, etc.); however, we
can still draw some rough conclusions about performance.
Compared to Bowers et al.’s demo, our sparse representa-
tion seems to allow a significant speedup. In fact, we are
able to maintain interactive rates even for high-resolution
output with texture shaders, which in their case would require
many more rays to trace. More precisely, for the TOMA-
TOES and LADYBUG examples, our sparse representation
provides a 16× speed improvement compared to an evalu-
ation at very pixel. Our triangulation also enables efficient
hardware anti-aliasing, providing further speedup compared
to the expensive supersampling required by Bowers et al.’s ap-
proach. Jeschke et al.’s state-of-the-art Laplacian multi-grid
solver, and Pang et al.’s sparse rasterization algorithm, are
one order of magnitude faster than our framework. However,
this speed comes at the cost of reduced artistic control; in
particular, sacrificing support for image-domain shaders or
continuity control. Boyé et al. report timings similar to ours.
Our implementation is not highly optimized, and we believe a
significant speedup could be achieved by more cleverly choos-
ing the number of rays to trace for each evaluation point, as
well as avoiding unnecessary CPU/GPU data transfers.

Qualitative Results & Comparisons. We tested our frame-
work both with previous work examples and new examples
to evaluate robustness, quality and additional artistic control.

All our results are rendered as high-resolution bitmaps in
the paper, but we also refer the reader to our supplemental
material for vector images displayed in a WebGL viewer.

Figure 9 shows a few examples created with our framework.
CUPID was created by an artist, and shows a more complex
example of a diffusion curves image. LILY demonstrates
how our continuity control feature allows to produce blurry
transitions across diffusion curves, and in this case creates
a convincing depth-of-field effect. APPLE is a two-layered
example, which makes use of textures for highly detailed
parts of the image, as well as a local curve for the highlight.

Figure 10 presents a qualitative comparison of diffusion
curves images generated with our framework and Orzan’s
Poisson solver. Our explicit approach produces visually simi-
lar results even though the solutions are theoretically different.
Moreover, comparison to ground truth (per-pixel computa-
tion, equivalent to Bowers’ solver) shows that our sparse
computation leveraging the CDT mesh is sufficient to reliably
reconstruct the image. The difference images demonstrate
that, even when the values are scaled 128 times, the dif-
ferences primarily lie in how edges are antialiased by the
graphics hardware. Figure 11 shows how our continuity con-
trol feature can produce similar results to the spatially vary-
ing post-process blur applied in some previous works. Our

Table 1: Timings and statistics.

LADYBUG TOMATOES FISH LILY

#curves 72 395 1859 13
#triangles 9k 10k 53k 6k
#vertices 5k 5k 27k 3k
#evaluation points 37k 38k 113k 23k
#rays/evaluation points 64 64 72 72

Geometry 18ms 19ms 61ms 41ms
Triangulation 7ms 5ms 16ms 9ms
Color computation 49ms 53ms 277ms 56ms

Resolution 10242 10242 944×633 10242

Rendering 0.6ms 0.8ms 5.5ms 8.9ms

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Romain Prévost, Wojciech Jarosz & Olga Sorkine-Hornung / A Vectorial Framework for Ray Traced Diffusion Curves

Our method Triangulation
Difference 128×

Ground truth
(equiv. to Bowers et al.)

Orzan et al.

Figure 10: Comparison between our sparse reconstruction and the ground truth per-pixel solution (corresponding to Bowers
et al.). The second column shows the underlying triangulation as well as the difference image (128×). Differences primarily lie
in how edges are antialiased by the graphics hardware. Orzan et al. is also included for qualitative comparison.

method, however, comes nearly for free in terms of computa-
tion, whereas applying the blur map is quite expensive, and
often needs to be disabled during editing.

Figure 11: (Left) Our method with continuity control, (Right)
Result from Orzan et al. with blur as a post-process

Limitations and Future Work. Using the OpenGL pipeline
with specialized shaders offers a simple way to display the tri-
angulation by passing colors and various weights as Texture
Buffers. We leverage the vertex shader to optimize this when
possible, but since the graphics hardware imposes a maxi-
mum number of varying floats (48 in our case), we postpone
this lookup to the fragment shader if we need to interpolate
more values. In those cases (FISH and LILY), this can lead

to suboptimal performance (see Table 1). Optimizing data
usage in our rendering pipeline would allow to maintain high
performance in these cases.

Texture Buffers are only supported by modern versions
of OpenGL. In particular, WebGL does not support this fea-
ture yet. While some tricks could be used to circumvent this
problem, we instead preferred using vertex attributes and
barycentric interpolation inside the nine subtriangles, which
widely extends the range of graphics cards able to handle our
WebGL viewer.

We also make use of GLSL for rendering local curves. We
chose to sample the curves with their parameters (colors, in-
fluence radii, normals, etc.) on the CPU and pass these values
as arrays of uniform variables. This restricts the number of
samples and can compromise the quality of the rendered local
curve. To circumvent this issue, one could adaptively sample
the local curves directly on the GPU, which would addition-
ally allow for a more intelligent sampling of the integrals.

On the theoretical side, the endpoints of the curves are
usually problematic to handle. In our case, the problem is
twofold. First, as mentioned in Section 4, our solution for the
endpoint vertices potentially creates small C0-discontinuities.
Deriving and using special patches around the singularities
as proposed by Boyé et al. [BBG12] could remove the dis-

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Romain Prévost, Wojciech Jarosz & Olga Sorkine-Hornung / A Vectorial Framework for Ray Traced Diffusion Curves

continuities if these small artifacts are deemed objectionable.
Secondly, due to the rapid change of the visibility, our so-
lution differs from the PDE approaches. This problem is
inherent to most explicit approaches, and improving this be-
haviour is an interesting avenue for future work. For instance,
one could incorporate the endpoints with angle-dependent
color lookups in the integration.

Finding the best triangulation to represent the image is
an interesting question. Though we currently focus on still
images, diffusion curve animations would be an interesting
extension. In this case, our current triangulation approach
could lead to flickering artifacts if applied independently per
frame. It would be interesting to incorporate some form of
temporal coherence directly into the triangulation.

Taking inspiration from Jarosz et al.’s work on 2D global
illumination [JSKJ12], we investigated computing color gra-
dients in an alternative evaluation scheme to perform higher-
order interpolation. In fact, using 4 values and 3 gradients
per triangle instead of our current 10 values would require
less rays. However, obtaining good gradient estimates proved
to be challenging, compromising the smoothness of the in-
terpolation. This led us to abandon this direction. Further
investigation may nonetheless prove fruitful.

7. Conclusion

We have presented a new framework for computing diffu-
sion curves images, which produces high quality results at
interactive rates. Combining an explicit approach based on
ray tracing with a sparse triangulation discretization, we are
able to efficiently synthesize fully vectorial diffusion curves
images. We do this while not sacrificing support for advanced
features such as image-domain shaders, and we also improve
artistic control by introducing a new continuity control tech-
nique, a multi-layering system, as well as curves with local
influence.

Acknowledgements. We thank Maurizio Nitti for creating
CUPID and LILY. We also thank our colleagues from DRZ
and IGL, in particular Alec Jacobson, for insightful discus-
sions. We are also grateful to the anonymous reviewers for
their extensive help in improving this paper.

References
[BBG12] BOYÉ S., BARLA P., GUENNEBAUD G.: A vectorial

solver for free-form vector gradients. ACM Trans. Graph. (Proc.
SIGGRAPH Asia) 31, 6 (Nov. 2012). 418, 419, 420, 425

[BEDT10] BEZERRA H., EISEMANN E., DECARLO D., THOL-
LOT J.: Diffusion constraints for vector graphics. In Proc. Intĺ
Symp. on NPAR (2010). 418, 419

[BLW11] BOWERS J. C., LEAHEY J., WANG R.: A ray tracing
approach to diffusion curves. Computer Graphics Forum (Proc.
EGSR) (2011), 1345–1352. 418, 419, 421

[FHL∗09] FARBMAN Z., HOFFER G., LIPMAN Y., COHEN-OR
D., LISCHINSKI D.: Coordinates for instant image cloning. ACM
Trans. Graph. (Proc. SIGGRAPH) 28, 3 (July 2009). 418

[FLW02] FATTAL R., LISCHINSKI D., WERMAN M.: Gradient
domain high dynamic range compression. ACM Trans. Graph.
(Proc. SIGGRAPH) 21, 3 (July 2002). 418

[FSH11] FINCH M., SNYDER J., HOPPE H.: Freeform vector
graphics with controlled thin-plate splines. ACM Trans. Graph.
(Proc. SIGGRAPH Asia) 30, 6 (Dec. 2011). 418, 419

[JCW09] JESCHKE S., CLINE D., WONKA P.: A GPU Laplacian
solver for diffusion curves and Poisson image editing. ACM Trans.
Graph. (Proc. SIGGRAPH Asia) 28, 5 (Dec. 2009). 418

[JCW11] JESCHKE S., CLINE D., WONKA P.: Estimating color
and texture parameters for vector graphics. Computer Graphics
Forum (Proc. Eurographics) 30, 2 (Apr. 2011). 418

[JSKJ12] JAROSZ W., SCHÖNEFELD V., KOBBELT L., JENSEN
H. W.: Theory, analysis and applications of 2D global illumina-
tion. ACM Trans. Graph. 31, 5 (Sept. 2012). 426

[LHM09] LAI Y.-K., HU S.-M., MARTIN R. R.: Automatic and
topology-preserving gradient mesh generation for image vector-
ization. ACM Trans. Graph. (Proc. SIGGRAPH) 28, 3 (July 2009).
417

[MP08] MCCANN J., POLLARD N. S.: Real-time gradient-
domain painting. ACM Trans. Graph. (Proc. SIGGRAPH) 27,
3 (Aug. 2008). 417

[OBW∗08] ORZAN A., BOUSSEAU A., WINNEMÖLLER H.,
BARLA P., THOLLOT J., SALESIN D.: Diffusion curves: a vector
representation for smooth-shaded images. ACM Trans. Graph.
(Proc. SIGGRAPH) 27, 3 (Aug. 2008). 417, 419

[PGB03] PÉREZ P., GANGNET M., BLAKE A.: Poisson image
editing. ACM Trans. Graph. (Proc. SIGGRAPH) 22, 3 (July 2003).
418

[PQC∗12] PANG W.-M., QIN J., COHEN M., HENG P.-A., CHOI
K.-S.: Fast rendering of diffusion curves with triangles. IEEE
Computer Graphics and Applications 32, 4 (2012). 418

[She02] SHEWCHUK J. R.: Delaunay refinement algorithms for
triangular mesh generation. Computat. Geom. 22, 1-3 (2002). 423

[SJTS04] SUN J., JIA J., TANG C.-K., SHUM H.-Y.: Poisson
matting. ACM Trans. Graph. (Proc. SIGGRAPH) 23, 3 (Aug.
2004). 418

[SLWS07] SUN J., LIANG L., WEN F., SHUM H.-Y.: Image vec-
torization using optimized gradient meshes. ACM Trans. Graph.
(Proc. SIGGRAPH) 26, 3 (July 2007). 417

[SXD∗12] SUN X., XIE G., DONG Y., LIN S., XU W., WANG
W., TONG X., GUO B.: Diffusion curve textures for resolution
independent texture mapping. ACM Trans. Graph. (Proc. SIG-
GRAPH) 31, 4 (July 2012). 418, 423

[TSNI10] TAKAYAMA K., SORKINE O., NEALEN A., IGARASHI
T.: Volumetric modeling with diffusion surfaces. ACM Trans.
Graph. (Proc. SIGGRAPH Asia) 29, 6 (Dec. 2010). 418

[WOBT09] WINNEMÖLLER H., ORZAN A., BOISSIEUX L.,
THOLLOT J.: Texture design and draping in 2D images. Computer
Graphics Forum (Proc. EGSR) 28, 4 (2009). 418

Appendix A: Triangular patch interpolation

We denote u,v,w as the barycentric coordinates (u+v+w= 1
and u,v,w≥ 0). The rest of the notation refers to Figure 3.

In the linear case, the formula is simply the well-known
barycentric interpolation from 3 vertex values: Z(u,v,w) =
w Z0 +u Z1 + v Z2. Quadratic interpolation requires 3 addi-
tional values chosen at the edge centers. The interpolated

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Romain Prévost, Wojciech Jarosz & Olga Sorkine-Hornung / A Vectorial Framework for Ray Traced Diffusion Curves

value is then computed as:

Z(u,v,w) = w(2w−1) Z0 +u(2u−1) Z1 + v(2v−1) Z2

+ 4wu Z01 +4uv Z12 +4vw Z20. (17)

The cubic interpolation requires 10 values. We choose the 3
vertices, the 1/3- and 2/3-points of the edges, as well as the tri-
angle center. This choice leads to the following interpolation
formula:

Z(u,v,w) = 0.5w(3w−1)(3w−2) Z0 (18)

+ 0.5u(3u−1)(3u−2) Z1

+ 0.5v(3v−1)(3v−2) Z2

+ 4.5wu(3w−1) Z01 +4.5wu(3u−1) Z10

+ 4.5uv(3u−1) Z12 +4.5uv(3v−1) Z21

+ 4.5vw(3v−1) Z20 +4.5vw(3w−1) Z02

+ 27wuv Z012.

Appendix B: Normal derivatives

Let us consider a point p on a curve (see figure below). We
consider a coordinate system where the X-axis is aligned with
the normal n(p). We will consider the point pε = p+ ε n(p),
and angles θ will be taken with re-
spect to −n(p) in the clockwise di-
rection.

For simplicity, we will assume
that there exists a sufficiently
small neighborhood (representated
in blue) of radius σ around p inside
which:

• the only geometry is the local neighborhood of the curve
around p and can be approximated by the segment (0,λ)
with λ ∈ [−σ;+σ],
• the curve shader values on both sides zF and zB are con-

stant,
• the curve has a constant blur radius RF greater than σ

Since this neighborhood can be as small as we want these
assumptions are not very restrictive. Some of them could
be relaxed, but it would require a more extensive proof to
carefully study the asymptotic behavior.

To find the normal derivative, we will study the limit of the
following quantity:

Z(pε)−Z(p)
ε

=

∫
Θ

w(pε,θ)(z(pε,θ)−Z(p))dθ

ε W (pε)
(19)

In order to do so, we split the integrals into 2 parts:

Θε = [−θε;+θε] and Θε = Θ\Θε (20)

where θε = arctan
(

σ

ε

)
.

Integration over Θε. Since the shader values are bounded
(here we assume between 0 and 1) and there is no geometry
near pε for these angles, we can easily show that the following
integrals are trivially bounded:∣∣∣∣∫

Θε

w(pε,θ)dθ

∣∣∣∣≤ 2π

(σ− ε)2 (21)

∣∣∣∣∫
Θε

w(pε,θ)(z(pε,θ)−Z(p))dθ

∣∣∣∣≤ 2π

(σ− ε)2 . (22)

Integration over Θε. On this interval, the geometry is a
segment between (0,−σ) and (0,+σ), so we can analytically
evaluate the integral of the weighting function. We have:

w(pε,θ) = r(pε,θ)
−2 =

1
y2 + ε2 =

1
ε2

1
1+ tan2 θ

, (23)

so, ∫
Θε

w(pε,θ)dθ =
1
ε2

∫ +θε

−θε

dθ

1+ tan2 θ

=
θε + cosθε sinθε

ε2 ∼
ε→0

π

2ε2 .

(24)

Moreover, we assumed that the shader values are constant
with respect to the angle on this tiny segment, which leads to:∫

Θε

w(pε,θ)(z(pε,θ)−Z(p))dθ

= (z(pε)−Z(p))
∫

Θε

w(pε,θ)dθ

(25)

We already have the asymptotic behavior of the integral. The
first part can be determined by plugging in the definitions:

z(pε) = β(ε) zF +(1−β(ε)) zB,

β(ε) = smoothstep
(

RF + ε

2RF

)
,

Z(p) = zF + zB
2

.

(26)

After simplification, we obtain:

(z(pε)−Z(p)) ∼
ε→0

3ε

4RF
(zF− zB), (27)

and therefore:∫
Θε

w(pε,θ)(z(pε,θ)−Z(p))dθ ∼
ε→0

3π

8εRF
(zF− zB). (28)

Final Result. While the integrals over Θε are bounded, the
ones over Θε tend to infinity when ε tends to 0, so they dictate
the asymptotic behavior of the full integrals:

Z(pε)−Z(p)
ε

∼
ε→0

3π

8εRF
(zF− zB)

ε
π

2ε2

=
3(zF− zB)

4RF
, (29)

which demonstrates that the blur radius controls the normal
derivative at the curve.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

