Volumetric Modeling with Diffusion Surfaces

Kenshi Takayama Olga Sorkine
The University of Tokyo New York University
Abstract

The modeling of volumetric objects is still a difficult problem. Solid
texture synthesis methods enable the design of volumes with homo-
geneous textures, but global features such as smoothly varying col-
ors seen in vegetables and fruits are difficult to model. In this paper,
we propose a representation called diffusion surfaces (DSs) to en-
able modeling such objects. DSs consist of 3D surfaces with colors
defined on both sides, such that the interior colors in the volume are
obtained by diffusing colors from nearby surfaces. A straightfor-
ward way to compute color diffusion is to solve a volumetric Pois-
son equation with the colors of the DSs as boundary conditions, but
it requires expensive volumetric meshing which is not appropriate
for interactive modeling. We therefore propose to interpolate colors
only locally at user-defined cross-sections using a modified version
of the positive mean value coordinates algorithm to avoid volumet-
ric meshing. DSs are generally applicable to model many difter-
ent kinds of objects with internal structures. As a case study, we
present a simple sketch-based interface for modeling objects with
rotational symmetries that can also generate random variations of
models. We demonstrate the effectiveness of our approach through
various DSs models with simple non-photorealistic rendering tech-
niques enabled by DSs.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

Keywords:
fusion.

volumetric modeling, sketching interface, color dif-

1 Introduction

Cutting 3D virtual objects can enrich diverse graphics applications,
such as visualization, education, games, and films [Taito 2006;
Pixar 2007]. However, although many approaches have been pro-
posed in the literature, volumetric modeling of objects that contain
distinct global structures with smooth and sharp color transitions
still remains a challenge. In this paper we introduce a volumet-
ric representation called diffusion surfaces (DSs) to enable model-
ing such objects. DSs are, conceptually, an extension of diffusion
curves [Orzan et al. 2008] (DCs) to 3D volumes. This representa-
tion consists of a set of colored surfaces in 3D, describing global
structures of the model’s volumetric color distribution. A smooth
volumetric color distribution that fills the model is obtained by dif-
fusing colors from these surfaces (Fig. 1a).

In DCs, color diffusion is computed by solving a Poisson equation
over a 2D pixel grid, where the colors specified along the curves
serve as Dirichlet boundary conditions. Directly extending this
method to 3D volumes is costly both in terms of computation time
and memory consumption: to achieve high-quality results, high-

Andrew Nealen
Rutgers University

Takeo Igarashi
The University of Tokyo / JST ERATO

Figure 1: (a) Diffusion surfaces, a set of 3D surfaces with colors
assigned to both sides, define smooth color transitions inside of a
volume. (b) A vegetable salad created using our symmetry-aware
modeling interface. Simple NPR techniques are employed as a post
process for artistic impression.

resolution voxel grids or tetrahedral meshes are required (especially
in order to faithfully represent complex volumetric models), and
precomputing and storing the resulting color information is expen-
sive. Instead, we propose to interpolate colors only locally at cross-
sectional locations using a modified version of the positive mean
value coordinates (PMVC) algorithm [Lipman et al. 2007], en-
abling us to generate high-resolution cross-sections efficiently. Our
method produces consistent volumetric color distributions compa-
rable to Poisson solutions, and at the same time saves the effort
of computing the entire color volume at once, eliminating the ne-
cessity of precomputation. The resulting framework is suitable for
trial-and-error design processes where volumetric structures can be
interactively added, removed, edited, and explored, which is indis-
pensable for creative interactive modeling.

The process of modeling the shapes and colors of the DSs is inde-
pendent of the representation, such that any general-purpose mod-
eling tools can be used to create DSs for arbitrary objects, e.g.,
anatomical structures and organs, geological structures, fruits or
vegetables. However, modeling and spatially positioning the re-
quired number of intricate and nested geometric components using
existing tools is often difficult and time-consuming. Thus, we lever-
age the fact that many natural objects exhibit rotational symmetries
in their internal structure, and design a sketch-based interface tai-
lored for this purpose. Fruits, vegetables, and other familiar objects
fall into this category of volumetric structures. Our interface as-
sumes and exploits rotational symmetries, which greatly simplifies
the modeling process. The interface also enables generating ran-
dom variations of models, which is particularly useful for scenes
containing a large variety of similar objects.

2 Related Work

Solid texture synthesis [Perlin 1985; Dong et al. 2008] is one of the
most common approaches to modeling volumetric objects. How-
ever, its main focus is the synthesis of solid textures of single ho-
mogeneous materials such as marble, wood, or piles of stones. On
the other hand, material properties in many objects vary spatially
(e.g., fleshy and juicy parts in tomatoes), so this approach alone is
not sufficient for such objects.

Cutler et al. [2002] proposed a procedural approach in which the
user specifies material information at certain layer depths for given
3D surfaces using a scripting language. Their method is limited to
simple layered structures, and it is difficult to create more complex
structures that are not layered. Additionally, we believe that writing
a script is not necessarily an intuitive modeling interface.

The illusion of volumetric models can be created by generating
plausible cross-sectional images based on user-specified associa-
tions between 2D photographs and cross-sections of 3D models
[Owada et al. 2004; Pietroni et al. 2007]. This approach offers
intuitive modeling interfaces, but the lack of consistent 3D struc-
tures often leads to visible artifacts such as at an intersection of two
cross-sections.

Takayama et al. [2008] manually created solid texture exemplars for
several objects (e.g., carrots and trees), and proposed a method to
paste patches of exemplars over tetrahedral meshes while aligning
their orientation to user-specified volumetric tensor fields. Their
method does not work well for objects with distinct global struc-
tures (such as inner chambers in tomatoes). Moreover, it is often
difficult to design a single representative solid texture exemplar that
fully describes the volumetric structure of an entire object.

Owada et al. [2008] proposed an interface for directly painting vox-
els by distributing particles filled with constant color along guide
surfaces. Unfortunately, their method ignores smooth color transi-
tions, which are often essential for plausible appearance.

Wang et al. [2010] recently proposed the first attempt at vector rep-
resentation for solid textures. Their method can convert a bitmap
solid texture to a vector solid texture that is resolution independent,
compact, and fast to evaluate. However, their method is limited to
features that are boundaries of separate closed regions, and features
have to be larger than the grid cell size since they are defined im-
plicitly by the signed distance field. In addition, they did not deal
with the creation of volumetric structures from scratch.

3 Diffusion Surfaces

In the following, we describe our basic primitive for volumetric
modeling, called a diffusion surface (DS), and describe an efficient
algorithm for computing and rendering cross-sections of volumetric
objects represented by DSs.

3.1 Definition

DSs extend diffusion curves (DCs) to 3D volumes by replacing 2D
curves with 3D surfaces. A DS is a triangle mesh in which each
mesh vertex has the following attributes: colors on its front and
back sides and a blur value. A DS diffuses its colors on either side,
and the softness of the color transitions between the front and the
back sides of the surface is controlled by the blur values (Fig. 2).

Unlike DCs in which the blur is applied after diffusion as a post
process, the blur in DSs is achieved by duplicating each DS into
two surface sheets (one for the front and one for the back side),
and moving the sheets apart along the surface normal directions by

(b)

)
{
N

Figure 2: A DS is a surface with colors on either side and blur
values (a). The blur radii are depicted as white circles. (b) The
surface is duplicated into two sheets, which are moved apart along
the normals by the blur radius distance. (c) Colors from both sheets
are smoothly diffused in space.

(b)

c interior vertices

duplicate cut vertices
vertices (front)

Cutting surface

()

duplicate - J
vertices (back)\ -

Figure 3: Cross-sectional mesh generation. Given DSs and a cut-
ting surface (a), the system triangulates the cutting surface (b) and
splits the mesh connectivities (c).

the distances explicitly specified as the blur values (Fig. 2b). This
is because DSs are not a voxel-based representation, and the post-
process blur of DCs cannot be applied to DSs. Our blur may be less
smooth, but we found it sufficiently smooth in practice.

3.2 Generating cross-sections of DSs

Our goal is to generate a cross-section with colors diffused from
DSs when the user cuts the model at an arbitrary location. A
straightforward way to achieve this is to compute the entire vol-
umetric color diffusion by solving a Poisson equation over a voxel
grid or a tetrahedral mesh, similar to DCs. However, this approach
lacks scalability and becomes too expensive for complex models,
as discussed in detail in Section 3.3. Thus, we propose to com-
pute color diffusion locally at cross-sectional locations using posi-
tive mean value coordinates [Lipman et al. 2007] (PMVC). This is
inspired by the work of Farbman et al. [2009] where the Poisson
solution was replaced by mean value coordinates [Floater 2003] to
accelerate various image editing tasks. The actual process of our al-
gorithm consists of two steps: cross-sectional mesh generation and
color diffusion using PMVC.

Cross-sectional mesh generation. The system first generates a
cross sectional mesh when the user cuts the model. Given a 3D cut-
ting surface, all of its intersections with DSs are computed, form-
ing a set of line segments called cut segments (Fig 3a). The cut-
ting surface is then tessellated while preserving these cut segments
using conforming 2D Delaunay triangulation, which nicely adapts
the mesh density to the size and placement of the DSs to alleviate
discretization artifacts. The cross-sectional mesh vertices that are
not part of the cut segments are called interior vertices (Fig. 3b);
their colors are computed by diffusing colors from the DSs using

onion DSs

Poisson, 540KB
pre: 3.2s, cut: 0.4s

PMVC, 160KB
pre: —, cut: 1.6s

persimmon DSs

N
\

) (08 (0 0

Poisson (low-res), 3.0MB Poisson (high-res), 13.8MB

o

PMVC, 630KB

pre: 9.5s, cut: 1.1s pre: 124s, cut: 3.4s pre: —, cut: 4.3s

Figure 4: Comparisons of our PMVC diffusion and Poisson diffusion. The precomputation time (denoted “pre:”) includes the tetrahedral-
ization and solving the Poisson equation. The storage sizes refer to the precomputed tet mesh with colors for Poisson and the cross-section

mesh with colors for our approach.

PMVC, as explained later. Mesh vertices that lie on the cut seg-
ments are called cut vertices; their colors are sampled directly from
the respective DSs. A cut vertex has two different colors (front and
back) at the same location, so it is necessary to split each cut vertex
into duplicate vertices (Fig. 3c), divide the mesh connectivity along
the cut segment, and assign the front and back colors of the corre-
sponding DS to each duplicate vertex appropriately. The rendering
is done simply by drawing mesh triangles with associated colors.

Color diffusion using PMVC. Once the mesh is generated on the
cross section, the system diffuses colors on the mesh using PMVC.
Given an interior vertex, our goal is to compute its color by interpo-
lating the colors of the DSs using PMVC. To do so, we first render
all the DSs viewed from the interior vertex to a cube map. This
efficiently determines which parts of the DSs are visible and how
far they are from the interior vertex. The system then sums up all
the colors rendered on the cube map pixels, weighted by the inverse
of the distances obtained from the depth buffer. Note that the diffu-
sion is consistent for any cut surface, since the color information is
obtained by integrating over the entire set of 3D DSs.

While the original method [Lipman et al. 2007] renders triangles
into the cube map using carefully tailored colors to compute coordi-
nate values, our method renders the actual colors of the DSs directly
to the cube map since we only need interpolated colors instead of
coordinate values. This allows the integration of the cube map pix-
els to be performed entirely on the GPU, significantly reducing the
cost of both reading the GPU memory back to the CPU and integrat-
ing cube map pixels on the CPU. Our modification means that the
cost of integrating cube map pixels is negligible and the bottleneck
becomes the cost of rendering DSs (roughly 99% of the total). Our
current unoptimized implementation renders all the mesh triangles
of the DSs naively per each interior vertex, but it could be greatly
accelerated by parallelizing processes for all interior vertices and
using efficient spatial data structures [Ritschel et al. 2009].

3.3 Comparison of PMVC and Poisson diffusion

We compared our PMVC diffusion to a standard Poisson diffu-
sion to demonstrate the effectiveness of our approach. For the dis-
cretization of the Poisson equation, we used unstructured tetrahe-
dral meshes instead of regular voxel grids, since tetrahedra can eas-
ily conform to DSs while voxels lead to rasterization artifacts.

Figure 4 shows some comparison results. The quality of the Poisson
diffusion heavily depends on the resolution of the tetrahedral mesh.
For relatively simple models (e.g., onions), low resolution meshes
are sufficient to produce smooth diffusions, but this does not hold
for more complex models (e.g., persimmons). For such models we
need to use denser volumetric meshes, which lead to a rapid in-
crease in computational cost. In contrast, PMVC diffusion involves
no volumetric meshing and no large systems of equations, and thus

scales well with the complexity of the model. The visual differences
between PMVC diffusion and Poisson diffusion are noticeable but
not significant. The run-time cutting using PMVC diffusion takes
a bit longer than that with Poisson diffusion, but this is mainly due
to our unoptimized implementation which can be further acceler-
ated. PMVC diffusion also allows frequent switching between de-
signing and browsing of DSs since it requires no precomputations
for browsing, which is highly desirable for trial-and-error modeling
processes. This way, surfaces can be interactively added, removed,
and edited, and the results can be viewed without delay. Addition-
ally, Poisson diffusion has high memory consumption, since the en-
tire precomputed color volume needs to be stored, whereas PMVC
diffusion does not suffer from this problem. In summary, Poisson
diffusion has some benefits but lacks scalability, and therefore our
PMVC diffusion process is better suited for interactive modeling.

4 Creating Diffusion Surfaces

We focus on creating DSs from scratch rather than converting from
scanned color volume data, since such data is not yet abundant. DSs
are simple and basic primitives, therefore any existing 3D modeling
tools can be used to create DSs representing arbitrary objects. How-
ever, modeling volumetric structures composed of many nested sur-
faces using traditional tools can be difficult, time-consuming, and
unintuitive. Thus, we chose to focus on a case study of objects
with rotational symmetries, and designed a sketch-based modeling
interface especially tailored to such objects. Particularly important
classes of this kind are fruits and vegetables, since they are one of
the most common volumetric objects in our daily lives, often pos-
sess intricate volumetric structure and both sharp and smooth color
transitions. Our assumption of rotational symmetry additionally en-
ables synthesis of random variations of models, which is useful for
populating scenes with many similar objects, such as the salad ex-
amples shown in Figures 1b and 11.

‘We assume that representative horizontal and vertical cross-sections
of the object to be modeled with DSs are available as photographs
or illustrations, to make it easier on the user by providing a rough
reference of the object’s shape and structure. The user provides
the system with a few guidance sketches that delineate the salient
structures of the object, and 3D DSs are then generated from these
sketches. The entire modeling process with our interface works as
follows (Fig. 5):

1. The user first sketches several 2D curves on both vertical and
horizontal cross-sectional images, and the system generates
3D surfaces by sweeping.

2. Optionally, the user can distribute predefined small grains
over these sweep surfaces by specifying distribution param-
eters (the region to be populated by grains and their den-

Vertical sketching Horizontal sketching

o3[

Grain distribution

Color/ blur Variation synthesis

Figure 5: Overview of our modeling interface for creating DSs.

sity). The distribution proceeds automatically by dart throw-
ing while respecting a user-defined Poisson disc radius.

3. Next, the user paints colors and blur values on surface mesh
vertices in the 3D view. Colors can be sampled from the ref-
erence images.

4. Finally, the system instantly synthesizes random variations of
the DSs model on request.

Since steps 2 and 3 are mostly manual and straightforward, we only
explain steps 1 and 4 in detail below.

4.1 Symmetry-aware sketching interface

Symmetry types. We consider two types of rotational symmetry:
cylindrical symmetry (Fig. 6) that refers to objects whose structures
remain mostly the same after any amount of rotation around the
axis of symmetry (i.e., objects with continuous rotational symmetry
such as strawberries), and N-fold symmetry (Fig. 7) that refers to
objects having N repetitive structures around the axis of symmetry
(e.g., tomatoes). Modeling processes for each type are explained
below.

Cylindrical symmetry. The user first draws several curves on an
image of a vertical cross-section (i.e., in the plane parallel to the
axis of symmetry). The axis of symmetry is assumed to be straight,
and the user sketches only on the right side of the axis (Fig. 6a).
Then, the user draws curves on an image of a horizontal cross-
section (i.e., on the plane perpendicular to the axis of symmetry)
corresponding to the vertical curves drawn previously (Fig. 6b).
The axis of symmetry is shown as a point, and the user must draw
closed loops surrounding this point. Given pairs of vertical and
horizontal curves, the system generates 3D surfaces by sweeping
[Snyder and Kajiya 1992].

N-fold symmetry. In this case, we classify features into two
types: Type I, which surrounds the axis of symmetry (e.g., the outer
skin of a tomato); and Type II, the geometry of which is included
entirely in a single fold (e.g., an inner chamber of a tomato), as de-
picted in Figure 7. The modeling process for Type I geometry is
almost the same as for the case of cylindrical symmetry described
above, except that the user must specify the number of folds, IV,
and adjust the fold angles appropriately when drawing horizontal
curves (Fig. 7b).

For the Type I geometry, the user draws a closed loop in the vertical
cross-section, as well as a set of NV closed loops, each of which is
entirely included in a single fold in the horizontal cross-section. In
this case, the system generates 3D surfaces by first dividing each
vertical curve into two at its top and bottom, and then sweeping the
corresponding horizontal curve along these two curves (Fig. 7c).

Figure 7: Sketching interface for the case of N-fold symmetry.

Note that we chose to let the user extract the image features that de-
fine the volumetric structures manually, instead of relying on vision
algorithms, because extracting features appropriately from casual
images of often glossy and transparent objects can be difficult. In
addition, we regard this task as part of the creative design process
rather than an automatic reconstruction problem.

4.2 Synthesis of random variations

The system synthesizes the horizontal curve geometries, while
other information, such as the vertical profile curves, remains fixed.
We analyze and synthesize the horizontal curves in a 2D polar co-
ordinate system whose origin is the axis of symmetry. The process
differs depending on the type of symmetry.

In the case of cylindrical symmetry (Fig. 8 top), the curve geometry
is first uniformly resampled. Then for each curve point, we sam-
ple its radius along with the angular difference from its next curve
point. This forms a 1D cyclic array each element of which is a pair
of radius and angular difference. This array can be regarded as a 1D
texture sample. We thus simply apply a texture synthesis algorithm
[De Bonet 1997] on this sample to generate a new randomized 1D
array, resulting in a new randomized curve geometry.

In the case of N-fold symmetry (Fig. 8, bottom), the user can first
specify the desired /N (which can differ from the original). To cre-
ate variation, we use an approach similar to the morphable face
model [Blanz and Vetter 1999]. The system first takes /N samples
of feature vectors, each representing geometries within a fold, then
performs a principal component analysis over these samples, and fi-
nally blends the principal vectors linearly with random coefficients.

N

Figure 8: Variation synthesis. Top: cylindrical symmetry (onion);
bottom: N -fold symmetry (tomato).

The feature vectors are computed as follows. For the Type I geom-
etry, the curve is split at every fold line, forming a set of NV open
curves. These open curves are then uniformly resampled with the
same number of points and transformed into a canonical space (i.e.,
a pie-shaped space with the angle of 27r/N). Finally, the curve
points are concatenated into the feature vectors. For the Type II
geometry, the set of IV curves is evenly resampled and then trans-
formed into the canonical space. Then the correspondences among
curve points are obtained based on the sums of Euclidean distances.
Finally, the curve points are concatenated into the feature vectors.
Note that after synthesizing feature vectors, the Type I geometries
(open curves) are blended linearly across each fold line to ensure
the continuity among adjacent folds.

All synthesized geometries share the same mesh connectivity with
the original so that they can use the same attribute data, such as
colors and grain distribution parameters associated with surface
meshes.

5 Results and Discussion

We have created numerous DSs models using the proposed inter-
face (Fig. 9). Photorealistic rendering of real-world objects using
DSs is challenging, since the current representation lacks texture
detail information. That said, since DSs explicitly represent volu-
metric structures via 3D surfaces and blur values, a variety of ren-
dering styles can be easily applied. We have experimented with
simple non-photorealistic rendering (NPR) techniques (Fig. 10) that
highlight the internal structures and are more illustrative and ex-
pressive than the plain color rendering. We have employed artistic
silhouettes [Northrup and Markosian 2000] and color modulation
based on 3D Perlin noise [Perlin 1985] with manually adjusted
weights on different frequency bands based on the unmodulated
color. Note also that the readily available structure representation
allows rendering cross-sections with concavities or hollow spaces,
as visible in the okra and pepper models, for example. This is sim-
ply done by tagging the respective side of the DSs representing
those regions as invisible and hiding them during rendering.

Figures 1b and 11 show scenes consisting of many cut pieces of ob-
jects displayed using NPR. In such scenes, our algorithm for syn-
thesizing random variations of models proved very effective. All
objects contain global distinct structures, spatially-varying materi-
als, and smooth color transitions, which would be difficult to handle
with previous methods [Takayama et al. 2008; Dong et al. 2008;
Owada et al. 2008]. Also note that most examples (e.g., toma-

Figure 11: A scene of assorted fruits displayed using NPR.

toes, strawberries, star fruits, and more) make use of open surfaces,
which cannot be represented by isosurfaces of signed distance fields
[Wang et al. 2010]. We emphasize that the DSs representation is
rather general and can be used to model a variety of volumetric ob-
jects. For instance, we have successfully created a geological model
(Fig. 12); our user interface was instrumental in designing the dif-
ferent layers and veins in this case, since they generally follow sym-
metry around the main lava axis. The kidney model (Fig. 13) is an-
other example of a natural object whose inner structure is modeled
with DSs (its shape was modeled manually).

Our prototype system is implemented using C++, OpenGL and
GLSL on a laptop with a 2.6 GHz CPU, 3.0 GB of RAM, and an
NVIDIA Quadro FX 570M GPU. Table 1 shows our result statis-
tics, indicating the efficiency of the DSs representation in terms of
both storage and computation, as well as the usefulness of our user
interface for creating DSs, which leads to fairly low design times.
All results were designed by the authors, and the design times typi-
cally took several minutes. Some of the more complex models were
created through a lot of experimentation; the creative exploration
took several hours in those cases. Most of the modeling processes
required much trial and error, and our simple sketching interface
was effective for this purpose. A formal user study is a subject for
future work.

Figure 12: A DSs volcano model created with our interface.

Figure 13: A kidney modeled using the DSs representation.

6 Limitations and Future Work

The main current shortcoming of DSs is the lack of information
about texture details. Combining DSs with texture synthesis, in
which smooth color distributions defined by DSs guide the syn-
thesis of spatially-varying textures, is an interesting future direc-
tion. Additionally, we currently ignore translucency which plays
an essential role in photorealistic rendering of volumetric objects.
Translucency could be introduced by assigning translucent material
information to DSs in addition to colors, but realistic rendering of
such highly translucent and heterogeneous materials is still a chal-
lenge.

In this paper we focused on rotationally-symmetrical structures
such as those frequently found in fruits and vegetables, as a case
study of designing user interfaces for creating DSs. We plan to in-
vestigate different interface designs for different classes of objects
such as organs, geological models, cookings and mechanical parts,
by exploiting knowledge specific to each class. In addition to cre-
ating DSs from scratch, converting given volume data to DSs is
important and deserves further research.

Acknowledgments. We thank Wilmot Li and Doug DeCarlo for
their helpful suggestions on illustrative renderings, Murphy Stein
for his narration of the accompanying video, and the anonymous re-
viewers for their valuable comments and feedback. This work was
supported in part by the National Science Foundation (grants IIS-
0905502 and 11S-0916845), JSPS, JST ERATO, and NYU URCF.

References

BLANZ, V., AND VETTER, T. 1999. A morphable model for the
synthesis of 3D faces. In Proc. SIGGRAPH 99, 187-194.

CUTLER, B., DORSEY, J., MCMILLAN, L., MULLER, M., AND
JagNow, R. 2002. A procedural approach to authoring solid
models. ACM Trans. Graph. 21, 3, 302-311.

DE BONET, J. S. 1997. Multiresolution sampling procedure for
analysis and synthesis of texture images. In Proc. SIGGRAPH
97, 361-368.

DONG, Y., LEFEBVRE, S., TONG, X., AND DRETTAKIS, G. 2008.
Lazy solid texture synthesis. Computer Graphics Forum 27, 4,
1165-1174.

FARBMAN, Z., HOFFER, G., LIPMAN, Y., COHEN-OR, D., AND
LiscHINSKI, D. 2009. Coordinates for instant image cloning.
ACM Trans. Graph. 28, 3, 67:1-67:9.

Design Cut Size
’ Title ‘ Type ‘ (min) (sec) Vix # ‘ Face # ‘ (KB) ‘

Tomato N-fold 25 6.1 10619 20412 669
Onion Cylndr 10 1.9 4184 8110 264
Persimmon N-fold 16 8.1 9162 18208 584
Pepper N-fold 20 6.8 9317 18328 592
Avocado Cylndr 8 0.8 2699 5341 172
Apple N-fold 25 33 4074 7685 255
Okra N-fold 17 3.7 9400 18480 597
Star fruit N-fold 15 32 6357 12190 400
Strawberry Cylndr 141 7.7 18158 32049 1110
Cucumber N-fold 184 7.9 14984 | 28592 942
Kiwi N-fold 162 27.7 21438 38688 1321
Volcano Cylndr 187 10.9 11057 20673 690
Kidney - 362 39 2939 5694 185

Table 1: Result statistics. We report the type of rotational symme-
try in column 2; Design refers to the total design time including
sketching and painting; Cut is the typical time for cross-sectioning;
Size is the total data size of the DSs model.

FLOATER, M. S. 2003. Mean value coordinates. Comput. Aided
Geom. Des. 20, 1, 19-27.

LIPMAN, Y., KOPF, J., COHEN-OR, D., AND LEVIN, D. 2007.
GPU-assisted positive mean value coordinates for mesh defor-
mations. In Proc. SGP 2007, 117-123.

NORTHRUP, J. D., AND MARKOSIAN, L. 2000. Artistic silhou-
ettes: a hybrid approach. In Proc. NPAR 2000, 31-37.

ORZAN, A., BOUSSEAU, A., WINNEMOLLER, H., BARLA, P.,
THOLLOT, J., AND SALESIN, D. 2008. Diffusion curves: a
vector representation for smooth-shaded images. ACM Trans.
Graph. 27, 3,92:1-92:8.

OWADA, S., NIELSEN, F., OKABE, M., AND IGARASHI, T. 2004.
Volumetric illustration: designing 3D models with internal tex-
tures. ACM Trans. Graph. 23, 3, 322-328.

OWADA, S., HARADA, T., HOLZER, P., AND IGARASHI, T. 2008.
Volume painter: Geometry-guided volume modeling by sketch-
ing on the cross-section. In Proc. SBIM 2008, 9-16.

PERLIN, K. 1985. An image synthesizer. In Proc. SSIGGRAPH 85,
287-296.

PIETRONI, N., OTADUY, M. A., BICKEL, B., GANOVELLI, F.,
AND GROSS, M. 2007. Texturing internal surfaces from a few
cross sections. Computer Graphics Forum 26, 3, 637-644.

PIXAR, 2007. Ratatouille (motion picture).

RITSCHEL, T., ENGELHARDT, T., GROSCH, T., SEIDEL, H.-P.,
KAuUTZ, J., AND DACHSBACHER, C. 2009. Micro-rendering
for scalable, parallel final gathering. ACM Trans. Graph. 28, 5,
132:1-132:8.

SNYDER, J. M., AND KAJIYA, J. T. 1992. Generative modeling: a
symbolic system for geometric modeling. In Proc. SIGGRAPH
92, 369-378.

TAITO, 2006. Cooking mama (video game).

TAKAYAMA, K., OKABE, M., IIIRI, T., AND IGARASHI, T. 2008.
Lapped solid textures: filling a model with anisotropic textures.
ACM Trans. Graph. 27, 3, 53:1-53:9.

WANG, L., ZHOU, K., YU, Y., AND GUO, B. 2010. Vector solid
textures. ACM Trans. Graph. 29, 4, 86:1-86:8.

