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Fig. 1. We develop a theory for shape space exploration of DOG nets, which are discrete developable surfaces parameterized by orthogonal geodesics. Our
study results in a characterization of this shape space and an algorithm to discretize smooth flows on DOGs, as used in the above animation. The first three
frames were created using our editing system, and the rest were generated using a curve-constraining flow, deforming the surface by constraining a curve that
lies on it.

Discrete orthogonal geodesic nets (DOGs) are a quad mesh analogue of

developable surfaces. In this work we study continuous deformations on

these discrete objects. Our main theoretical contribution is the characteri-

zation of the shape space of DOGs for a given net connectivity. We show

that generally, this space is locally a manifold of a �xed dimension, apart

from a set of singularities, implying that DOGs are continuously deformable.

Smooth �ows can be constructed by a smooth choice of vectors on the

manifold’s tangent spaces, selected to minimize a desired objective function

under a given metric. We show how to compute such vectors by solving a

linear system, and we use our �ndings to devise a geometrically meaningful

way to handle singular points. We base our shape space metric on a novel

DOG Laplacian operator, which is proved to converge under sampling of

an analytical orthogonal geodesic net. We further show how to extend the

shape space of DOGs by supporting creases and curved folds and apply the

developed tools in an editing system for developable surfaces that supports

arbitrary bending, stretching, cutting, (curved) folds, as well as smoothing

and subdivision operations.
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1 INTRODUCTION
A developable surface is easy to fabricate, but hard to design. De-

velopable shapes are simple to construct by a�ordable and e�ective

fabrication methods using a variety of materials, for example by

bending �at sheets of paper or metal, or by cylindrical CNC milling

[Harik et al. 2013], contributing to their prominence in product

engineering and architecture. A developable surface is di�cult to

design since its geometry is highly constrained; at the same time, it

admits a rich set of extrinsic and intrinsic deformations. Applying

standard modeling tools such as freeform space deformations or

elastic surface-based bending quickly violates the developability

property (local isometry to the plane). Fully and freely exploring

the shape space of developable surfaces without risking leaving it

has proven challenging, and existing methods usually only cover

a limited set of extrinsic deformations due to using ruling based

representations [Liu et al. 2006; Tang et al. 2016] or do not cover

intrinsic deformations because they model isometries [Burgoon et al.

2006]. In practice, developable geometry is often created by working

with simple primitives like cylinders and cones. Our goal in this

paper is to provide the necessary theoretical and algorithmic basis

for a more complete and unhindered exploration of the developable

shape space, in hopes of facilitating easier and more e�ective design

processes.

We rely on the recent work of Rabinovich et al. [2018] for a

discrete model of developable surfaces. This model represents de-

velopable shapes by discrete orthogonal geodesic nets (DOGs). The

existence of orthogonal geodesic parameterization in the smooth

case is equivalent to the developability property, and a DOG net

models this as a quadrilateral mesh with simple local angle con-

straints: all angles around a vertex are equal. This discrete model

avoids dependence on rulings or a �xed isometric reference shape,

and is hence our foundation for modeling and exploring discrete

developable shape spaces.

The focus of [Rabinovich et al. 2018] is the discrete DOG model

itself rather than its deformations. In this paper, we develop the

essential tools to e�ectively navigate the shape space of plausible

DOGs. To do so, we discretize continuous deformations on these
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Fig. 2. Di�erent sampling rates of the Schwarz Lantern, a classic example
of pointwise convergence of the surface without convergence of its cotan
Laplacian normals [Wardetzky 2007]. Our novel DOG Laplacian operator
converges under sampling of any analytical orthogonal geodesic net, includ-
ing a smooth Schwartz Lantern. For clarity, we display the triangular mesh,
but in reality such a sampling consists solely of quadrilaterals.

discrete surfaces. More precisely, assume F 0 is a given DOG net

with �xed mesh connectivity, andM is the set of all DOGs with the

same connectivity, i.e., its shape space. We are interested in �nding

a continuous function F (t ) such that F (0) = F 0 and F (t ) ∈ M
for every t ; F is referred to as a (constrained) DOG �ow. The mere

existence of such �ows depends on the geometry of the shape space

M, which is our primary object of study. We start with the theo-

retical backbone: we prove that such �ows generally exist, and we

count exactly how many. Our key technique is analyzing the linear

dependence of the gradients of the angle constraints by character-

izing a constraints graph of minimally dependent gradients using

a few geometric observations. We show that the shape spaceM

is generally a manifold of a �xed dimension k , thus implying the

existence of k linearly independent DOG �ows. We also show that

M is not a manifold globally and contains a set of singular points.

We then use our theory to discretize various �ows on DOGs by

projecting the gradients of the objective functions onto the tangent

space ofM, and we devise a strategy to handle the singular points

of the shape space. In addition, we address an explicit shortcoming

stated in [Rabinovich et al. 2018] and extend the shape spaceM to

support sharp creases and curved folds.

An essential ingredient necessary to design meaningful �ows on

the shape space is a Laplacian operator and a discrete mean curva-

ture. We derive these fundamental notions speci�cally for DOG nets

and show that they converge under sampling of an analytical net.

In particular, our DOG Laplacian possesses the desired properties

of a discrete Laplace operator: it is symmetric, positive semide�nite

and linearly precise.

To showcase the developed toolset, we derive a set of objective

functions whose constrained gradient can be used to �ow towards

a desired shape. We demonstrate results with Willmore �ow and

curve-constraining �ow. We apply our theoretical results in an edit-

ing system for developable surfaces that supports bending, creasing

and stretching in arbitrary directions, on various topologies, and

also includes smoothing and subdivision operations, all staying

within the shape space.

2 RELATED WORK

2.1 Developable surfaces and their deformations
A surface is developable if it is locally isometric to a planar patch.

If the surface is C2
, developability can be equivalently de�ned by

vanishing Gaussian curvature [do Carmo 1976], the surface being

ruled with constant normals along the rulings [Pottmann and Wall-

ner 2001], or being locally parameterizable by orthogonal geodesics

[Rabinovich et al. 2018]. A non-planar developable surface is lo-

cally characterized by the directions of its rulings: it is cylindrical

if the rulings are parallel, conical if they all meet at a point, and

otherwise the rulings meet in a curve and the surface is a tangent

developable surface [do Carmo 1976]. These are all called torsal
patches. A general developable surface is a composition of a possibly

in�nite number of planar and torsal patches [Pottmann and Wallner

2001]. Deforming aC2
developable surface by an isometry preserves

its vanishing Gaussian curvature, but there is also a multitude of

non-isometric deformations that keep the surface developable. It

can be shown that deforming a curve on a C2
developable surface

locally determines the shape of the entire deformed surface. One

can for instance deform a curvature line [Liu et al. 2006], or a curve

with a prescribed geodesic curvature [Graustein 1917; Fuchs and

Tabachnikov 1999] and locally construct the surface from its rulings.

One can look at a larger yet still highly structured set of devel-

opable surfaces by permitting the surface to be piecewise C2
and

C0
along a �nite number of curves. Straight “origami like” folds are

C0
creases through geodesics, and are widely studied in the �eld of

computational origami [Demaine and O’Rourke 2007]. Any shape

created by repeated application of these folds is piecewise planar

[Demaine et al. 2011a]. Curved folds [Hu�man 1976] areC0
creases

shaped as arbitrary curves. Unlike folds along geodesics, applying

curved folds to a piece of paper does generally allow for further

bending of the surface in-between, however one can show that bend-

ing a surface on one side of the fold locally determines the shape

of the other side [Kilian et al. 2008]. Hence, while C2
deformations

are typically studied in di�erential geometry and origami folds are

more combinatorial in nature, the relatively newer study of curved

folds stands in a junction between both [Demaine et al. 2011b].

2.2 Modeling with developable surfaces
Several works in geometry processing model smooth developable

surfaces by explicitly representing their rulings, which can be seen

as discrete models of developable surfaces parameterized by con-

jugate nets. The works of [Liu et al. 2006; Kilian et al. 2008] model

developable surfaces as collections of connected torsal patches,

each modeled as a planar quad strip, while the work of [Stein et al.

2018] extends this view to triangle meshes. Tang et al. [2016] model

smooth torsal surfaces as developable splines formed by connecting

two Bézier curves by rulings with a constant normal. As explained

in [Tang et al. 2016; Rabinovich et al. 2018], these methods can only

model a subset of the deformations that keep a surface developable.

Solomon et al. [2012] propose an origami based editing system for

developable surfaces, where folding along multiple straight creases

approximates the modeling of smooth developable shapes. Similarly

to the other works mentioned above, this system is also dependent

on explicit rulings.
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Physically based simulation methods such as [Burgoon et al. 2006;

Fröhlich and Botsch 2011; Narain et al. 2013] model developable

shapes as objects made of inextensible material (such as paper), so

the attainable deformations are restricted to isometries of a �xed

reference surface. As mentioned, there are many more deformations

that keep a surface developable besides isometries. The work of

[Rabinovich et al. 2018] avoids these limitations by discretizing

orthogonal geodesic nets (DOGs). Our work extends the theory

of DOGs by studying continuous deformations on these surfaces,

discretizing them and further deriving objective functions that are

useful for editing. In terms of applications, we demonstrate superior

quality and a signi�cantly wider range of deformations compared

to [Rabinovich et al. 2018].

Modeling smooth developable surfaces is complemented byworks

on folds and curved folding. Tachi [2009] presents a rigid origami

simulator, while the works of [Kilian et al. 2008; Tang et al. 2016]

model curved folds on discrete conjugate developable nets. Mitani

and Igarashi [2011] generate objects with curved folds by iterated

re�ections. In [Kilian et al. 2017] the authors develop an algorithm

to fold a crease pattern by pulling on a network of strings. These

works either focus solely on isometric deformations, or are limited

by the ruling based representation to only a subset of possible bend-

ing deformations. By incorporating creases and curved folds into

the theory of DOGs, we are able to create the �rst editing system

that supports bending in all directions, stretching developable defor-

mations, and creases and curved folds, all in a uni�ed framework.

2.3 Shape space and flows
Shape space exploration is a framework for treating shapes in the

setting of Riemannian geometry, where surfaces are seen as points

in a high dimensional space endowed with a metric. The work of

[Kilian et al. 2007] investigated the space of triangulated surfaces,

computing an as-isometric-as-possible interpolation as a geodesic

between twomeshesw.r.t a Riemannianmetric thatmeasures stretch

of triangle edges. Heeren et al. [2014] consider the shape space of

shells, showing how to shoot geodesics with prescribed initial data

and providing a construction for parallel transport. This enables

natural extrapolation of paths in shell space and the transfer of large

nonlinear deformations from one shell to another. In [Heeren et al.

2016], the authors extend the concept of Euclidean splines to the

Riemannian manifold of discrete shells, allowing for a temporally

smooth interpolation of a given set of shell keyframe poses.

Most relevant for us is the work of [Yang et al. 2011], presenting a

computational framework to locally characterize constrained shape

spaces of meshes, implicitly described by a collection of nonlinear

constraints. This work enables accessing the high dimension shape

space through �rst and second order approximates, namely tangent

spaces and quadratic osculating surfaces, and demonstrates appli-

cations to local shape space explorations of conjugate and circular

nets for a �xed connectivity. Computing tangent directions on the

space requires an expensive SVD decomposition due to possible

linear dependency in the constraints. Our work instead focuses on

studying the shape space of DOG net constraints. We analyze the

linear dependencies of its constraints and show that in general, the

constraints Jacobian has full row rank, and the shape space of a

given connectivity is generically a manifold of a �xed dimension,

apart from a set of singularities. We further give a simple strategy

to detect and handle the singularities, avoiding costly operations

to remove the linear dependency. As opposed to [Yang et al. 2011],

where the Euclidean L2 metric is used, we employ a metric based on

a discrete Laplacian, inspired by the works of [Eckstein et al. 2007;

Sundaramoorthi et al. 2007], as well as a bending energy as an ob-

jective, both tailored speci�cally for DOG nets. We show how using

the Laplacian as a metric is bene�cial over L2, consistently with the

observations in [Eckstein et al. 2007]. A consequence of the DOG

shape space being generally a smooth manifold is the existence of

smooth �ows, and our work is also inspired by geometry process-

ing literature on �ows for smoothing and shape interpolation, see

e.g. [Desbrun et al. 1999; Eckstein et al. 2007; Kazhdan et al. 2012;

Crane et al. 2013]. Local-global solvers [Sorkine and Alexa 2007;

Bouaziz et al. 2012, 2014; Peng et al. 2018] are common approaches

in geometry processing to handle constrained objectives, however

they do not discretize such �ows, nor do they guarantee to mini-

mize an objective and stay within the shape space due to solving

the constraints in a least-squares manner. Our theory shows the

existence of exact DOG �ows minimizing objectives, to which our

discretization converges as the time step goes to zero (Fig. 10).

2.4 Discrete Laplace operator
The theory and applications of discrete Laplacians on triangulated

surfaces are well developed, and the celebrated cotan operator

[Pinkall and Polthier 1993] is probably the most prominent rep-

resentative. In [Wardetzky et al. 2007], the authors describe a set of

natural properties for discrete Laplacians, inspired by the smooth

setting, and prove an important theoretical limitation: discrete Lapla-

cians on triangle meshes cannot satisfy all natural properties. The

famous Schwarz Lantern mesh constitutes a quite general example

of pointwise convergence of the surface without convergence of its

cotan Laplacian normals [Wardetzky 2007].

Far less is known about quadrilateral meshes or the more gen-

eral polygonal case. A notable polyhedral Laplacian is developed

in [Alexa and Wardetzky 2011]. In this work, we derive a Lapla-

cian operator tailored to quadrilateral DOG nets, the so-called DOG

Laplacian, guided by the natural properties enumerated in [Wardet-

zky et al. 2007], such as symmetry, positive semide�nitiveness and

linear precision. We show a strong connection between the normals

induced by the DOG Laplacian and the DOG Gauss map as de�ned

in [Rabinovich et al. 2018], and we prove the convergence of both

quantities under sampling of a smooth analytical orthogonal geo-

desic net. In particular, when sampling along the infamous smooth

Schwartz Lantern net, the DOG Laplacian converges (Fig. 2). While

the polygonal Laplacian of [Alexa and Wardetzky 2011] is based on

the vector area of polygons, we derive the DOG Laplacian based on

a di�erent notion of area, assuming the underlying mesh is a DOG

net. This assumption is a fundamental di�erence between the two

Laplacians, allowing us to derive an operator that is less general but

converges under sampling of an analytical orthogonal geodesic net.
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Fig. 3. The shi� notation on a quad (le�) and a star (center); edge directions
and star angles (right), which on a DOG satisfy α1 = α2 = α3 = α4.
Illustration taken from [Rabinovich et al. 2018].

3 NOTATIONS AND SETUP
Following the notation in [Rabinovich et al. 2018], we denote con-

tinuous maps in lowercase letters and their discrete equivalents

by uppercase. The notation f (x ,y) : U → R3
, where U ⊆ R2

,

refers to a (local) regular parameterization of a smooth surface, and

n(x ,y) : U → S2 is its normal map. A natural discrete analogy for

a local parameterization f is a map F : V → R3
, where V ⊆ Z2

.

We refer to F as our discrete net, and likewise N : V → S2 denotes
our discrete Gauss map, A : V → R is a notion of a vertex area. We

represent our discrete nets as pure quad grid meshes, where the

valence of every inner vertex is 4. We refer to an inner vertex, its

four neighbors and its four emanating edges as a star.
We denote the number of vertices in the net by |F | and the to-

tal number of vertex coordinates by n = 3|F |. The positions of

individual vertices can be referenced by their two indices in the

grid: F (j,h) ∈ R3
, or simply by a single absolute vertex index:

F (1), F (2), . . . , F ( |F |) ∈ R3. The vector of all vertex coordinates

is denoted F = (F (1), . . . , F ( |F |) ∈ Rn . Vertices can also be refer-

enced by relative indices using the shift notation, as is customary

in discrete di�erential geometry. Slightly abusing notation, a indi-

vidual vertex is then called simply F , and vertices in its vicinity are

referenced using lower shift indices:

F = F (j,h), F1 = F (j + 1,h), F2 = F (j,h + 1),

F12 = F (j + 1,h + 1), F
1̄
= F (j − 1,h), F

2̄
= F (j,h − 1),

where j,h ∈ Z, i.e., the lower index denotes the coordinate number

to shift, and a bar above it indicates a negative shift (see Fig. 3).

The unit-length directions of edges emanating from a point F are

denoted as δ1F , δ2F , δ1̄F , δ2̄F , i.e.,

δ1F = (F1 − F )/‖F1 − F ‖, δ
1̄
F = (F

1̄
− F )/‖F

1̄
− F ‖,

δ2F = (F2 − F )/‖F2 − F ‖, δ
2̄
F = (F

2̄
− F )/‖F

2̄
− F ‖.

We denote the inner angles around a star at F as α j , ordered consec-
utively clockwise (see Fig. 3). We assume our net is a discrete im-

mersion, which means that the edge directions δiF ,δīF , i = 1, 2, are

distinct. We denote the angles of the coordinate curves by β1F , β2F :

cos(β1F ) = 〈δ1F ,δ1̄F 〉, cos(β2F ) = 〈δ2F ,δ2̄F 〉.

See Fig. 4 for an illustration.

4 THE SPACE OF DISCRETE ORTHOGONAL GEODESIC
NETS

Throughout the paper, we assume that the connectivity of a DOG

net is a subset of Z2
. This includes topologies created by cutting

holes in a disc, but no cylindrical topologies. The quads of a DOG

net are not necessarily planar; however, our analysis requires a

reasonable assumption on their shape and distance from planarity,

summarized below.

De�nition 4.1. A net F is regular if its quads are non-degenerate.
It is proper if it is regular and the planes of the tetrahedrons formed

by the quads are not orthogonal (see the planes formed by the pink

and gray triangles in the inset).

The set of proper nets is an open set, and nets that

are not proper are usually not interesting for model-

ing purposes. Let F 0 be a proper discrete orthogonal
geodesic net, and letM (F 0) be the set of proper orthogonal geo-
desic nets with the same connectivity as F 0. Since we often discuss

the shape space of a speci�c, �xed mesh connectivity, we usually ab-

breviateM (F 0) simply asM. In the following, we develop a theory

for exploring the shape spaceM that yields the following results:

(1) The spaceM is locally a smooth manifold of dimension k =
O ( |∂F |), apart from a scarce set of singular points (∂F is the

set of boundary vertices of F ). This implies the existence of

k linearly independent smooth �ows on non singular DOG

nets.

(2) We show how to discretize these �ows, which amounts to

solving a linear system to compute tangents on the shape

space manifoldM. We prove that these systems are full rank.

(3) We analyze the singular points ofM, which are not locally

manifold, and suggest a strategy to compute a discrete �ow

on the shape space that is computationally cheap, based on

leveraging close-by points on nearby manifolds.

4.1 Angle constraints of a DOG
A discrete orthogonal geodesic net F is a quad net where the angles

around every vertex are equal (see Fig. 3). We can write the cosine

of the angles as a function of the vertex coordinates, e.g., cos(α1) =
〈δ1F ,δ2F 〉. For an inner vertex, the condition α1 = α2 = α3 = α4
can be speci�ed by three constraints of the form ϕi (F) = 0:

ϕ1 (F) := cos(α1) − cos(α2) = 0,

ϕ2 (F) := cos(α2) − cos(α3) = 0,

ϕ3 (F) := cos(α3) − cos(α4) = 0.

(1)

Note that these three constraints also imply cos(α4) = cos(α1). The
constraints for boundary vertices with p neighbors require p − 2

angle equality equations. Hence, the total number of constraints is

m = 3 I +
∑
j ∈∂F ( |N (j ) | −2), where I is the number of inner vertices

and N (j ) denotes the set of neighbors of net vertex j.

4.2 The shape space of a single orthogonal geodesic star
From a local point of view, the DOG constraints are quite simple.

LetMs be the set of single proper DOG geodesic stars, containing

a central vertex and its 4 neighbors, such that all angles around the

central vertex are equal.

Theorem 4.2. Ms is a 12-dimensional manifold and can be pa-
rameterized by the star’s edge lengths l1, l2, l3, l4, its two coordinate
polygons angles β1, β2 and additional 6 parameters accounting for
rigid motions inR3.
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Fig. 4. Parameterization of a DOG star. By Theorem 4.2, a single proper
DOG star is determined up to rigid motion by its 4 edge lengths lj , j = 1..4

and 2 curve coordinate angles β1, β2 (le�). Reconstructing the star from
these parameters requires translating and rotating one of the discrete curves
around the other such that their normals match and the discrete Frenet
frames are overlaid (center). This guarantees that all angles around the star
are equal; the value of the angle α is completely determined by β1, β2.

Proof. See Appendix A. �

The parameters are illustrated in Fig. 4. It follows that one can

�ow or smoothly deform a single DOG star by smoothly deforming

these 12 parameters. As we usually work with vertex coordinates,

it is useful to see thatMs can be represented by 3 × 5 = 15 vertex

coordinates satisfying the 3 linearly independent constraints in Eq.

(1), i.e., we can viewMs as a 12-dimensional manifold embedded

in a 15-dimensional ambient space.

4.3 Shape space through linear dependence of constraint
gradients

A general DOG net is composed of multiple connected stars, re-

sulting in a more complicated shape space, as angle constraints of

di�erent vertices can be dependent. We analyze this shape space

by studying linear dependencies between the gradients of the con-

straints w.r.t. vertex coordinates,
∂ϕi
∂F . Let C ⊂ Rn

be the open set

of admissible variables representing vertex coordinates of proper

nets (n = 3|F |). Given them smooth constraint functions for F to be

a DOG net, ϕi : C → R, i = 1, . . . ,m, letM be the set of variables

F ∈ C satisfying all the constraints:M = {F ∈ C | ϕi (F) = 0 ∀i =

1, . . . ,m}. We write ϕ (F) := (ϕ1 (F), . . . ,ϕm (F))T, and JF =
∂ϕ
∂F de-

notes them × n constraint Jacobian matrix. By the constant rank

theorem, the following holds:

Theorem 4.3. Constraint manifold. Let F 0 ∈ M. If the rows of
JF 0 are linearly independent, then in a neighborhood of F 0 the setM
is a manifold of dimension k = n −m. At that point, the tangent space
of the manifold, TM, is orthogonal to the image space of JF 0 , and is
exactly the set of solutions to JF 0x = 0.

In this case a given DOG net F 0 ∈ M can be smoothly deformed

by a smooth constrained �ow, i.e., there are smooth functions F (t ),
where F (0) = F 0 and F (t ) ∈ M. The amount of inherently di�er-

ent �ows, or linearly independent �ow directions, depends on the

dimension of the tangent space TM, since each smooth �ow is a

smooth choice of coe�cients for some basis of TM.

Let us consider the smallest DOG net containing an inner vertex

as an example, namely a DOG net F with a 3 × 3 grid connectiv-

ity, as shown in Fig. 5. We denote the inner vertex position as F
and the other eight vertices are named using the shift notation.

There are 7 angle constraints, de�ned as cos(α j+1) − cos(α j ) for

Fig. 5. A DOG net F with a 3 × 3 grid connectivity graph G and a
constraints graph GI . The notation for the angles in this example is
chosen such that adjacent constrained angles have consecutive indices.
On the right we show the constraints graph GI for I = {1, 2, 5}, i.e.,
for the three constraints: ϕ1 := cos(α2) − cos(α1), ϕ2 := cos(α4) − cos(α3),
ϕ5 := cos(α10) − cos(α9), marked in faint pink on the le�. Leaf vertices and
corner vertices of GI are colored in pink.

j = 1, 3, 5, 7, 9, 10, 11, and numbered as ϕi , i = 1, . . . , 7. Note that

we do not include a constraint for the equality of α12 and α9, as
this is guaranteed by the other 3 constraints around that star. In

summary, there are m = 7 constraints, n = 3 × 9 = 27 variables

representing the 3D coordinates of the 9 vertices, and JF is a 7 × 27

matrix of the form

JF =

*.......
,

∂ϕ1

∂F
∂ϕ2

∂F
...

∂ϕ7

∂F

+///////
-

=

*........
,

∂ϕ1

∂F
1̄2̄

∂ϕ1

∂F
2̄

· · ·
∂ϕ1

∂F12
∂ϕ2

∂F
1̄2̄

∂ϕ2

∂F
2̄

· · ·
∂ϕ2

∂F12
...

∂ϕ7

∂F
1̄2̄

∂ϕ7

∂F
2̄

· · ·
∂ϕ7

∂F12

+////////
-

. (2)

Note that
∂ϕi
∂F

1̄2̄

,
∂ϕi
∂F

2̄

etc. are row vectors of dimension 3. It is

convenient to write them as 3-vectors since the constraints are of

the form ϕi (F) = cos(α j1 ) − cos(α j2 ) and the cosine angle gradients
have a simple geometric meaning:

Lemma 4.4. We use the angle notation of Fig. 3. If the net is proper
then ∂ cos(α9 )

∂F1
= w , 0, wherew is a vector in the plane spanned by

F , F1, F2 andw ⊥ (F − F1).

Proof. See Appendix B. �

By symmetry, this is also true for other angles and neighboring

vertices in other directions, i.e., one can replace the angle α9 and
the vertices F1, F2 in the claim by e.g. α11, F1̄, F2̄.
As a result of Theorem 4.2, Theorem 4.3 and Lemma 4.4 we get

the following:

Theorem 4.5. The constraints in Eq. (1) around a proper DOG star
are linearly independent.

Proof. A DOG star contains 5 vertices in R3
. LetMi ⊂ R15

be the set of proper star vertex coordinates F satisfying ϕi (F) = 0.

Each constraint gradient
∂ϕi
∂F is non-vanishing, meaning

∂ϕi
∂F =

∂(cos(α j
1
)−cos(α j

2
))

∂F , ~0 as a result of Lemma 4.4 and the fact that

each cosine term involves a vertex that the other does not. Therefore

by Theorem 4.3,Mi
are 14-dimensional hypersurfaces composed of

coordinates of stars satisfying one of the three angle constraints, and

Ms =
⋂

3

i=1M
i
. By Theorem 4.2,Ms

is a 12-dimensional manifold,
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and so its tangent space at each point is the intersections of the

three tangent spaces ofMi
at that point. By counting dimensions,

the gradients, which are the normals to the tangent spaces ofMi
at

the given point cannot be linearly dependent. �

In the next section we set up the necessary tools to show that

in general, the Jacobian JF has full row-rank. The key technique

involves representing “small” subsets of linearly dependent rows in

JF in a graph and using the geometry of the constraints as described

by Lemma 4.4.

4.4 Linearly dependent DOG constraint gradients
In the following, the matrix J is a Jacobian matrix for the DOG

constraints of a proper net. Let I ⊆ {1, 2, ...,m} be a set of indices; I
essentially corresponds to a selection of a subset of DOG constraints

on our net. We denote by CI the |I | × n constraint matrix formed

by taking the rows of J corresponding to those indices.

De�nition 4.6. We call a minimal linearly dependent set of rows

of J a circuit. That is, a circuit is a dependent set of rows such that

all its proper subsets are independent. We denote a circuit by the

set of indices of its rows, I ⊆ {1, 2, ...,m}.

If J is row-rank de�cient, then the set of its circuits is not empty.

Let I be a circuit and CI its constraint matrix. Since a circuit is

a minimal dependent set, there exist coe�cients ai , 0 such that∑ |I |
i=1 aiCi =

~0, where Ci is the i-th row of CI .

The rows of CI constitute the constraint gradients
∂ϕi
∂F , i ∈ I,

and the columns correspond to vertex coordinates derivatives of

each constraint ϕi . Since the constraints are local, each involving

only a vertex and its neighbors, these rows of CI (and J ) are sparse.
Hence, the connectivity of the net F plays a signi�cant role in the

linear combination

∑
i aiCi = ~0. This is explained by the following

trivial but important lemma.

Lemma 4.7. Let ∂ϕi
∂F ,

∂ϕj
∂F be gradients of constraints on angles

around vertices v and u, respectively. If the gradient vectors have a
common non-zero coordinate (i.e., the derivatives of both ϕi and ϕ j
w.r.t. a coordinate do not vanish) then either v = u or v and u are
neighbors connected by an edge.

De�nition 4.8. Let G be the vertex adjacency graph of a net F .
Let I ⊆ {1, 2, ..m}. The constraints graph of I is a graph GI ⊆ G

de�ned as follows:

(1) The vertices of GI are those vertices of F whose three cor-

responding columns in CI (for the x ,y, z coordinates) are

not all zeros. By Lemma 4.7, this means that there are angles

around the vertices or their neighbors that contribute to at

least one constraint in the subset I.

(2) There is an edge e = (v,u) in GI between two verticesv,u ∈
GI if this edge exists in G and there is a constraint ϕi , i ∈
I, whose partial derivative w.r.t. both the coordinates of v
and u does not vanish. This implies in particular that ϕi is
constraining some angles around v or u.

See Fig. 5 for an example. We now turn to characterizing the

constraints graphs of circuits by formulating a few simple lemmas.

We study the connectivity structure of circuit’s constraints graphs

and show that such graphs are connected and contain leaves, i.e.,

vertices that are connected to only one other vertex. These combina-

torial results help us deduce an important geometric fact about the

DOG embedding: the leaves are connected by an edge to straight

coordinate lines, an observation that is paramount to our algorithm

as it allows us to prove that the shape space is locally a manifold

and to detect and handle singularities.

Lemma 4.9. The constraints graph of a circuit is connected.

Proof. Let I be the set of indices of a minimal dependent set of

rows in J and let CI be its constraint matrix. We have

∑ |I |
i=1 aiCi =

~0

for some ai , 0. Hence we can perform Gauss elimination on

the rows of CI to cancel a given row, w.l.o.g. the �rst row. By

Lemma 4.4 every step in the elimination is an operation on rows

corresponding to angles of the same vertex or on two neighboring

vertices. Therefore a minimal set of row operations used to cancel

the �rst row is performed on gradients of constraints corresponding

to angles in a connected path to the vertex associated with the

angles of the �rst row’s constraint. �

De�nition 4.10. A vertex F in a constraints graph of a circuit is a

leaf if it has only one neighbor. If this neighbor is to the left (resp.

right, up or down) from F , it is said to be connected to the left (resp.

right, up or down).

De�nition 4.11. A vertex F in a constraints graph of a circuit is

a corner if it has exactly two neighbors, each in a di�erent lattice

direction. For example the top right corner in the rightmost graph

in Fig. 5.

Lemma 4.12. (See Fig. 6, left.) Let GI be a constraints graph of a
circuit. If F

1̄
is a leaf connected to the right, then vertex F and all its

neighbors, namely F
1̄
, F , F2, F2̄, F1 are all in GI , and F1̄, F , F2, F2̄ lie

on a plane.

Proof. There exist coe�cients ai , 0 such that

∑
i aiCi = ~0.

The vertex F
1̄
is connected only to one other vertex in GI . We can

assume w.l.o.g. that there are either 1 or 2 constraints where the

values corresponding to the columns of F
1̄
are nonzero. The nonzero

values are

∂ (cos(α11) − cos(α10))

∂F
1̄

,
∂ (cos(α12) − cos(α11))

∂F
1̄

.

There exist a1,a2 that are not both zero, such that

a1
∂ (cos(α11) − cos(α10))

∂F
1̄

+ a2
∂ (cos(α12) − cos(α11))

∂F
1̄

= 0.

Naturally,
∂ cos(α12 )

∂F
1̄

= ~0 since the angle α12 is not a�ected by the

vertex F
1̄
. This means there exist a1,a2 that are not both zero such

that

a1
∂ (cos(α11) − cos(α10))

∂F
1̄

= a2
∂ cos(α11)

∂F
1̄

. (3)

By Lemma 4.4, both
∂ cos(α10 )

∂F
1̄

, ~0 and
∂ cos(α11 )

∂F
1̄

, ~0 for a non-

degenerate net. Therefore there are 2 constraints around F , which im-

plies that all neighbors of F are in GI . Eq. (3) also implies
∂ cos(α10 )

∂F
1̄
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Lemma 4.12 Lemma 4.13

Fig. 6. Illustrations for lemmas about leaves and corners in a constraints
graph GI of a circuit. If F

1̄
is a leaf vertex connected to F , then all neighbors

of F are in GI , and F
1̄
, F , F2, F2̄ lie on a plane. If F is a corner vertex with

neighbors F1, F2, then F12, F1̄2, F12̄ are also in GI .

is parallel to
∂ cos(α11 )

∂F
1̄

. By Lemma 4.4, both these vectors are ob-

tained by rotating the same edge by
π
2
in two planes. The vectors

can thus be parallel if and only if these two planes are equal. �

Lemma 4.13. Let F be a corner in a circuit’s constraints graph GI
of a proper net. The neighbors of F are not corners in GI . In particular,
if the neighbors of F are F1, F2, then F12, F1̄2, F12̄ are in GI .

Proof. See Fig. 6 (right) for notation. As F is a corner in GI there

are rows in CI whose partial derivative w.r.t. to the coordinates

of F do not vanish. By Lemma 4.7 these are linear combination

of gradients constraining angles of nearby vertices. As GI is a

circuit’s constraint graph there are w.l.o.g. 4 coe�cients ai such

that

∑
i ai

∂ cos(αi )
∂F = 0. This is equivalent to

a1
∂ cos(α1)

∂F
+ a2
∂ cos(α2)

∂F
= −

(
a3
∂ cos(α3)

∂F
+ a4
∂ cos(α4)

∂F

)
.

By Lemma 4.4, the left-hand side is orthogonal to the edge F1 −
F , while the right-hand side is orthogonal to F2 − F , hence both

sides of the equation are vectors that are orthogonal to both edges.

Assume that F
1̄2

is not in GI , then a4 = 0, and in particular
∂ cos(α3 )

∂F
is orthogonal to F − F1 and F − F2, implying that the dihedral

angle between the planes of F , F2, F1 and F , F2, F12 is
π
2
and thus

contradicting the fact that the net is proper. By similar arguments

F12, F12̄ are also in GI . �

Lemma 4.14. Let GI be a circuit’s constraints graph of a proper
net, then GI contains leaves connected to the right, left, up and down.

Proof. We show that there exists a leaf connected to the right.

The rest of the proof is analogous. Let VL be the set of “leftmost”

vertices inGI ,VL = minj {F (j,h) ∈ GI } . Let F1̄ ∈ VL be the “lowest”
vertex inVL ; so there are no neighbors to the left or down of F

1̄
. This

means that F
1̄
is a corner or a leaf. The rest of the proof is detailed

in Fig. 7. �

Until now, we analyzed the constraint Jacobian J , but we did not

assume the net F is a DOG net. The next lemma relates the existence

of leaves in a constraints graph GI to the geometry of DOG nets.

Lemma 4.15. Let F
1̄
be a leaf connected to the right in a circuit’s

constraints graph GI of a DOG net, then F , F2, F2̄ are collinear.

Fig. 7. Lemma 4.14. If F
1̄
is the lowest vertex among all ”le�most” vertices,

there are three cases for the neighborhood of F
1̄
in the constraints graph

GI , as depicted above. Case 1 is not possible for a circuit constraints graph,
since by Lemma 4.4, ∂ cos(α3 )

∂F
1̄

, 0. Case 2 is not possible due to Lemma 4.13,

because F
1̄2

cannot have a neighbor to the le� since F
1̄
is the “le�most”

vertex. So we must have case 3, and then by Lemma 4.12, F
1̄
, F , F2, F2̄ are

all in GI and lie on the same plane.

Proof. By Lemma 4.12, the neighbors of F are in GI and the

points F
1̄
, F , F2, F2̄ are coplanar. If F , F2, F2̄ are not collinear, then

by the direction propagation lemma in [Rabinovich et al. 2018]

(Lemma 8.2), F1 lies on the ray of F
1̄
− F and hence the star of F is

“folded-over”, so the net is not regular. �

4.5 The shape space of DOG nets
De�nition 4.16. A DOG net is x-ruled if there is a vertex F such

that F , F1, F1̄ are collinear. It is y-ruled if F , F2, F2̄ are collinear.

De�nition 4.17. A DOG net F ∈ M is generic if it is not both
x-ruled and y-ruled. We denote the set of such nets byMG .

Note that a cylinder in curvature line parameterization is generic,

but a planar patch is not.

Theorem 4.18. For a net F ∈ MG , the rows of its Jacobian J
are linearly independent, and the shape space around F is locally a
manifold. The tangent space is of dimension k = n −m = O ( |∂F |).

Proof. By Lemma 4.14 and Lemma 4.15, if the rows of J are
linearly dependent then the net is both x-ruled and y-ruled, so it is

not generic. Therefore the rows of J must be linearly independent,

and the rest follows from Theorem 4.3. Note that the tangent space

dimension k = n −m is O ( |∂F |), the number of boundary vertices,

because n is 3 times the total number of vertices andm is dominated

by the number of inner vertices times 3 angle constraints per each

such vertex. �

If the net connectivity is an l × r rectangular grid patch, and we

consider a geometric realization F that is generic, then around F the

shape spaceM is locally a manifold of dimension k = 4(l + r − 1).
Sadly,M is not amanifold globally, because there are singular points

onM.

Theorem 4.19. M is not a manifold. In particular, a �at disc topol-
ogy patch has O (n) linearly independent �ows.

Proof. Let F be a planar disc topology patchwhose z-coordinates
are zero. One can choose any set of vertices {F (i )} that are at least
two edges apart from each other and push them in the z-direction
at variable speeds νi . See Fig. 8. �
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Fig. 8. A planar DOG net has more flows than a general typical DOG net,
and it admits non-smooth flows, since one can push inner vertices in the
z-direction independently from other vertices. This freedom is a discrete
artifact that exists only on such singular nets, since typically DOG nets do
not admit local deformations.

Direct calculation also shows that in the special case of a planar

net, the gradients of the 12 constraints around an inner quad, i.e. a

quad surrounded by 4 inner vertices, are linearly dependent. Never-

theless, a general smooth DOG deformation on a planar net moves

it away from being a singularity and intoMG .

The following lemma shows how we can handle singularities

by slightly o�setting the mesh vertices and �owing on a nearby

manifold.

Theorem 4.20. Let F ∈ M be a singular point inM, then for every
ϵ > 0 there exists a net F ∗ (not necessarily a DOG) with the same
connectivity as F in distance smaller than ϵ such that the constraints
Jacobian J has full row rank. Denote the constraint values on F ∗ as
ϕi (F∗) = ϵi ; then F ∗ lives on a k = n −m dimensional manifold of
nets satisfying ϕi = ϵi .

Proof. Lemma 4.14 does not depend on a net being a DOG. Let

ϵ > 0, construct F ∗ by slightly o�setting vertices such that nearby

triangles are not coplanar as in Lemma 4.12, then the Jacobian of

F ∗ has full row rank. �

5 DISCRETIZING DOG FLOWS
A corollary of Theorem 4.18 is the existence of a multitude of con-

tinuous deformations of generic DOGs, or �ows on the shape space

M. In this section we show how to discretize these �ows and how

to deform singularities based on the theory developed in Sec. 4. The

resulting algorithm is summarized in Algorithm 1.

5.1 Constrained gradient flows
Following the work of [Eckstein et al. 2007], we would like to de�ne

a variety of gradient �ows. Let F be a given DOG net and let E (F)
be an objective function we are interested in minimizing. Our goal

is to devise an evolution of the mesh geometry F that decreases the

objective with an in�nitesimal change of the surface. We can readily

use various established objective energies E (F), but we need to

de�ne the in�nitesimal change of a surface precisely. This requires

a measure of steepness, i.e., a metric M on the space of DOGsM,

de�ned on tangent vectors ofM, or on TM. An often employed

metric is the metric induced by the canonical L2 inner product

onM, and the associated gradient operator is denoted by ∇, e.g.,

∇E (F). However, as demonstrated in [Eckstein et al. 2007], it is often

bene�cial to use other metrics on tangent spaces. One can de�ne

a variety of gradient operators ∇M induced by metricsM by using

more general inner products of the form 〈F, F̃〉M = 〈MF, F̃〉L2 =
〈F,M F̃〉L2 . The metric here is any symmetric positive de�nite matrix

M ∈ Rn×n
. The gradient of a function can then be computed by

solving a linear system whose right-hand side is the L2 gradient:
∇ME (F) = M−1∇F.
All our results use a Laplacian matrix L as the metricM , which

we derive speci�cally for DOG nets in Sec. 6. A comparison between

using this metric vs. the standard L2 metric is shown in Fig. 9 (left).

As a notable di�erence to the setting in [Eckstein et al. 2007], we

are interested in constrained �ows that do not deviate from our

DOG constraints, i.e., stay in the shape spaceM. This amounts to

calculating the projection of the gradient of E (F) onto the tangent

space TM at point F, using the chosen metric M . We denote this

projected gradient by ∇ME (F):

∇ME (F) := argmin

t
‖∇ME(F) − t‖M , t ∈ TM .

(4)

A comparison between aWillmore �owwith and without projecting

the gradients onto TM is shown in Fig. 9 (right). Let F be a DOG

net, E (F) some objective function, ∇E (F) ∈ Rn
the standard L2

gradient of E at F , and J ∈ Rm×n
the constraint Jacobian matrix of

F , de�ned as in Sec. 4. The projected gradient ∇ME (F) ∈ Rn
can be

computed by solving the following KKT system, where λ ∈ Rm
are

the Lagrange multipliers:

K

(
∇ME (F)

λ

)
= b

K =

(
M JT

J 0

)
, b =

(
∇E (F)
0

)
.

(5)

By Theorem 4.18, J has full row rank for a generic net. This implies

that the system in Eq. (5) is non-singular if the metricM is positive

de�nite [Nocedal and Wright 2006]. The system is also precise, as

it computes a vector on TM corresponding to the gradient of E (F)
under the metric M . Thus we can compute a �ow by iteratively

advancing by a variable step size t in the direction computed in Eq.

(5), where our �ow approaches the continuous �ow as t → 0. In

practice, to allow for �uid interaction with a steady frame rate, we

often have a limited time budget that precludes full convergence, so

every iteration is computed starting with a net that is not precisely

a DOG net, but rather satis�es ϕ (F) = ε , with a small norm ‖ε ‖ < ϵ .
We therefore solve the following system:

K

(
∇ME (F)

λ

)
= b

K =

(
M JT

J 0

)
, b =

(
∇E (F)
ε

)
.

(6)

5.2 Handling singularities
The shape space M is not always a manifold locally, as shown

in Theorem 4.19. Non-generic nets can be singular points on the

DOG shape spaceM. There are in fact singular nets that are quite

important for modeling, in particular planar nets, which possess

more linearly independent �ows than the dimension of TM for

generic points (see the proof of Theorem 4.19). By Theorem 4.3, this

also implies that the system in Eq. (5) is singular for planar F.
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Fig. 9. The e�ect of shape space metric M (le�) and gradient projection (right) on a flow minimizing squared mean curvature (as defined in Def. 6.8). Le�: we
show the input model and the results of 200 iterations of the flow (taking 1.4 seconds on a 20 × 20 grid), using the standard L2 as metric M vs. the DOG
Laplacian metric L for the projected gradient ∇ME (F). When using the L2 metric, the iterations hardly advance. Right: Flowing by iteratively computing
the gradient ∇ME (F) without projection leads to a non DOG-net. Specifically, the flow objective pushes both families of coordinate lines to be straight
rulings along a hyperbolic surface. In contrast, the flow with the projected gradient ∇ME (F) advances along the DOG shape space towards a planar net. Both
examples were computed by only flowing along the gradients, without the additional DOG constraints optimization.

We could remove redundant linearly dependent rows from J ,
as often done when solving KKT systems using sparse QR or LU

decomposition [Nocedal and Wright 2006]. This would compute a

�ow direction while keeping the DOG constraints up to �rst order,

but is signi�cantly slower. We therefore use the observation of

Theorem 4.20 to devise a simple and computationally cheap strategy

that introduces a minimal change to the solved system. In every �ow

iteration, we �nd the sets of x-ruled and y-ruled vertices. If both

sets are not empty, the net is not generic. In that case, we choose the

smaller of the two sets of vertices and randomly perturb the vertex

positions by an ϵ to obtain a new net F ∗. We then solve the system

in Eq. (5) on the net F ∗, which, by Theorem 4.20, has full rank. In

essence, if the values of the constraints on F∗ are ϕi (F∗) = ϵi , then
the computed �ow direction corresponds to a tangent vector on the

tangent space of another manifoldM∗, which is close toM and is

the manifold of nets satisfying ϕi (F∗) = ϵi .
Linear dependencies between the constraint gradients of a singu-

lar mesh imply the existence of a larger set of deformations, where

the net’s angle constraints are kept up to �rst order (see Fig. 8), and

these are avoided by perturbing the vertices, since the nearby mani-

fold has the dimension of the manifold of generic DOGs. The vertex

perturbation strategy also results in a signi�cant speedup; we solve

the resulting linear system using pardiso [Kourounis et al. 2018;

Verbosio et al. 2017; De Coninck et al. 2016]. On a 30 × 30 planar

mesh this solve takes 0.0197 seconds, whereas removing linear de-

pendencies with SuiteSparse [Davis 2011] using sparse QR increases

the run time by a factor of ×8.4. Solving the entire system with

mosek [MOSEK ApS 2017], whose solver uses LU factorization to

remove linear dependencies, is 10.3 times slower. See supplementary

video for various examples of editing starting from a singularity, as

well as Fig. 10.

5.3 Algorithm
We use a line search to minimize the objective E (F) at each �ow step.

Since the �ow direction keeps the DOG constraints only up to �rst

order, after each �ow step we project the resulting mesh to the DOG

shape space using a penalty based method with LBFGS [Nocedal

1980], as done in [Rabinovich et al. 2018] section 6.3. In our case

however, the geometry we project is already very close to the shape

space, so this step is more e�cient and also results in a smoother

deformation (see Fig. 16 and supplementary video). To sum up, a

step in our �ow amounts to solving a sparse, symmetric inde�nite

system, followed by LBFGS. We list the steps in Algorithm 1 below;

throughout the paper we use the parameter values t0 = 1, ϵ = 1e−8.

Algorithm 1: Discrete orthogonal geodesic �ow
Input:

A discrete orthogonal geodesic net Fk and an objective

function E (F).
Output:

A discrete orthogonal geodesic net Fk+1.

1: Find the sets of x-ruled and y-ruled vertices, Ix and Iy .

2: Set I as the smaller of the two sets Ix ,Iy .

3: Perturb the position of each vertex in I in a random direction

ri ∈ R
3
at distance ϵ > 0 to obtain F ∗.

4: Compute the constraint Jacobian J = J (F ∗).

5: Solve Eq. (5) to compute ∇ME (F).
6: Perform a line search on the objective E (F) in direction

∇ME (F) starting from step size t = t0 to compute F ′.

7: Obtain Fk+1 by minimizing the DOG angle constraints on F ′

as in [Rabinovich et al. 2018] section 6.3.

On generic nets our �ow discretization converges to the existing

smooth �ow minimizing the objective as t0 goes to zero. Though

we do not have guarantees for singular nets, our measurements

indicate convergence on various examples, albeit slower (Fig. 10).

6 DOG LAPLACIAN AND MEAN CURVATURE
Here we supply the basic tools that can be directly plugged in Al-

gorithm 1 to compute various �ows that use a DOG Laplacian as a

metric and a mean curvature as a basis for objective functions. Rabi-

novich et al. [2018] used the uniform Laplacian in their optimization.

It works well for very regular nets where all edge lengths are nearly

equal, but is insu�cient when modeling arbitrary stretching defor-

mations on a DOG net, since the uniform Laplacian even does not

vanish on planar nets. Our DOG Laplacian derivation is guided by

the salient properties of smooth Laplacians: locality, symmetry, posi-

tive semide�niteness and linear precision, as well as convergence of

the operator; for details see [Alexa and Wardetzky 2011; Wardetzky

et al. 2007]. Inspired by the works of [Pinkall and Polthier 1993;

Alexa and Wardetzky 2011] we de�ne a Laplacian operator for DOG

nets by deriving the gradient of the surface area of a DOG net. While
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Fig. 10. Convergence plot of generic nets (red and blue) and singular nets
(green and black) under Willmore flow as the flow time step goes to zero.
We run Willmore flow until each mesh becomes planar. The vertical axis
(“DOG error”) represents the maximal value of the sum of squared errors of
the DOG constraints, taken over the entire flow.

Alexa and Wardetzky [2011] propose a Laplacian for general polyg-

onal meshes, we take advantage of the highly structured nature of

our speci�c nets to derive the area, resulting in a symmetric positive

de�nite Laplacian that converges under sampling of an analytical

orthogonal geodesic net.

6.1 DOG vertex area
The quads of a DOG net are generally non-planar. We therefore

start with the most basic de�nitions: the areas of a DOG quad and a

DOG vertex. We base these on �attening a DOG net into a planar

net. The simplest case is when F is already a planar DOG net, which

means it is a planar orthogonal grid. The (planar) quad area is then

unambiguously de�ned, and the area associated with a vertex can

be de�ned as the area of its dual face, formed by connecting the

centroids of its adjacent faces (see Fig. 11). Therefore, for a vertex

with index i in F , the area is Ai =
1

4

∑
j ∈Quads(i ) Q j , whereQ j is the

planar quad area of face j.

Fig. 11. Le�: A planar DOG net around a vertex F (colored light red) and
its four surrounding quads, whose areas are denoted by Qi . Right: The area
of the vertex is the area of its dual face (in blue), formed by connecting the
centroids of its neighboring faces (marked by stars).

Fig. 12. Planar DOG nets are orthogonal grids, but for general DOG nets,
one can locally fla�en each star while exactly preserving the edge lengths,
but generally not the entire net. Le�: a DOG net inR3 containing two stars
(red and blue). Right: individually fla�ened red and blue stars cannot be
“connected” to form a coherent mesh since the lengths l1, l3 and l2, l4 are
generally di�erent, although they are similar, and equal at the smooth limit.
We therefore define the area of a quad in a DOG net as 1

4
(l1 + l3) (l2 + l4).

The problem with directly generalizing this vertex area de�nition

to non-planar DOG nets is that a DOG star can be isometrically

�attened, but a DOG net generally cannot be, see Fig. 12. As shown

in the �gure, the reason is that opposite edges do not have exactly

the same length. Discrete nets whose opposite edges do have the

same length are called discrete Chebyshev nets [Bobenko and Suris

2008]. They can be seen as the analogous of smooth Chebyshev

nets: nets f satisfying ‖ fx ‖y = ‖ fy ‖x = 0. A smooth orthogonal

geodesic net is also a Chebyshev net (Theorem 6.1), hence a DOG

net is approximately a discrete Chebyshev net and approaches being

exactly one in the (smooth) limit.

Theorem 6.1. A smooth orthogonal geodesic net f is also a Cheby-
shev net, i.e., it satis�es ‖ fx ‖y = ‖ fy ‖x = 0.

Proof. See Appendix C. �

Hence we de�ne the area of a quad in a DOG net by a symmetric

formula:

De�nition 6.2. Let the lengths of consecutive edges of a quad j in
a DOG net be l1, l2, l3, l4, such that l1 ≈ l3 and l2 ≈ l4. We de�ne the

area of quad j as Q j =
1

4
(l1 + l3) (l2 + l4). See Fig. 12.

De�nition 6.3. We de�ne the total surface area of a DOG net as

the sum of the quad areas, A =
∑
Q j . The area associated with a

vertex F is A = 1

4
(Q1 +Q2 +Q3 +Q4) in the notation of Fig. 11.

6.2 DOG Laplacian
The area gradient of a DOG net results in a weak (integrated) Lapla-

cian operator L:

LF (i ) =
∂A

∂F (i )
=

∑
j ∈N (i )

ωi j (F (i ) − F (j )) ,

ωi j =
1

4

·
li j1 + li j2 + li j3 + li j4
‖F (i ) − F (j )‖

,

(7)

where li jk are the respective lengths of the

four edges that are adjacent to edge (i, j ) and
also incident to the two faces that share the

edge (i, j ) (see inset). The derivation of Eq. (7)

can be found in Appendix D.1.
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The weights are symmetric and positive:

ωi j = ωji > 0, which are two desired prop-

erties noted in [Wardetzky et al. 2007]. As a

result, L is symmetric and positive semide�nite. In the special case

where a vertex is in the center of a planar star, these weights coin-

cide with the cotangent weights of any triangulation of the planar

mesh (see Appendix D.2). The latter also implies that L vanishes

on inner vertices in planar nets, i.e., it satis�es the linear precision

property for a Laplacian.

6.3 Laplacian mean curvature normal
The Laplacian ∆ on a smooth surface f satis�es

∆f = −2Hn, (8)

where H is the mean curvature and n is the unit-length normal

to the surface. If f is a smooth orthogonal geodesic net, then the

following holds:

Theorem 6.4. Let f be an orthogonal geodesic net around point
f (x0,y0) and let f (x0+t , y0), f (x0, y0+t ) be its coordinate curves at
f (x0,y0), with respective curvatures kx ,ky and unit-length principal
normals nx ,ny . Then:

−∆f = 2Hn = kxnx + kyny . (9)

Proof. Let II be the second fundamental form on f . The coor-
dinate curves are geodesics, hence n ‖ nx ‖ ny and their curva-

tures are the surface normal curvatures in directions fx , fy , re-
spectively, meaning kx = ��II ( fx , fx )�� , ky = |II ( fy , fy ) |. Let e1, e2
be the principal directions of the developable surface f such that

II (e1, e1) = 2H , II (e2, e2) = 0, and let θ be the angle between fx
and e1 in the orientation of the tangent plane spanned by fx , fy . By
plugging in the the orthogonality of the coordinate curves fx ⊥ fy
into Euler’s formula, we get kx + ky = ��II ( fx , fx )�� + |II ( fy , fy ) | =
2H cos

2 (θ ) + 2H sin
2 (θ ) = 2H . �

Hence in the smooth case the normal and the mean curvature

of the net can be deduced by looking at the principal normals and

curvatures of coordinate curves , kxn, kyn. This is also the case

with the discrete Gauss map of a DOG, N , de�ned in [Rabinovich

et al. 2018] as the intersection of the osculating planes of the discrete

curves:

De�nition 6.5. The discrete Gauss map of a geodesic net F is

N =
T1 ×T2
‖T1 ×T2‖

,

where Tj =
δj F−δ j̄ F
‖δj F−δ j̄ F ‖

, j = 1, 2. It also satis�es

N ‖
(
δ1F + δ1̄F

)
‖

(
δ2F + δ2̄F

)
, (10)

meaning N is the bisector of the discrete curves in their osculating

planes, which can be seen as the discrete principal normal of the

polylines (F
1̄
, F , F1) and (F

2̄
, F , F2).

The following lemma is the key in understanding how the Lapla-

cian conforms to the normal map N and how to de�ne a discrete

mean curvature on DOGs based on a discrete notion of kx ,ky .

Lemma 6.6. Let F be an inner vertex on a Chebyshev DOG net. The
DOG Laplacian L satis�es the following:

LF =
∂A

∂F
= −A (K1N + K2N ),

K j =
2 ‖δjF + δ j̄F ‖

‖Fj − F ‖ + ‖F j̄ − F ‖
=

4 cos

βj F
2

‖Fj − F ‖ + ‖F j̄ − F ‖
, j = 1, 2.

(11)

Proof. See Appendix D.3. �

As a corollary, we see that the Laplacian of a vertex LF (i ) is
parallel to the vertex normal N (i ) in case the DOG is a Chebyshev

net.

The Laplacian L is a weak Laplacian representing an integrated

quantity around a vertex with areaA in the form of

∫
A (kx + ky ) dA,

which can be discretized using Lemma 6.6. In that sense, Lemma

6.6 shows how the Laplacian mean curvature is analogous to Theo-

rem 6.4, where K1,K2
are the curvatures of the discrete coordinate

curves.

De�nition 6.7. The normal curvatures of a DOG net, K1,K2
, are

de�ned as:

K j =
2 ‖δjF + δ j̄F ‖

‖Fj − F ‖ + ‖F j̄ − F ‖
=

4 cos

βj F
2

‖Fj − F ‖ + ‖F j̄ − F ‖
, j = 1, 2. (12)

De�nition 6.8. The mean curvature of a DOG net is H = K 1+K 2

2
.

One could devise a Laplacian that recovers the discrete Gauss

map precisely for every DOG net, not necessarily Chebyshev, by

de�ning an area of a star using weights induced only by its edge

lengths and avoiding the averaging in Def. 6.2. However, doing

so forfeits the important property of symmetry (ωi j = ωji ) of the
Laplacian L. Since a smooth DOG is approximately Chebyshev, our

de�nition yields a precisely symmetric Laplacian, but approximate

normals and mean curvature. In the next section we show that this

small discrepancy is solved at the limit because a smooth orthogonal

geodesic net f is a Chebyshev net.

6.4 Convergence under sampling
We show that the mean curvature normal induced by the discrete

Gauss map N , the discrete H as well as the discrete mean curvature

of the LaplacianL all converge under sampling to the correct smooth

counterparts for an analytical orthogonal geodesic net f .
Let f be an arbitrary analytical smooth orthogonal geodesic net

and p = f (x ,y) a point on the surface. One can sample nearby

points around p to generate a discrete star. Let ϵ > 0 and de�ne the

shorthands f (ϵ ) = f (x ,y), f1 (ϵ ) = f (x + ϵ,y), f
1̄
(ϵ ) = f (x − ϵ,y),

f2 (ϵ ) = f (x ,y + ϵ ), f
2̄
(ϵ ) = f (x ,y − ϵ ). For a given ϵ > 0 the star

around f is not necessarily a DOG star,

but it was shown to converge to one at

the limit as ϵ → 0 [Rabinovich et al. 2018].

Let Nϵ ,Hϵ ,Lϵ be the Gauss map, discrete

mean curvature and DOG Laplacian as de-

�ned above. These all converge under sam-

pling by the following theorem.

Theorem 6.9. If f is an analytical smooth orthogonal geodesic net,
then the following holds:
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Fig. 13. Design and fabrication of a surface with curved folds (four concentric circles). From le� to right: the DOG mesh, triangulated for rendering and 3D
printing purposes; 3D printed “mold”; rectangular sheets of paper and foil, manually formed by the mold; fixating the shape of the paper in a 3D printed
“sandwich”. Note that the rectangular paper sheet perfectly fits into the sandwich without wrinkling, indicating that our DOG surface is reasonably developable
in the physical sense. The foil sheet is highly pliable and easily deforms when handling, even showing the impressions of the coarse triangles of the mold.

input curve edge intersections

quad duplication curved fold culled rendering

curve quads

Fig. 14. Crease curves on DOGs. A curve on the surface is represented by
its intersections with mesh edges. To model a sharp crease, we duplicate
the faces intersected by the curve and split the mesh, adding C0 continuity
constraints. For curved folds, we also incorporate fla�enability conditions
along the curve. For rendering purposes, extraneous parts of the duplicated
faces are culled.

(1) lim

ϵ→0

K1

ϵNϵ = k
xn and lim

ϵ→0

K2

ϵNϵ = k
yn

(2) lim

ϵ→0

HϵNϵ = lim

ϵ→0

Lϵ f (ϵ ) = Hn

The proof is detailed in Appendix E.

7 CREASES AND CURVED FOLDS
Up to this point our discussion has been limited to discretizing

smooth deformations on developable surfaces, since the Laplacian

metric and the mean curvature based objective (alluded to in Sec. 6

and formulated below in Sec. 8.1) are smooth functions. Applying

such deformations to a planar sheet solely bends the surface but

does not generate sharp creases, which are curves on the surface

with tangents discontinuities. We would like to extend the set of

deformations to model piecewise smooth developable surfaces, al-

lowing tangent discontinuities along arbitrary curves on the surface.

We look for a simple solution supporting arbitrary crease directions.

We therefore represent a curve on our surface by its intersection

points with edges on our net: c = {c (1), ...., c (s )} (see Fig. 14, left).

Each point c (i ) is a linear combination of two vertices on our net:

c (i ) = tF (i1)+ (1−t )F (i2),where 0 ≤ t ≤ 1 and i1, i2 are the indices
of the edge vertices. To allow discontinuities along this curve, we

further split our mesh along it, duplicating faces touching the edges

of the curve, and enforce C0
continuity of the net by constraining

the duplicated points c1 (i ), c2 (i ) on the edges on both meshes to

have equal coordinates (see Fig. 14). This can be formulated as linear

constraints in the form ofψi = c1 (i )−c2 (i ) = 0, since c1 (i ), c2 (i ) are
linear combinations of vertices, and added to the constraint Jacobian

J in Algorithm 1. Note that in our rendering we cull the extraneous

parts of the faces intersecting a crease curve past the cuts (see Fig.

14).

7.1 Local fla�enability condition
A piecewise smooth developable surface f is composed of multiple

smooth developable surfaces fi , intersecting along curves c j where

the surface is notC1
. In general, each patch fi can be �attened onto

the plane but two patches sharing such a discontinuity curve cannot

be �attened together, unless the curve has the same geodesic curva-

ture on both patches [Kilian et al. 2008]. If all patches around a curve

c j can be locally �attened, c j is a curved fold or a straight crease.

The latter is a special case where c j is a geodesic. Modeling curved

folds in our framework can be done by penalizing the quadratic

di�erence in edge lengths of duplicated quads (see Fig. 14, right) or

by using Eiso as de�ned in Sec. 8.

8 APPLICATIONS
Algorithm 1 enables us to locally explore a given DOG shape space

using smooth transformations, and it can be directly integrated into

a modeling framework by choosing a suitable objective function

E (F) and a metric M on the shape space. We use the DOG Lapla-

cian L as a base for the metric, and we choose E (F) as a weighted
combination of extrinsic, intrinsic and tangential (parameterization

controlling) terms.

8.1 Objective functions
Our �rst objective function is a bending minimization term de�ned

as

EH (F) =
∑

i vertex in F
Ai H

2

i . (13)
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Fig. 15. A kirigami surface folded from a planar sheet a�er applyingmultiple
cuts and straight creases. On the le� we show our physical mockup made
of thick paper, and on the right is a physically based rendering of the
corresponding DOG mesh designed in our system.

The above term is a direct discretization of Willmore �ow [Bobenko

and Schröder 2005] constrained to DOG nets.

The use of the Laplacian as a metric often prevents large stretch-

ing deformations (see Fig. 9), but for more elaborate editing the user

might wish to add an explicit term to preserve the length of curves.

Let e be an edge on the mesh, le its length and l0e the length in a

reference mesh. We de�ne the following intrinsic isometry term:

Eiso (F) =
∑

e edge in F

(le − l
0

e )
2. (14)

While one might prefer to limit stretching when modeling, al-

lowing for stretching a developable surface can in fact be bene�cial

for editing tasks, since this does not limit the model to a �xed ref-

erence isometric sheet, which is often unknown during the design

phase. We show in Fig. 16 and in the accompanying video that our

algorithm naturally handles stretching, as opposed to the work of

[Rabinovich et al. 2018], which uses ARAP [Sorkine and Alexa 2007]

as an initial guess before optimizing the DOG constraints. Our ap-

proach of iteratively computing a surface that only slightly deviates

from the DOG constraints before optimizing the constraints directly

is useful in generating a smooth deformation sequence, especially

one that allows for large stretching deformations. As shown in Fig.

16, stretching a DOG can also produce large tangential deformations,

leading to a non-uniform grid. We therefore employ the following

terms to control the parameterization regularity and minimize these

input ARAP initial guess
projection to DOG

after ARAP
our result
using �ow

Fig. 16. Stretching a planar orthogonal grid along the diagonal by moving
point handles at two diagonally opposing corners. The algorithm of [Rabi-
novich et al. 2018] computes an initial guess with ARAP, and then projects
the guess to a nearby DOG. Strongly stretching the surface causes a dis-
torted ARAP initial guess lying far away from the DOG shape space, leading
to a ji�ery editing experience (see the accompanying video), and also an
non-uniform grid. In contrast, when using our flow algorithm, the editing
is temporally smooth, and the mesh grid stays uniform thanks to the grid
regularity term in the flow objective. In this simple example, following our
flow with a projection to the DOG space does not alter the mesh. We used
wH = 1, wuni-all = 0, wiso = wuni-opp = 0, wp = 0.5 in the flow objective.

tangential deformations:

E
uni-all

(F) =
∑

star in F
(l1 − l2)

2 + (l3 − l4)
2 + (l1 − l3)

2 + (l2 − l4)
2,

Euni-opp (F) =
∑

star in F
(l1 − l3)

2 + (l2 − l4)
2, (15)

where l1, l2, l3, l4 are the lengths of consecutive edges around a star.

The term E
uni-all

(F) penalizes non-uniform grids, but it is impossible

to satisfy if one models a rectangular sheet, for instance. The term

Euni-opp (F) vanishes when the lengths of the coordinate curves in

the x and y directions are distributed uniformly across the edges.

Soft constraints. Smoothing operations or freeform editing neces-

sitate incorporating positional constraints into our �ows, which

we add analogously to the �ows in [Desbrun et al. 1999]. Denote

C as the set of constrained vertices indices, F (i ) as a given con-

strained vertex position and P (i) as the desired constrained position
for i ∈ C. Adding soft positional constraints amounts to adding a

weight parameterwp > 0 and an objective term of the form

wpEp (F) = wp

∑
i in C

‖F (i ) − P (i )‖2

, as well as setting the metric toM = L + Dp, where L is the DOG
Laplacian and Dp is a diagonal matrix with wp on the diagonal

entries corresponding to the constrained vertex coordinates and 0

otherwise.

The overall objective E (F) is composed as a weighted sum:

E (F) = wHEH +wisoEiso+wuni-all
E
uni-all

+wuni-oppEuni-opp+wpEp,

wherewH ,wiso,wuni-all
,wuni-opp,wp are user de�ned weights.

8.2 Smoothing and subdivision
The de�nition of a DOG net does not encode smoothness, hence a

DOG net can be jaggy, as in Fig. 8. This is common in discrete di�er-

ential geometry [Bobenko and Suris 2008], as the space of discrete

nets is in fact richer than that of smooth nets. We are interested in

a subset of DOG nets that is smoother, and possibly containing a

set of crease curves. Fig. 18 shows how our Willmore �ow can be

used for smoothing with suitable positional boundary constraints.

In the same �gure we show a subdivision operation in the spirit

of the subdivision in [Liu et al. 2006]. Since standard subdivision

schemes applied to a DOG mesh generate a non-DOG mesh, here

we implement a DOG subdivision operator as a combination of

Catmull-Clark followed by the minimization of DOG constraints

and smoothing. An example of smoothing a singular net can be

found in the accompanying video. We note that smoothing opera-

tions are not possible in the optimization framework of [Rabinovich

et al. 2018], since the smoothness term in their objective function

measures deviation of the Laplacian mean curvature normals from a

given reference: when the reference surface is jaggy but nonetheless

satis�es the DOG constraints, their optimization keeps it as is.

8.3 Free form editing
Our �ows can be directly plugged into an editing system. Unless

stated otherwise, the examples created in this paper were gener-

ated using the objective weights wH = wuni-opp = 1, wiso = 0.1,

w
uni-all

= 0, wp = 0.5. Similarly to [Rabinovich et al. 2018], we
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Fig. 17. Discrete developable surfaces created using our point-handle based editing system.

Fig. 18. DOG nets and their discrete Gauss maps. The image of the Gauss
map of a smooth orthogonal geodesic net is locally a point or a curve, and
Gauss maps of smoother DOG nets are closer to being one dimensional,
although this is not directly optimized for. From le� to right: An input DOG
net; smoothing the DOG by applying so� constraints on its lower horizontal
boundary curve and minimizing EH ; the mesh a�er applying Catmull-Clark
subdivision; subdivided mesh a�er another smoothing operation, which
results in a thinner Gauss map.

support a wide range of topologies, unconstrained by ruling direc-

tions or any other global mesh information. Unlike the work of

[Rabinovich et al. 2018], our system handles stretching deforma-

tions smoothly and intuitively (Fig. 16), supports straight creases and

curved folds (Fig. 1, 13, 17, 15), and o�ers smoothing and subdivision

operations (Fig. 18).

8.4 Curve-constraining flow
Our framework o�ers an interesting variant on deformations with

positional constraints: �ows induced by constraining whole curves

on the surface. As in Sec. 7, we represent a curve intrinsically by

a sequence of points on edges speci�ed by a linear combination of

vertices. We then choose target positions for the curve and compute

an interpolation between the curve’s initial and target coordinates.

As the curve changes, the surface must change globally as well to

satisfy the DOG constraints. We interpolate the curve geometrically

by using a parameterization that is invariant to rigid motions: edge

lengths l , curvature on inner vertices κ, and torsion τ on every inner

edge F1 − F :

κ =
2 sin(β1)

‖F1 − F1̄‖
, τ =

sin(θ )

‖F1 − F ‖
, (16)

where θ is the turning angle between the osculating planes of the

edge vertices [Ho�mann 2009]. We linearly interpolate the values

of l , κ and τ between source and target. To translate the rotation

invariant representation to Euclidean coordinates, we must specify

a rigid motion, which we �nd using Procrustes to the coordinates

of the previous curve on the mesh. Our curve interpolation method

could be seen as an extension of the intrinsic 2D curve morphing

of [Sederberg et al. 1993] to non-planar, 3D curves. As a �nal step,

we feed the reconstructed positions of the curve as soft positional

constraints to our �ow algorithm, minimizing bending and grid

regularity while interpolating the constraints (see Fig. 19). Frames

4-8 in Fig. 1 were also created using a curve-constraining �ow.

9 CONCLUSIONS AND FUTURE WORK
This paper presents a discrete theory and an algorithm to continu-

ously deform DOG nets, building upon the DOG model introduced

in [Rabinovich et al. 2018].

Our technique for analyzing the linear dependency of the con-

straint gradients by studying circuit constraints graphs is quite gen-

eral, and potentially can be extended to study other shape spaces,

such as the space of conjugate or circular nets. Although our theory

applies to connectivities containing holes, our shape space analysis

does not apply to cylindrical shapes. This limitation stems from the

assumption that no circular geodesics exist, used in Lemma 4.14.

The highly structured nature of DOG nets allows us to derive

a speci�c Laplacian operator that converges under sampling; an

interesting avenue for future research is the study of other Laplace

operators for various classes of nets in discrete di�erential geometry.

A clear current limitation of our work is the speed for interactive

editing, which is restricted to rather coarse models of around 1000

vertices, similarly to [Rabinovich et al. 2018]. On such meshes, the

iteration speed is dominated by the LBFGS projection routine. We

note however that one can use our subdivision operator concur-

rently while editing to achieve better mesh resolution.

Another limitation is the support for intricate crease patterns:

currently we assume that each crease curve is simple and starts and

ends at a mesh boundary, and we do not model intersecting creases

and curved folds. Supporting such patterns requires special handling,

since the areas around the crease intersections should most likely

be discretized by triangles, as done in the ruling based triangular
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Fig. 19. Curve-constraining flows induced by fixing whole curves on the surface using positional constraints. We first represent a curve intrinsically as a set of
points on edges, then design target curve positions and compute an interpolation between the curve’s initial and target state. Finally, we feed the curve
positions in each interpolation frame as so� positional constraints to our flow algorithm and optimize a bending and grid regularity objective.

model of [Stein et al. 2018]. Inspired by the same work, we leave it

as future research to apply the theory of DOGs for approximation

of arbitrary geometry using piecewise developable surfaces.
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A PROOF OF THEOREM 4.2
The quantities l1, l2, l3, l4, β1, β2 uniquely de�ne a star with all angles
equal, up to rigid motion. Indeed, take two discrete curves (i.e., two

chains of 2 edges each) with edge lengths l1, l3 and l2, l4, respectively,
and angles β1, β2, respectively. Place both center vertices at the

origin, and observe the discrete Frenet frames of both curves, as

de�ned in [Rabinovich et al. 2018]. Rotate one of the curves such

that its discrete principal normal matches the other and the tangents

and binormals coincide. This guarantees that all angles around the

star are equal, and this rotation is unique unless the curve is straight,

in which case there is a rotational freedom, but the geometry of the

resulting star remains the same. �

B PROOF OF LEMMA 4.4
The derivative

∂ cos(α9 )
∂F1

is clearly not vanishing, since there are

directions to move F1 so that α9 changes. The angle and its cosine

are de�ned by the triangle formed by points F , F1, F2, and by the

chain rule, the derivative of any function on this triangle w.r.t. one

of its vertices has to lie in the plane of the triangle. The angle α9
remains constant if F1 is moved along the direction F1 − F , hence

the gradient
∂ cos(α9 )

∂F1
must be perpendicular to this direction. �

C PROOF OF THEOREM 6.1
Since f is a geodesic net, the principal normals of fx , fy are parallel

to the surface normal n. Hence fxx = afx + bn, fyy = c fy + dn
for some a,b, c,d ∈ R and from fx⊥fy we get that 〈fxx , fy 〉 =
〈fyy , fx 〉 = 0. Using the orthogonality fx⊥fy again, we get that

0 = 〈fx , fy 〉x = 〈fxx , fy 〉 + 〈fx , fxy 〉 and so fxy⊥fx . Therefore
〈fx , fx 〉y = 2〈fx , fxy 〉 = 0 and similarly 2〈fy , fxy 〉 = 0 and so

‖ fx ‖y = ‖ fy ‖x = 0. �

D LAPLACIAN DERIVATIONS AND PROPERTIES

D.1 Derivation of the Laplacian
We �rst compute the gradient of the area of a single DOG quad,

de�ned in Sec. 6.1 as Q = 1

4
(l1 + l3) (l2 + l4) using the notation of

Fig. 12. We note that:

∂‖F − F1‖

∂F
=

F − F1
‖F − F1‖

. (17)

Plugging this in and using the chain rule leads to

∂Q

∂F
=
1

4

∂(‖F − F1‖ + ‖F12 − F2‖) (‖F − F2‖ + ‖F12 − F1‖)

∂F
=

1

4

(
‖F − F2‖ + ‖F12 − F1‖

‖F − F1‖
(F − F1) +

‖F − F1‖ + ‖F12 − F2‖

‖F − F2‖
(F − F2)

)
.

(18)

Eq. (7) now follows by summing up the contribution of all faces

incident on F and rearranging the terms per edge.

D.2 Equivalence to cotan weights on planar nets
If a DOG inner vertex and its 8 surrounding neighbors lie on a

plane, the angles around the star are
π
2
. Observe the triangulated

quads in the inset. Note that cot(α ) = ‖F2−F ‖
‖F1−F ‖

and cot( π
2
) = 0, therefore the edge weights

of the DOG Laplacian correspond to the edge

weights of the cotan Laplacian [Pinkall and

Polthier 1993] for any triangulation of the

planar orthogonal grid. The cotan Laplacian

applied to a planar mesh vanishes, hence so

does the DOG Laplacian L, meaning that it

satis�es the linear precision property.

D.3 Proof of Lemma 6.6
Let Q1,Q2,Q3,Q4 be the quad areas around vertex F , as denoted in

Fig. 11. Assuming the DOG is Chebyshev, the following holds:

‖F12 − F1‖ = ‖F2 − F ‖ = ‖F1̄2 − F1̄‖,

‖F1 − F12̄‖ = ‖F − F2̄‖ = ‖F1̄ − F1̄2̄‖,

‖F12 − F2‖ = ‖F1 − F ‖ = ‖F12̄ − F2̄‖,

‖F2 − F1̄2‖ = ‖F − F1̄‖ = ‖F2̄ − F1̄2̄‖.

(19)

Plugging this into Eq. (18), we get:

∂Q1

∂F
= −
‖F − F2‖

2

δ1F −
‖F − F1‖

2

δ2F ,

∂Q2

∂F
= −
‖F − F

1̄
‖

2

δ2F −
‖F − F2‖

2

δ
1̄
F ,

∂Q3

∂F
= −
‖F − F

2̄
‖

2

δ
1̄
F −
‖F − F

1̄
‖

2

δ
2̄
F ,

∂Q4

∂F
= −
‖F − F1‖

2

δ
2̄
F −
‖F − F

2̄
‖

2

δ1F .

(20)

And therefore:

∂A

∂F
=

4∑
i=1

∂Qi
∂F
= −

(
s2

(
δ1 + δ1̄

)
+ s1

(
δ2 + δ2̄

))
, (21)
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with s2 = 1

2

(
‖F − F2‖ + ‖F − F2̄‖

)
and s1 = 1

2

(
‖F − F1‖ + ‖F − F1̄‖

)
.

By Eq. (10), the above is a linear combination of two vectors parallel

to N . Plugging in the vertex area A = s1s2, we get:

∂A

∂F
= −s1s2

(
δ1F + δ1̄F

s1
+
δ2F + δ2̄F

s2

)
= (22)

= −A

(
2 ‖δ1F + δ1̄F ‖

‖F − F1‖ + ‖F − F1̄‖
+

2 ‖δ2F + δ2̄F ‖

‖F − F2‖ + ‖F − F2̄‖

)
N .

�

E PROOF OF THEOREM 6.9
To shorten notation, we remove the explicit ϵ , denoting K1 = K1

ϵ ,

f1 = f1 (ϵ ), etc. We �rst prove that the normals and mean curvature

converge by showing that the curves’ curvature normalsK1N , K2N
converge under sampling. For K1N this amounts to computing the

limit:

lim

ϵ→0

K1N = lim

ϵ→0

2

δ1 f + δ1̄ f

‖ f1 − f ‖ + ‖ f
1̄
− f ‖

. (23)

We denote the normalized curve tangent as t =
fx
‖fx ‖

, the curve’s

curvature by κ and its principal normal by n. We use the Taylor

expansion of f to write its nearby points. By Appendix A in [Rabi-

novich et al. 2018]:

δ1 f =
fx
‖ fx ‖

+ ϵ

(
−
〈fxx , fx 〉

2〈fx , fx 〉3/2
fx +

fxx
2‖ fx ‖

)
+ o(ϵ2),

δ
1̄
f = −

fx
‖ fx ‖

+ ϵ

(
−
〈fxx , fx 〉

2〈fx , fx 〉3/2
fx +

fxx
2‖ fx ‖

)
+ o(ϵ2),

δ1 f + δ1̄ f = 2ϵ

(
−
〈fxx , fx 〉

2〈fx , fx 〉3/2
fx +

fxx
2‖ fx ‖

)
+ o(ϵ2). (24)

Let λ = ‖ fx ‖. We can write the derivatives of f in terms of the

tangent and principal normal of f :

fx = λt , fxx = λx t + λ
2κn, λx = 〈fx , fx 〉x =

〈fxx , fx 〉

‖ fx ‖
. (25)

Plugging this in Eq. (24), we get

δ1 f + δ1̄ f = 2ϵ

(
−
λ〈fxx , fx 〉

2〈fx , fx 〉3/2
t +

λx
2‖ fx ‖

t +
λ2κ

2‖ fx ‖
n

)
+ o(ϵ2) =

= 2ϵ *
,
−
‖ fx ‖〈fxx , fx 〉

2(

fx 

2)3/2
t +
〈fxx , fx 〉

2‖ fx ‖2
t +

λκ

2

n+
-
+ o(ϵ2) =

= ϵλκn + o(ϵ2).

Plugging that into Eq. (23) results in

lim

ϵ→0

K1N = lim

ϵ→0

2

ϵλκn

‖ f1 − f ‖ + ‖ f
1̄
− f ‖

= lim

ϵ→0

2ϵλκn

2λϵ + o(ϵ2)
= κn.

This proves the convergence of K1N , and the proof for K2N is

analogous. The convergence of the mean curvature normal HN
follows by linearity. Since f is an orthogonal geodesic net, by The-

orem 6.1 it is also a Chebyshev net satisfying ‖ fx ‖y = ‖ fy ‖x = 0,

and therefore Eq. (19) is satis�ed up to second order, i.e. ‖ f1 − f ‖ =
‖ f12− f2‖+o(ϵ

2), etc. Hence the principal normal and the curvature

vector for the fx direction given by the Laplacian is

K1∗N ∗ = 2

(
δ1f

‖f1−f ‖+‖f1̄−f ‖+o (ϵ 2 )
+

δ
1̄
f

‖f1−f ‖+‖f1̄−f ‖+o (ϵ 2 )

)
,

and by a similar limit calculation we get that the mean curvature

normal of the DOG Laplacian converges. �
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