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Figure 1: Previous automatic weighting schemes, such as bounded biharmonic weights (BBW) are deformation-agnostic, whereas our method
optimizes weights to minimize shape distortion. Combined with our joint-based deformers, we achieve higher-quality results than both linear
blend (LBS) and dual quaternion skinning (DQS). Our technique requires no additional user input and its speed is competitive to linear
skinning. c© 2012 The Authors

Abstract

Current approaches to skeletally-controlled character articulation
range from real-time, closed-form skinning methods to offline,
physically-based simulation. In this paper, we seek a closed-form
skinning method that approximates nonlinear elastic deformations
well while remaining very fast. Our contribution is two-fold: (1) we
optimize skinning weights for the standard linear and dual quater-
nion skinning techniques so that the resulting deformations mini-
mize an elastic energy function. We observe that this is not suf-
ficient to match the visual quality of the original elastic deforma-
tions and therefore, we develop (2) a new skinning method based
on the concept of joint-based deformers. We propose a specific de-
former which is visually similar to nonlinear variational deforma-
tion methods. Our final algorithm is fully automatic and requires
little or no input from the user other than a rest-pose mesh and a
skeleton. The runtime complexity requires minimal memory and
computational overheads compared to linear blend skinning, while
producing higher quality deformations than both linear and dual
quaternion skinning.
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1 Introduction

Real-time approaches for character articulation, known as skinning
or skeletal subspace deformation, are necessary for interactive an-
imation interfaces and applications such as computer games and
crowd simulation. Direct geometric methods, e.g., linear or dual
quaternion skinning deliver the required speed, but often at the cost
of compromising quality. Physically-based models produce high-
quality, realistic deformations at the expense of much more com-
plex computation. In this paper, we study the question of how to
design a real-time, direct skinning method that delivers visually
similar results to offline elastic simulation, albeit without collisions.

This problem is also motivated by requests from professional rig-
ging artists who enjoy the improvements offered by dual quaternion
skinning, but dislike the joint-bulging artifacts (Fig. 1), that require
them to apply manual fix-ups. Physically-based methods deliver
high-quality deformations automatically, but even the latest highly
optimized algorithms [McAdams et al. 2011] are not fast enough for
interactive posing. In this paper, we consider a common physically-
based model – an elastic solid with rigid bones embedded inside.
An input skeletal pose induces deformations through minimiza-
tion of a nonlinear elastic energy, subject to rigid bone constraints.
While being only a gross simplification of real anatomy, this model
yields intuitive, high-quality deformations applicable to both real-
istic and stylized characters.

Our initial idea to improve the results of closed-form skinning
techniques was to find weights that minimize nonlinear elastic en-
ergy over a range of skeletal poses. While achieving better results
than deformation-agnostic weights, such as bounded biharmonic
weights [Jacobson et al. 2011], we found that the results still con-
tained objectionable visual artifacts when compared to elastic sim-
ulation. Indeed, rigging artists also experimentally confirmed that
the space of traditional skinning deformations is not rich enough to
approximate the nonlinear elastic behavior well. We identify the
culprit to be the isotropy of linear and dual quaternion blending
operators, causing these methods to treat all directions in material-
space as equal. This contrasts physics, which, even with homo-
geneous elasticity, results in quite different deformations along the
direction of the bone (which remains rigid) and in the orthogonal
directions (where squash and stretch occur).
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To overcome this problem, we design a new closed-form skinning
model based on the concept of joint-based deformers. In general, a
deformer is a spatial mapping Γ : R3 → R3 that depends on some
input parameters. An arbitrary character rig can be described as a
single deformer that has all the rig parameters (such as joint angles)
as inputs. Since directly designing such all-embracing deformers
would be difficult, linear blend skinning approximates the global
spatial deformations as a linear combination of local affine trans-
formations, corresponding to transformations of individual bones.
While accurately predicting motion near bone midpoints, the defor-
mations around joints can only be controlled indirectly by modify-
ing the skinning weights.

In this paper, we propose to focus on deformations near joints in
the first place, introducing a general concept of joint-based deform-
ers. Each joint-based deformer is associated with a pair of adjacent
bones (parent and child) and is assumed to preserve the position and
orientation of both bones. Unlike linear blend skinning, a joint-
based deformer is parameterized by the relative rotation between
the parent and child bones and therefore can describe complex non-
linear spatial deformations. The final result is a linear combination
of joint-based deformers, assuming that all significant nonlineari-
ties have been resolved at the deformer level.

We show how to construct a simple joint-based deformer that re-
sembles full elastic energy minimization while departing as little as
possible from the established skinning techniques. The main idea is
to decompose the joint rotation into its swing and twist components,
where swing is the rotation of the bone axis and twist is the rota-
tion along this axis. For twist we use 2D rotation interpolation and
the swing is blended linearly. By decoupling bending from torsion,
this simple deformer avoids the candy-wrapper artifacts of linear
blend skinning as well as the bulging artifacts of dual quaternion
skinning. This is done without any alterations to the rigid bones
metaphor. The weights of our swing/twist deformer, used to con-
trol the spatial distribution of bending and torsion, are optimized to
minimize the elastic energy over a default range of joint rotations.

The setup of our joint-based deformers is fully automatic for a given
rest-pose mesh, skeleton, and the resolution of our volumetric dis-
cretization. This makes our approach as easy to use as current au-
tomatic skinning systems, while delivering superior quality compa-
rable to physically-based simulation.

2 Related Work

Arguably the most accurate approach to character articulation in-
volves simulation of the underlying anatomy [Lee et al. 2009]. This
is, however, quite difficult to author and tune. A simpler physics-
based method is to approximate the body with homogeneous elas-
tic material where bones serve as rigid constraints that specify the
pose [Capell et al. 2002; Capell et al. 2005]. Related techniques
have been studied in the more general context of variational sur-
face deformation [Botsch and Sorkine 2008]. Unfortunately, even
the recent highly optimized methods [McAdams et al. 2011] are
still too slow for interactive posing, even though this is partly due
to collision and contact handling. One possible solution is to em-
ploy reduced-order physics [Barbič and Zhao 2011; Kim and James
2011] or subspace energy minimization [Jacobson et al. 2012]. Our
technique is orthogonal to these methods, as we focus on designing
a suitable deformation subspace itself.

Closed-form skinning techniques, such as linear blend skinning
[Magnenat-Thalmann et al. 1988], feature very low time complex-
ity, which is necessary in real-time applications such as games.
Unfortunately, linear skinning suffers from the well-known candy-
wrapper artifacts. Multi-linear techniques [Wang and Phillips 2002;
Merry et al. 2006] suppress (but not completely eliminate) this

problem by using additional skinning weights. These extra weights
are learned from input examples, using regularization to prevent
overfitting. Dual quaternion skinning [Kavan et al. 2008] replaces
linear blending with a nonlinear transformation blending method,
eliminating the candy-wrapper artifacts. However, a side effect of
dual quaternion blending is a bulging artifact while bending. To
address this issue, software such as Autodesk MayaTMallows the
blending of linear and dual quaternion skinning together, which has
the side effect of reintroducing the candy-wrapper shrinkage while
twisting.

In practice, linear or dual quaternion skinning weights are often
painted manually by specialized rigging artists. Because this is a
tedious process, automatic skinning techniques [Baran and Popović
2007; Wareham and Lasenby 2008; Chen et al. 2011; Jacobson
et al. 2011] are becoming increasingly popular. These methods pro-
duce shape-aware skinning weights, but optimize only for smooth-
ness of the resulting deformations. Our method finds weights that
minimize nonlinear elastic energy of the induced deformations. In
addition to being smooth and shape-aware, our new weights are
therefore also deformation-aware.

One important approach to improve skinning quality uses additional
example shapes to add data-driven details, or “residuals” [Lewis
et al. 2000; Sloan et al. 2001]. Manual creation of examples can
be difficult; Kry and colleagues [2002] use physically-based simu-
lation to automatically generate the example shapes and compress
the residuals using PCA to reduce memory costs. An alternative ap-
proach is to learn regression models for individual triangle rotations
and use Poisson stitching to obtain the final vertex positions [Weber
et al. 2007; Wang et al. 2007]. While an efficient GPU implementa-
tion is possible [Wang et al. 2007], it requires a multi-pass approach
involving dense matrix multiplication. Instead of using examples,
our method works directly with deformation energies. We demon-
strate that this approach is more efficient than first computing ex-
amples by energy-minimization and subsequent weight fitting, both
in terms of speed and the resulting quality.

Certain special types of deformers have been discussed in previ-
ous work. Specifically, deformers based on intrinsic SO(3) [Mohr
and Gleicher 2003] and SE(3) [Kavan et al. 2009] interpolation
eliminate the candy-wrapper artifacts but do not remove the bulging
problems while bending. Sweep [Hyun et al. 2005] or spline-based
deformers [Yang et al. 2006; Forstmann et al. 2007; Gregory and
Weston 2008] produce higher-quality results but are more complex
and feature many parameters that need to be tuned manually. The
concept of flexible bones also requires different rigging workflows,
which can be advantageous with sketch-based interfaces [Kho and
Garland 2005]. In contrast, our approach is fully automatic and
does not depart from the common rigid-bones metaphor. Recently,
Jacobson and Sorkine [2011] enhanced linear and dual quaternion
skinning with additional effects: stretch and secondary twist, dis-
tributed along the entire length of a bone. Our method focuses on
joint-induced deformations and assumes rigid bones. If stretchable
and twistable bones are desired, their technique can be combined
with our method.

Cage-based deformation presents an interesting alternative to
skeletally-controlled articulations [Joshi et al. 2007]. Ju and col-
leagues [2008] make this approach more practical for rigging by
introducing reusable cage-based deformers. Other important prop-
erties of character deformation include volume preservation and
avoiding self-intersections [Angelidis and Singh 2007; Rohmer
et al. 2009]. Our elastic energy also encourages local volume
preservation, however our simple swing/twist deformer does not
guarantee intersection-free results.
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3 Method

The input to our method is the rest-pose mesh of a character and a
corresponding skeleton. We begin by describing the reference non-
linear elasticity formulation that produces the “ideal” skeletal de-
formations for our purposes (Sec. 3.1). We derive skinning weights
for standard linear blend skinning (LBS) and dual quaternion skin-
ning (DQS) so as to optimally approximate the ideal deformation
behavior within those skinning deformation spaces (Sec. 3.2). As
the standard skinning deformations are not expressive enough even
with the optimized weights, we propose our new joint-based de-
formers in order to introduce a richer deformation space with the
desired properties. We first discuss the general concept of joint-
based deformers (Sec. 3.3) before explaining our specific joint-
based deformer (called the swing/twist deformer) developed to re-
solve the artifacts of both LBS and DQS (Sec. 3.4).

Figure 2: Example skeleton and a volumetric discretization. c© 2012
The Authors

3.1 Elastic Energy for Skeletal Deformation

Inspired by McAdams and colleagues [2011], we discretize non-
linear elasticity using a regular voxel grid enclosing the given rest-
pose mesh. Although tetrahedral meshing can achieve higher ac-
curacy with the same number of primitives, it is difficult to con-
struct while conforming to the given mesh surface especially if self-
intersections or non-manifold issues are present in the input model.
The skeleton is a collection of points representing joints, with bones
corresponding to line segments connecting the joints (Fig. 2 left).
Voxels intersecting a bone are assumed to be rigidly attached to the
bone. Since we aim for a fully-automatic procedure, we chose the
simple geometric elasticity model by Chao and colleagues [2010].
Let m be the number of voxels, n the number of vertices in the
voxel grid, and v ∈ R3n denote the 3D positions of those vertices
in a deformed configuration. In matrix form, the discrete elastic
energy of [Chao et al. 2010] can be written as:

E(v) =
1

2
vTLv − min

r∈Qm

(rTKv) (1)

where L is the Laplace operator on the voxel grid, r ∈ R9m

are the stacked coordinates of m best-fitting rotation matrices,
Qm = SO(3) × . . . × SO(3) = SO(3)m, and K is a matrix
of differential rest-pose coordinates. Formally, if Bi is an oriented
incidence matrix corresponding to i-th voxel and Ṽ ∈ Rn×3 are
rest-pose coordinates of voxel vertices, L and K can be defined as:

L =

(
m∑
i=1

BiB
T
i

)
⊗ I3, K =

 ṼTB1B
T
1

...
ṼTBmBT

m

⊗ I3 (2)

where ⊗ denotes the Kronecker product and I3 ∈ R3×3 is an
identity matrix. Different material properties could be specified
by changing matrices L and K, e.g., weighting each voxel by a
different stiffness value. However, we use only the uniform homo-
geneous model (Eq. 2). Further details can be found in the literature
[Chao et al. 2010; Jacobson et al. 2012].

Intuitively, E(v) finds the best-fitting rotation for each voxel and
measures the squared distance between its current (deformed) con-
figuration and its rest pose transformed by the best-fitting rotation.
Similar models, belonging to the broader class of corotational meth-
ods, are popular in physics-based simulation for their simplicity and
robustness [Müller et al. 2005; Rivers and James 2007]. The “ideal”
deformation is computed by finding v that minimizes E(v) subject
to the constraints that the positions of bone-intersecting voxels are
given (specified by a desired skeleton pose).

3.2 Elastic Energy-minimizing Weights

Let us first study deformations induced by rotations of a single joint,
e.g., left shoulder (Fig. 2 left). As all other joints are fixed, this
corresponds to rotating the whole skeletal subtree starting at this
joint (the red bones in Fig. 2, while the green ones are fixed). Di-
rect minimization of Eq. 1 requires iteration and is too slow for
runtime. Our initial goal is to generate similar deformations by
finding appropriate weights for linear or dual quaternion skinning.
In the described setting we need two weight functions, w1 ∈ Rn

for the identity transformation of the fixed bones and w2 ∈ Rn

for the rotation transformation of the rotating bones. Denote by
w = (w1

T w2
T)T ∈ R2n the concatenated vector of the weights.

The weights computed on the voxel grid are subsequently mapped
to mesh vertices by trilinear interpolation.

To optimize the weights, we need representative rotation samples
S1, . . . ,Sk ∈ SO(3), i.e., poses of the joint, and we simultane-
ously minimize the deformation energy (Eq. 1) in weight space for
all these sample poses. While arbitrary sampling is possible, in our
final method we use only a very simple set of samples, identical
for all joints. Specifically, for swing weights, we use just 4 sam-
ple rotations S1, . . . ,S4, corresponding to ±90 degrees rotations
in x- and y-axes. For twist weights, we use only 2 rotation samples
representing ±90 degrees rotation about the z-axis.

Linear blend skinning for the i-th sample rotation can be described
as vi = Miw, where vi ∈ R3n are the resulting deformed voxel
vertices and Mi is a sparse matrix with the following structure:

Mi =

 ṽ1 Siṽ1

. . .
. . .

ṽn Siṽn

 ∈ R3n×2n

where ṽ1, . . . , ṽn ∈ R3 are rest-pose voxel vertices. We seek w
that minimizes our energies summed over all k sample poses:

Ẽ(w) =

k∑
i=1

E(Miw)

=

k∑
i=1

(
1

2
wTMT

i LMiw − min
ri∈Qm

(rTi KMiw)

)

=
1

2
wTYw −

k∑
i=1

min
ri∈Qm

(rTi KMiw) (3)

where we denoted Y =
∑k

i=1 M
T
i LMi. The requirement of the

vertices of bone-intersecting voxels being rigidly attached to their
bones can be expressed by setting the respective weights to 1. Ap-
pending the partition-of-unity constraints (required for translation-
invariance), we obtain our final set of linear equality constraints.

To find the weights w minimizing Ẽ(w), we employ the lo-
cal/global block coordinate descent advocated by Sorkine and
Alexa [2007]. In the local step (w fixed), we solve the Procrustes
problem to find the best-fitting rotations r1, . . . , rk. This step is
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Figure 3: Comparison of linear blend skinning (LBS) with bounded bi-harmonic weights (BBW) and our weights to dual quaternion skinning
(DQS) and a gold standard (full energy minimization); 90 degrees bend (top row) and 90 degrees twist (bottom row). While our weights do
better, the bend-bulging artifacts of DQS and the candy-wrapper artifacts of LBS are still visible even at these non-extreme rotations. c© 2012
The Authors

embarrassingly parallel and we employ the highly optimized 3× 3
SVD routines developed by McAdams and colleagues [2011]. In
the global step (r1, . . . , rk fixed), we minimize a quadratic objec-
tive subject to linear equality constraints using PARDISO [Schenk
and Gartner 2006], taking advantage of prefactorization, since the
system matrix does not change between iterations. In our exam-
ples, the block coordinate descent typically converges in less than
a couple dozen iterations. In comparison, a straightforward l2 fit,
obtained by first computing the energy-minimizing deformations
vi using Eq. 1 and then solving for w to minimize the l2 error
‖vi −Miw‖ requires more iterations to converge. Also, each it-
eration is slower and the final weight fitting introduces additional
projection error (see Fig. 13 and further discussion in Sec. 4).

Finding optimal weights for dual quaternion skinning is slightly
more complicated than for LBS because the skinning transforma-
tion is nonlinear, i.e., instead of vi = Miw, we have vi = Ψi(w).
This leads to the following objective:

k∑
i=1

(
1

2
Ψi(w)TLΨi(w)− min

ri∈Qm

(rTi KΨi(w))

)
(4)

We can adopt the same local/global strategy as before. The local
step remains unchanged, but in the global step we no longer have a
quadratic objective. Therefore, we employ a nonlinear solver [Byrd
et al. 2006], taking advantage of the fact that the derivatives of
DQS are easy to compute analytically [Kavan et al. 2009]. Unfortu-
nately, even with energy-minimizing weights, we observe that nei-
ther LBS nor DQS achieve deformations resembling minimization
of the original energy (Eq. 1), see Fig. 3. Even when optimizing our
weights separately for all four cases (bending/twisting, LBS/DQS),
we can see an improvement over bounded biharmonic weights, but
the candy-wrapper artifacts of LBS, as well as the bend-bulging ar-
tifacts of DQS are still visible (Fig. 3).

The bend-bulging is caused by the fact that dual quaternions trans-
form all vertices with the same weight rigidly, and therefore the
natural squish of an elastic material cannot be reproduced. For
example, let us consider the middle cross-section of the bending
cylinder from Fig. 3, i.e., all vertices with both weights equal 0.5.
Dual quaternions cannot squish this circle while bending, because
all of its vertices are transformed by one rigid body transformation,
leading to the bulging artifact. Similarly, LBS cannot avoid shrink-
ing this circle while twisting, leading to the candy wrapper artifact.
To address this issue, software packages such as Autodesk MayaTM

support linear blending of LBS and DQS. We also experimented
with this approach as well as with several alternatives, specifically,
non-normalized DQS and Animation Space [Merry et al. 2006].
Unfortunately, we were unable to avoid all artifacts.

We argue that the problems stem from the isotropic nature of trans-
formation blending, i.e., treating all directions as equal, which

makes it impossible to differentiate between the rather rigid direc-
tion implied by the bone and the much more supple directions or-
thogonal to the bone. In the following section we discuss how to
overcome this limitation in a general way while retaining the stan-
dard skeletal animation framework and the rigid-bones metaphor.

3.3 Joint-based Deformers

This section presents the general concept of joint-based deformers,
as an alternative to the conventional “bone-based” deformers, such
as LBS or DQS. In the interest of generality, this section does not
depend on the energy-minimizing weights (Sec. 3.2). Our specific
joint-based deformer, utilizing the energy-minimizing weights, will
be discussed in Sec. 3.4.

The basic idea is to associate with each joint a quickly computable
function (deformer) that describes deformations in the vicinity of
this joint. By definition, a joint-based deformer is a mapping
Γ : SO(3) × R3 → R3, which for any given rotation Q and
point x returns a deformed point Γ(Q,x). It is helpful to study the
joint-based deformers in a common canonical coordinate system.
Specifically, we choose the joint location to coincide with the origin
and the z-axis oriented in the direction of the child bone (Fig. 4).

z

x

y
z

x

y

Figure 4: Local coordinate systems and weights dj of our joint-
based deformers (here the shoulder and the elbow). c© 2012 The Authors

To apply joint-based deformers in skinning, we need to embed them
in the standard forward kinematics framework. We assume the local
coordinate frames of all joints are chosen according to our conven-
tion, i.e., with the z-axis oriented in the child bone direction. Let
Rj represent the rest-pose transformation of joint j, Qj its cur-
rent rotation, and Aj the composed transformation in the animated
pose, such that AjQj is the transformation of joint j in the cur-
rent pose. Then, AjQjR

−1
j corresponds to the standard skinning

transformation (input of linear or dual quaternion skinning). The
composition of a joint-based deformer Γj with a kinematic skele-
ton can be then expressed as AjΓj(Qj ,R

−1
j p̃), where p̃ ∈ R3

is the rest-pose location of a surface mesh vertex. Because each
deformer is only accurate in the vicinity of its joint, we obtain the
final result by taking a linear combination:

p =

D∑
j=1

dj(p̃)AjΓj(Qj ,R
−1
j p̃) (5)

4



ACM Transactions on Graphics, Volume 31, Issue 6, 2012

where dj : R3 → [0, 1] are partition-of-unity deformer weights
describing the influence of deformer Γj on each point in space and
D is the number of deformers.

By using trivial deformers Γj(Qj ,x) = Qjx, we obtain the stan-
dard linear blend skinning, which completely relies on the weights
to control the resulting deformations. In our approach, we instead
control the deformations near joints directly using Γj , with weights
dj only taking care of smooth transitioning from one deformer (e.g.,
shoulder) to another (e.g., elbow). The blending therefore occurs
near the middle of a bone, in contrast to standard skinning where
most blending happens near the joints. Because bones are typically
rigid, the deformations induced by adjacent joint-based deformers
are usually fairly similar near the middle of the bone, and therefore
the choice of blending weights dj is much less critical than with
linear blend skinning. We use point-based bounded biharmonic
weights [Jacobson et al. 2011] located at joints (Fig. 4).

3.4 Swing/Twist Deformer

We seek the simplest possible joint-based deformer that avoids
the issues with linear and dual quaternion skinning. Observing
that LBS works well for bending and DQS nicely handles twist-
ing (Fig. 3), we design a joint-based deformer to combine their
strengths. Assuming our canonical coordinate system, our de-
former first decomposes the input rotation Q into a swing (ro-
tation about an axis in the xy-plane) and a twist (rotation about
the z-axis, corresponding to the child bone direction), such that
Q = Qswing Qtwist. This decomposition is a simple closed-form
operation and in quaternion representation requires only few arith-
metic operations [Baerlocher 2001].

Let us assume we have two skinning weights, s : R3 → [0, 1]
for the swing (bending) distribution and t : R3 → [0, 1] for the
twist. For a given mesh vertex expressed in local joint coordinates
x̃ = R−1

j p̃, the result of our swing/twist (sw/tw) deformer is:

Γsw/tw(Q, x̃) =
(

(1− s(x̃)) I + s(x̃)Qswing

)
Q

t(x̃)
twist x̃ (6)

This equation first applies spherical interpolation of the twist, fol-
lowed by linear interpolation of the swing. Because Qtwist is al-
ways a rotation about the z-axis, we only need a simple 2D rota-
tion interpolation (instead of general SLERP). We precompute the
swing weight s as our energy-minimizing weight (Sec. 3.2) for lin-
ear blend skinning, with rotation samples covering swing rotations
only. Specifically, we use just 4 sample rotations S1, . . . ,S4, corre-
sponding to ±90 degrees rotations in x- and y-axes. We found this
simple set of samples works surprisingly well. The twist weight
t can be computed with only 2 rotation samples representing ±90
degrees rotation about the z-axis. While the swing/twist deformer
could also be used with bounded biharmonic weights (for both s
and t), the elastic energy-minimizing weights minimize shape dis-
tortion (Fig. 5).

DQS (BBW) Swing/twist (BBW) Our methodRest pose

Figure 5: The swing/twist deformer improves upon dual quater-
nion skinning (DQS) even with bounded biharmonic weights
(BBW). Our method combines the swing/twist deformer with
elastic energy-minimizing weights, resulting in minimal shape
distortion. c© 2012 The Authors

3.5 Final Algorithm

In this section we summarize our resulting method based on
swing/twist deformers with energy-minimizing weights (Alg. 1).
Note that we compute the bounded biharmonic weights (BBW) us-

Algorithm 1
Input: Rest-pose mesh, skeleton, voxel size (resolution).
Output: Vertex weights dj , sj , tj for each joint j.

1: Establish voxel grid G [Min 2012]
2: T = trilinear interpolation from G vertices to mesh vertices
3: for each joint j do
4: d̃j = Point-based BBW(G) [Jacobson et al. 2011]
5: s̃j = EMW(G; Rx(−90), Rx(90), Ry(−90), Ry(90))
6: // EMW . . . Energy-Minimizing Weights (Sec. 3.2)
7: // Raxis(α) ∈ SO(3) . . . sample rotations
8: t̃j = EMW(G; Rz(−90), Rz(90))
9: dj = Td̃j , sj = Ts̃j , tj = Tt̃j

10: end for

ing the same regular grid as in our method, because the tetrahedral-
ization utilized by Jacobson and colleagues [2011] is not directly
applicable to meshes containing self-intersections or non-manifold
edges. We produce our voxelization using Min’s implementation
[2012] of Nooruddin and Turk’s method [2003], which is very effi-
cient and robustly handles imperfect meshes.

With the precomputed weights, the runtime component is simple
and fast. We first evaluate the swing/twist deformers Γ

sw/tw
j for

all joints j, using the weights sj and tj (Eq. 6). Subsequently, we
blend the results using the deformer weights dj (Eq. 5), obtaining
the final deformed vertex positions.

4 Results

In this section, as well as in the accompanying video, we compare
our final method (Sec. 3.5) to bounded biharmonic weights (BBW)
[Jacobson et al. 2011] with both linear blend skinning (LBS) and
dual quaternion skinning (DQS).

Deformation quality. We distinguish three main types of arti-
facts. The first is the well-known candy-wrapper artifact of LBS
(Fig. 6). DQS removes the candy-wrapper artifacts by replacing lin-
ear trajectories with spherical ones, which introduces second type
of artifact, i.e., bulging while bending (Fig. 7). These two kinds
of artifacts can also occur simultaneously when both bending and
twisting are present (Fig. 1). Our swing/twist deformer successfully
removes both the candy-wrapper and the bend-bulging artifacts.

LBS DQS Our

Figure 6: The candy-wrapper artifacts of linear blend skinning
do not occur in dual quaternion skinning or our method. c© 2012 The
Authors
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Figure 7: A bulging artifact of dual quaternion skinning does not
occur with linear blend skinning or our method. c© 2012 The Authors

LBS DQS Our

Our method

BBW Our swing
weight

Our twist
weight

Figure 8: Our method robustly handles large shoulder rotations,
while dual quaternions look unnatural due to overly large influence
of the corresponding bounded biharmonic weight (BBW). Our twist
weight results in more natural torsion distribution. c© 2012 The Authors

The third kind of artifact stems from deformation-agnostic weight
distribution, apparent with bounded biharmonic weights (Fig. 1 left,
Fig. 5, and Fig. 8). Our weights minimize elastic deformation en-
ergy and therefore also the shape distortion. Another example is
shown in Fig. 9. The biharmonic operator diffuses uniformly in
all directions, and thus both the calf and the foot bones influence
the heel by approximately the same amount, resulting in unsightly
deformations of the heel. Our energy-minimizing weight rigidly at-
taches the heel to the foot, producing more natural results. In some
situations, a too generous spread of bounded biharmonic weights
exacerbates the dual quaternion bulging issues (Fig. 10). The com-
bination of swing/twist deformers with elastic energy-minimizing
weights produces natural results in all cases.

LBS DQS Our Calf BBW Foot BBW Our

Figure 9: Bounded biharmonic weights (BBW) used with LBS and
DQS overlap in the heel region, resulting in unnatural deforma-
tions. Our weights correctly concentrate the bending in the ankle
region. c© 2012 The Authors

LBS DQS Our

Figure 10: The bulging artifact of dual quaternion skinning
is amplified by the relatively large support of the corresponding
weight. c© 2012 The Authors

A nice property of our energy-minimizing weights is that the solu-
tion is not very sensitive to the density of the joint rotations sam-
pling. For given axes of rotation, increasing the number of samples
yields almost the same results (Fig. 11). While the twist weight
optimization should in theory account for the skinning nonlinear-
ity (Eq. 4), in practice we used only the much faster LBS scheme
(Eq. 3) to generate our results, except for the bending cylinder in
Fig. 3. We observed that the linear model typically converges to
very similar weights as the slower nonlinear scheme.

Figure 11: Optimized bending weight using 4 samples (left) is
almost identical to one using 32 samples (right). c© 2012 The Authors
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Figure 12: Relative error (y-axis) of the full nonlinear elas-
tic energy E(v) and the reduced energy Ẽ(w) vs. number of
iterations. c© 2012 The Authors

As mentioned in Sec. 3.2, an obvious alternative to our energy-
minimizing weights would be to first precompute example shapes
using non-reduced energy minimization, followed by a least-
squares (l2) fit of skinning weights [James and Twigg 2005]. How-
ever, this approach is sub-optimal in all respects: direct minimiza-
tion of E(v) (Eq. 1) requires more iterations to converge than the
minimization of Ẽ(w) (Eq. 3), see Fig. 12. Furthermore, each iter-
ation is more expensive because the global step contains more vari-
ables and has to be evaluated k times, whereas in Eq. 3 all samples
collapse to one matrix Y. Finally, the subsequent least-squares fit
introduces additional l2 projection error, which can be perceptibly
non-smooth even when adding non-negativity constraints as sug-
gested by James and Twigg [2005] (Fig. 13). Our method does not
use any inequality constraints, but we still obtain non-negative and
visually smooth weights in all our test cases. However, we do not
have theoretical guarantees of these properties.

Performance. Experimental evaluation of runtime performance
is challenging, because the implementation specifics and hardware
features of each target platform often impact the resulting speed
more than the skinning algorithm itself [Frey and Herzeg 2011].
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Figure 13: A non-negative least-squares fit (left) does not guaran-
tee smooth weights and results in a pinching artifact. Our weight
(right) directly minimizes the deformation energy and avoids this
problem. c© 2012 The Authors

Examining Eq. 5, we see that the only overhead compared to lin-
ear blend skinning comes from evaluating the deformers. The local
coordinates x̃ = R−1

j p̃ are constant and thus can be precomputed.
Because the number of deformers is much lower than the number
of vertices, the time to perform the swing/twist decompositions is
negligible and the main overhead comes from evaluating Eq. 6. As-
suming the twist is represented by an angle, this formula requires
29 elementary arithmetic operations and 2 trigonometric functions
(for the twist rotation). The trigonometric functions can be option-
ally replaced by the complex number analogue of SLERP, requir-
ing only reciprocal square root. The memory overhead consists of
storing the additional swing and twist weights per joint. It would be
possible to optimize only one weight to simultaneously control both
bending and torsion, however the optimal swing and twist weights
generally differ (Fig. 8).

As can be seen in Tab. 1, the preprocessing time is typically dom-
inated by solving the bounded biharmonic weights d for deformer
blending (Fig. 4), computed using MOSEK [Andersen and Ander-
sen 2000]. Precomputation of our energy-minimizing weights is
faster because we do not use any inequality constraints. The voxel
grid resolution was selected manually for each model in order to
balance performance vs. accuracy.

Verts Tris n d (s, t) Total
Armadillo 43,243 86,482 40,725 46s 23s 18min
Female 45,659 91,208 20,425 11s 12s 6min
Male 16,093 32,182 44,820 37s 24s 20min
Ogre 28,670 57,336 33,973 29s 19s 13min

Table 1: Model statistics: n is the number of voxel vertices, d is the
time to precompute a bounded biharmonic weight per joint, (s, t)
is the time to precompute both swing and twist energy-minimizing
weights per joint, and Total is the total precomputation time.

5 Conclusions and Future Work

We presented a conceptually new method for skinning articulated
shapes motivated by approximating the behavior of elastic solids
with embedded rigid bones. All our examples were obtained fully
automatically, up to user-specified voxel resolution. Determining
suitable voxel size automatically would be an interesting prob-
lem for future work. While our final method uses exclusively the
swing/twist deformer (Sec. 3.4), our framework (Sec. 3.3) is gen-
eral and allows a variety of different deformers to be explored and
controlled by artists wishing to fine-tune the result. For example, if
the joint-collapse or bulging effects are actually desirable, we can
trivially design deformers implementing linear or dual quaternion
skinning and use them in chosen parts of the model. More inter-
estingly, we could design a deformer that, e.g. nonlinearly blends
between linear and spherical skinning based on the angle between
parent and child bones, so that bulging gradually increases as the
joint rotates. In future work, we would like to explore the space of
meaningful joint-based deformers and provide intuitive interfaces

to the users. One limitation is we assume only linear combinations
of the individual deformers, ignoring nonlinear joint coupling ef-
fects.

Unlike physics-based elasticity [McAdams et al. 2011], our sys-
tem cannot guarantee self-intersection free deformations. Correct
handling of collisions and contact without relying on runtime sim-
ulation is an interesting challenge for future work. In this paper,
we focused on the overall, high-level skeletal shape deformations.
Our method could be enhanced with example-based details and/or
secondary dynamics using the well-known techniques [Lewis et al.
2000; Shi et al. 2008]. One technical aspect to look at is to consider
integration over a continuous range of motion of the joint instead of
using a discrete set of sample rotations. This would involve solv-
ing a finite-elements version of the Procrustes problem. Finally, we
would also like to explore the effect of more accurate material mod-
els and actual volumetric bones on the resulting weights. In conclu-
sion, we hope our method will help to bridge the gap between the
accurate yet slow physics-based simulation and the simple and fast
closed-form skinning methods.

6 Acknowledgements

We are grateful to Chris Evans and John Howe for art and rig-
ging feedback. We thank Eftychios Sifakis for his open source
fast 3 × 3 SVD code and Alec Jacobson, Martin Pražák, Stelian
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MANN, D. 1988. Joint-dependent local deformations for hand
animation and object grasping. In Proc. Graphics Interface, 26–
33.

MCADAMS, A., ZHU, Y., SELLE, A., EMPEY, M., TAMSTORF,
R., TERAN, J., AND SIFAKIS, E. 2011. Efficient elasticity
for character skinning with contact and collisions. ACM Trans.
Graph. 30, 37:1–37:12.

MERRY, B., MARAIS, P., AND GAIN, J. 2006. Animation space:
A truly linear framework for character animation. ACM Trans.
Graph. 25, 4, 1400–1423.

MIN, P., 2012. Binvox. http://www.cs.princeton.edu/
˜min/binvox/.

MOHR, A., AND GLEICHER, M. 2003. Building efficient, accurate
character skins from examples. ACM Trans. Graph. 22, 3, 562–
568.
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