
Fast Automatic Skinning Transformations

Alec Jacobson1 Ilya Baran2 Ladislav Kavan1 Jovan Popović3 Olga Sorkine1
1ETH Zurich 2Disney Research, Zurich 3Adobe Systems, Inc.

Figure 1: We present a method to automatically determine 2D and 3D skinning transformations from a sparse set of controls. We achieve high
quality deformations by minimizing a nonlinear energy function, while keeping our algorithm extremely fast: skinning transformations for 100
individually animated armadillos (86k triangles each) are computed at 30fps on a single CPU core.

Abstract

Skinning transformations are a popular way to articulate shapes and
characters. However, traditional animation interfaces require all
of the skinning transformations to be specified explicitly, typically
using a control structure (a rig). We propose a system where the
user specifies only a subset of the degrees of freedom and the rest
are automatically inferred using nonlinear, rigidity energies. By
utilizing a low-order model and reformulating our energy functions
accordingly, our algorithm runs orders of magnitude faster than
previous methods without compromising quality. In addition to the
immediate boosts in performance for existing modeling and real time
animation tools, our approach also opens the door to new modes of
control: disconnected skeletons combined with shape-aware inverse
kinematics. With automatically generated skinning weights, our
method can also be used for fast variational shape modeling.

Keywords: skinning, shape modeling, variational methods, as-
rigid-as-possible.

Links: DL PDF WEB VIDEO

1 Introduction

Articulation adds life to geometric shapes in two steps. The rigging
stage establishes parameters that provide intuitive control of shape
geometry. Once these parameters are specified, the deformation
stage computes the actual shape to generate poses. One popular
choice of these parameters are joint angles for hierarchies of rigid
transformations because they match the skeletal structure of humans,
animals, and other characters. However, the best set of articulation
parameters depends on the task so free-form deformations, blend
shapes, cages, and others are also used, often at the expense of
tedious manual tuning.

As shape deformation needs to be computed at every animation
frame for every character, this process must be extremely fast, espe-
cially in applications such as computer games and haptics. The most
common method is linear blend skinning (LBS), whose articulation
parameters are affine transformations, each associated with a handle.
Originally, handles were just bones, but previous work has explored
the use of point handles, region handles, cage vertices, and even
abstract handles not associated with any well-defined shape and
perhaps not directly controlled by the user.

Handle transformations that drive LBS are typically obtained from
motion capture, physical simulation, or manual posing and keyfram-
ing. In many cases, however, it is desirable to only specify a subset
of their degrees of freedom. For example, a motion capture sequence
may not have enough data to fully define the spine configuration,
or an artist may want to specify only a subset of controls and have
the rest inferred in a reasonable way. In some cases, it is useful to
specify only the translational component of a handle transformation.

This paper presents a method for deforming a shape as naturally as
possible when only a subset of the degrees of freedom are specified.
Our method computes the unspecified degrees of freedom by min-
imizing an elastic energy over the shape [Chao et al. 2010]. Our
method is extremely efficient, allowing it to be integrated into the

http://doi.acm.org/10.1145/2185520.2185573
http://portal.acm.org/ft_gateway.cfm?id=2185573&type=pdf
http://igl.ethz.ch/projects/fast/
http://igl.ethz.ch/projects/fast/fast-automatic-skinning-transformations.mp4

Figure 2: Traditional animators sometimes sketch bones only in
limbs, using them to infer the remaining shape [Blair 1994].

skinning pipeline, with computational complexity often dominated
by LBS. Using a single CPU thread, our approach can compute
missing degrees of freedom for one hundred armadillos each with
17 handles and 86k triangles at 30 frames per second (see Figure 1).

To attain our high performance, we speed up the energy minimiza-
tion in two ways. First, we express the energy only in terms of
handle transformations. Second, we use the input skinning weights
to determine parts of the shape that are likely to be transformed
similarly and simplify the deformation energy accordingly. These
two optimizations complement each other: the error incurred by
simplifying the energy function tends to be orthogonal to the sub-
space of a good LBS rig. In fact, we show this reduction often
visually improves the deformations by regularizing the energy func-
tion. Moreover, our method guarantees deformations as smooth as
the input skinning weights.

The ability to leave some handle transformations unspecified opens
up new possibilities for both posing and rigging. For posing, com-
puting missing degrees of freedom results in behavior that is similar
to inverse kinematics, but shape-aware. For rigging, the user can
deliberately specify extra handles in areas that require additional
flexibility without having to worry about their transformations. Ad-
ditionally, extra handles can offset some undesirable behavior of
linear blend skinning and allow our method to be applied to general
shape deformation. Given manipulation handles, weights automati-
cally generated by previous works can be augmented with additional
extra weights attached to abstract handles. These additional weights
are generated with a simple algorithm. With them our method pro-
duces results on par with high-quality nonlinear shape deformation
methods [Botsch et al. 2007], but running orders of magnitude faster.

2 Related work

Inverse kinematics. IK infers missing degrees of freedom for
deformation under some constraints. Traditionally, IK is performed
on the skeleton of the character, irrespective of the shape itself, and
cannot handle disconnected skeletons or surface handles. MeshIK
methods [Sumner et al. 2005; Fröhlich and Botsch 2011] use defor-
mation examples to navigate in the space of plausible poses while
interpolating prescribed surface region handles. To speed up the
MeshIK optimization, a reduced model similar to ours has been
presented [Der et al. 2006]. Unlike our model, it requires exam-
ples to infer a reduced model and the energy objective. At runtime,
they must factor a dense matrix at every iteration, whereas in our
method this can be pre-computed, since the system matrix remains
unchanged.

Improving skinning quality. Our weights enrichment strategy
is related to previous work aimed at improving skinning quality.
Several works used example shapes for this purpose [Lewis et al.
2000; Wang et al. 2007]; similarly to us, Mohr and Gleicher [2003]
enriched the space of the original weights, but using shape exam-
ples. Nonlinear skinning techniques improve skinning deformations
quality without additional data [Kavan et al. 2008], but the nonlin-
ear nature makes such skinning inconvenient as a reduced model.
Weights defined for abstract handles can be used to automatically
approximate nonlinear skinning methods expressed in closed-form

with LBS [Kavan et al. 2009]. Spline skeletons [Forstmann and
Ohya 2006; Forstmann et al. 2007; Yang et al. 2006] often produce
better skinning deformations, but again, they make skinning nonlin-
ear. Others, [Wang and Phillips 2002; Merry et al. 2006; Jacobson
and Sorkine 2011], generalize the weight functions to matrix-valued
or vector-valued forms, modifying the basic LBS formulation. Con-
trary to these approaches, our method is easier to use and fits into the
existing animation pipeline since we only rely on the standard LBS,
which is of practical importance due to the number of optimized
platform-specific LBS implementations.

Deformation. Recent shape deformation research has concen-
trated on two main fronts: modeling physically plausible deforma-
tions (typically by means of variational optimization), and exploring
very fast and parallelizable closed-form deformations.

Many works deal with the question of how a shape should deform
given arbitrary (user-defined) modeling constraints, typically pre-
scribed locations for some points or regions on the surface. Several
energy functionals that the deformed shape should minimize (under
the modeling constraints) were proposed; these energies typically
measure a form of elastic shape distortion. Quadratic energies that
lead to linear optimization problems are discussed in the survey of
Botsch and Sorkine [2008]. They are robust and can be optimized at
interactive framerates for moderately sized meshes, but suffer from
linearization artifacts. Nonlinear energies, e.g. [Botsch et al. 2006;
Au et al. 2006; Sorkine and Alexa 2007; Chao et al. 2010] provide
higher-quality deformations but are slower to optimize, and their
complexity grows nonlinearly with the size of the mesh. In this work,
we take advantage of the special structure of some recently proposed
“as-rigid-as-possible” (ARAP) elastic energies [Igarashi et al. 2005;
Sorkine and Alexa 2007; Liu et al. 2008; Chao et al. 2010] and mod-
ify their formulation so that it can be extremely efficiently minimized
in the subspace of skinning deformations.

The second stream of shape deformation research dates back to
the FFD framework [Sederberg and Parry 1986] that avoids global
variational optimization. Given a set of control objects (handles),
such as cages or points on the shape or skeletons, the question is
how to define the influence of each handle on each point of the
shape. Then, the user-defined transformations at the handles are
propagated to each point on the shape by simple local weighted
combination, using the influence values. In the case of cages, the
influences are defined as generalized barycentric coordinates (see
e.g. [Ju et al. 2005; Joshi et al. 2007; Lipman et al. 2008; Weber
et al. 2009]) and only translations need to be provided for the cage
vertices. For skeletal bones several methods exist to define auto-
matic weights [Baran and Popović 2007; Wareham and Lasenby
2008]; full affine transformations need to be provided per bone,
and these are linearly combined using the LBS formula. Higher-

Figure 3: Elephant controlled by 7 points. The user-provided
pseudo-edges [Jacobson et al. 2011] (top row) fail to produce the
expected buckling (bottom, our method).

order barycentric coordinates [Langer and Seidel 2008] allow full
affine transformations per cage vertex, offering more flexible de-
formations. Bounded biharmonic weights [Jacobson et al. 2011]
can be computed for all common handle types above. MLS defor-
mations [Schaefer et al. 2006] use simple inverse-distance based
weights but combine the handle influences in a nonlinear manner by
local least-squares optimization.

The above approaches enjoy much better performance than varia-
tional methods due to their local, parallelizable nature. However, as
mentioned, they either require the user to provide full affine transfor-
mations per handle, or manipulate cages, which may be difficult for
some desired shapes and deformations. Simple heuristic solutions,
such as “pseudo-edges” [Jacobson et al. 2011] do not consider their
effect on the resulting shape, leading to unintuive response (see
Figure 3).

Reduced models. Methods based on reduced models attempt to
combine the benefits of variational and closed-form deformation
methods. They minimize some shape energy, but instead of doing so
on the shape itself, they employ a much smaller number of degrees
of freedom and a simpler (faster) deformation subspace, such as
cage-based deformations [Huang et al. 2006; Ben-Chen et al. 2009;
Weber et al. 2009; Borosán et al. 2010], LBS with skeletons [Shi et al.
2007], LBS with point/region handles [Au et al. 2007; Sumner et al.
2007], or linear subspace of dominant modes of the deformation
energy [Hildebrandt et al. 2011]. Such approaches achieve signifi-
cant improvements in shape articulation, but struggle to reach rates
required by time-critical applications while retaining high quality,
flexible deformation, and artistic freedom. Many model-reduction
schemes do not guarantee interpolation of the user-specified con-
straints, e.g., because the degrees of freedom are not sufficient to
do so. With the exception of [Au et al. 2007], the reduced models
are constructed per shape, irrespective of the user constraints (han-
dles), and the deformations generally have a global nature as a result
(when manipulating a handle, shape parts far away from it may move
even if nearby handles are constrained). Also note that even heavily
parallelized GPU implementations such as [Weber et al. 2009] are
still an order of magnitude slower than our method running on a
single CPU core.

Among the above-mentioned techniques, [Au et al. 2007; Shi et al.
2007] are closest to ours in terms of the technical setup. Au et
al. [2007] take user-provided surface-region handles and construct a
reduced model by creating additional handles that are isolines of a
harmonic propagation field sourced at the input handles. They then
minimize a nonlinear Laplacian energy [Au et al. 2006] on the LBS
subspace created by those handles. Contrary to our method, their
optimization still requires updates of the entire unreduced mesh in
each iteration, making it slow in comparison. MeshPuppetry [Shi
et al. 2007] uses a skeletal LBS reduced model to optimize a similar
nonlinear Laplacian energy and additional constraints such as the
balance of the character. They optimize both the skinning weights
and the skeleton transformations simultaneously, which again results
in time complexity dependent on the number of primitives. In
contrast, we assume fixed skinning weights provided by the user and
design deformations that respect the artistic intention encapsulated
in the weights. This allows us to formulate an algorithm with time
complexity independent of the number of primitives of the input
model. We also explore new modes of control, such as combination
of skeletal and point controls, as well as disconnected skeletons
(see Figure 1). Disconnected skeletons are especially interesting
as traditional animators often employ them as a starting point for
creating lifelike characters (see Figure 2).

Decimating the input mesh, Manson and Schaefer [2011] optimize
an ARAP energy [Sorkine and Alexa 2007] at a coarse resolution.

They then reintroduce fine details by constrained local optimization.
While faster than full-scale optimization, the nonlinear upsampling
step is still orders of magnitude slower than our skinning model.

Our use of skinning weights to cluster vertices and further simplify
optimization is related to previous works that assume rigid patches
during example-driven deformation. Pekelny and Gotsman [2008]
find clusters to track the motion of piecewise rigid shapes. Huang et
al. [2008] optimize the assignment of overlapping rigid clusters to de-
fine a locally as-rigid-as-possible deformation for shape registration.
Most similar to our method, Der et al. [2006] cluster surface vertices
to simplify a nonlinear optimization over a reduced, skinning model.
Their method uses example poses to define skinning weights and
then clusters vertices according to their k-greatest skinning weights.

Reduced models are also common in physical elastic simulation,
typically employing dense subspace models [Barbič and James 2005;
An et al. 2008], where they are used to efficiently integrate the
equations of motion. As discussed above, skinning provides the
advantage of local control and is starting to be used in physical
simulation [Gilles et al. 2011; Faure et al. 2011].

3 Method

Denote by v1, . . . ,vn ∈ Rd (d = 2 or 3) the rest-pose vertex
positions of the input meshM. The user specifies a set of control
handles H = {h1, . . . ,hm}, which could be bones of a skeleton,
points or regions on the shape. To deform the shape, the user must
to specify affine transformations Tj ∈ Rd×(d+1) for each handle
hj . We denote the deformed vertex positions by v′1, . . . ,v

′
n. The

handle transformations lead to modeling constraints h′j = Tjhj .

There are many methods to compute a deformed shape based on
the given modeling constraints. The fastest method is linear blend
skinning (LBS), which in addition to the inputs above also requires
skinning weight functions wj : M → R. For each point p on
the shape, wj(p) specifies the amount of influence of Tj on p.
The skinning weights are often painted manually by specialized
rigging artists, but may also be computed automatically using recent
methods. The LBS deformation ofM’s vertices is then given by

v′i =

m∑
j=1

wj(vi) Tj

(
vi

1

)
. (1)

This formula can be equivalently expressed in matrix form:

V′ = MT, (2)

where V′ ∈ Rn×d is the matrix whose rows are the deformed
vertex positions, M ∈ Rn×((d+1)m) is the matrix combining rest-
pose vertex positions vi with vertex weights wj(vi), and T ∈
R((d+1)m)×d stacks transposed transformation matrices Tj (see e.g.
[Kavan et al. 2010] for details).

3.1 Automatic degrees of freedom

Specifying all the degrees of freedom for all affine transformations
T1, . . . ,Tm could be burdensome. It is often easier and more
intuitive for the user to specify translations only, dragging the con-
trol handles around. However, if the Tj’s consist of translations
alone, Eq. 1 leads to unnatural, sheared deformations. Many other
linear deformation formulations suffer from the same problem of
“translation-insensitivity” [Botsch and Sorkine 2008]: when specify-
ing translations at handles, no local rotations are generated by the
deformation, and the shape and its details are distorted as a result.
We can also leave some transformations Tj entirely unconstrained,
which corresponds to shape-aware inverse kinematics.

r=2 r=3 r=4 r=64

Figure 4: 2D deformation with various numbers of rotation clusters, r. Notice that even if only two rotation clusters are used the deformation
is smooth and finds a reasonable shape. Increasing the number of rotation clusters improves this shape with diminishing returns.

We propose overcoming this problem by optimizing the remaining
degrees of freedom of the handle transformations Tj that the user
did not specify explicitly. We wish to find such Tj’s that the de-
formed shape minimizes a deformation energy E under the imposed
modeling constraints and the LBS setting (Eq. 2). We can write the
user-specified modeling constraints as:

[
Ifull

Mpos

]
︸ ︷︷ ︸

Meq

T =

[
Tfull

Ppos

]
︸ ︷︷ ︸

Peq

, (3)

where Ifull are identity blocks corresponding to the fully constrained
transformations and Tfull are their user-provided values (as in tra-
ditional skinning) and Mpos are rows of M corresponding to po-
sitional constraints on M’s vertices and Ppos their values. All
constraints together can be concisely written as MeqT = Peq,
where Meq ∈ Rc×((d+1)m) and Peq ∈ Rc×d and our construction
guarantees they are feasible and full rank.

To obtain the remaining, unconstrained degrees of freedom of Tj’s
(i.e., linear components of positionally constrained handles and all
components of unconstrained handles), we propose minimizing a
shape deformation energy E : Rn×d → R+. E(V′) measures
the deformation between the rest-pose shapeM and the deformed
shapeM′. We focus on energies E measuring local deviation from
rigidity, advantageous for good detail preservation and intuitive
elastic behavior [Sorkine and Alexa 2007; Liu et al. 2008; Chao et al.
2010]. This family of energy functions can be expressed as:

E(V′,R) =
1

2

r∑
k=1

∑
(i,j)∈Ek

cijk‖(v′i−v′j)−Rk(vi−vj)‖2, (4)

where R1, . . . ,Rr ∈ SO(d) are local rotations, E1, . . . , Er are
their corresponding sets of edges (see Figure 5), and cijk ∈ R
are weighting coefficients, typically the familiar cotangent weights
[Chao et al. 2010]. It is convenient to rewrite Eq. 4 in matrix notation.

(a) (b) (c) (d)

Figure 5: Typical edge sets: triangle (a), tetrahedron (b), spokes
(c), spokes and rims (d).

We start by separating terms quadratic and linear in V′:

E(V′,R) =
1

2
E2(V

′)− E1(V
′,R) + const, (5)

E2(V
′) =

r∑
k=1

∑
(i,j)∈Ek

cijk(v
′
i − v′j)

T(v′i − v′j), (6)

E1(V
′,R) =

r∑
k=1

∑
(i,j)∈Ek

cijk(v
′
i − v′j)

TRk(vi − vj), (7)

The quadratic term can be written in matrix form as:

E2(V
′) =

r∑
k=1

tr(CkAT
kV′V′TAk), (8)

where Ak ∈ Rn×|Ek| is directed incidence matrix corresponding to
(arbitrarily oriented) edges Ek and Ck ∈ R|Ek|×|Ek| is a diagonal
matrix with weights cijk. Due to the properties of the trace, we can
rewrite this as:

E2(V
′) = tr

(
V′

T

(
r∑

k=1

AkCkAT
k

)
V′
)

= tr(V′
T
LV′),

where we denoted the middle sum as L ∈ Rn×n, which for all
energies discussed in the literature [Sorkine and Alexa 2007; Liu
et al. 2008; Chao et al. 2010] is the standard symmetric, cotangent
Laplacian matrix (up to a constant scale factor). Similarly, the linear
term can be written as:

E1(V
′,R) =

r∑
k=1

tr(CkAT
kV′RkVTAk) (9)

= tr
((∑r

k=1 RkVTAkCkAT
k

)
V′
)
= tr(RKV′), (10)

where R = (R1, . . . ,Rr) and K ∈ Rdr×n stacks differential rest
pose coordinates VTAkCkAT

k . We therefore obtain:

E(V′,R) =
1

2
tr(V′TLV′)− tr(RKV′) + const (11)

In this form, it is easy to formulate our reduced-order optimization
by plugging in the linear blend skinning formula V′ = MT:

argmin
T,R

1

2
tr(TTL̃T)− tr(RK̃T)

subject to MeqT = Peq, R ∈ SO(d)r
(12)

where L̃ = MTLM and K̃ = KM.

To solve this optimization problem, we follow the local-global ap-
proach of Sorkine and Alexa [2007]. First we fix T and solve for R
(local step). Then we fix R and solve for T (global step).

π/2

-π/2

ARAP (no clusters) ARAP, r=4 ARAP, r=100 Ours, r=4 Ours, 15 extra weights, r=34a) b) c) d) e)

Figure 6: Left to right: unreduced per-triangle ARAP introduces a singularity in the rotation field (visualized below). Per-triangle ARAP
energy with r = 4 prevents this singularity; the non-smooth transitions are no longer noticeable with r = 100. Our method (using smooth
weights) is always smooth, even with r = 4. After enriching our deformation subspace with 15 additional weights we obtain the desired result.

Local step. For fixed T, we are left maximizing tr(RS), where
S = K̃T is constant. This amounts to maximizing each d × d
block tr(RiSi) individually. It is well known [Sorkine and Alexa
2007] that the rotation maximizing the trace is Ri = QT

i UT
i , where

Si = UiΣiQi is the singular value decomposition. For d = 3 we
employ the optimized SVD routines by McAdams and colleagues
[2011] that avoid reflections, i.e., guarantee det(Ri) > 0.

Global step. For fixed R, Eq. 12 turns into a quadratic minimization
problem with linear equality constraints. The constraints can be
handled by introducing a matrix Λ ∈ Rc×d of Lagrange multipliers,
arriving at the Lagrangian:

L =
1

2
tr(TTL̃T)− tr(RK̃T) + tr(ΛT(MeqT−Peq))

Recalling standard matrix calculus identities, we differentiate:

∂L

∂T
= L̃T− K̃TRT + MT

eqΛ (13)

∂L

∂Λ
= MeqT−Peq (14)

where we exploit the symmetry of L̃. Setting these derivatives to
zero, we obtain:[

L̃ MT
eq

Meq 0

] [
T
Λ

]
=

[
K̃TRT

Peq

]
(15)

With enough constraints to determine all translational degrees of
freedom of L̃, the system matrix is non-singular. We can thus
precompute its inverse Π and express the solution as:

T = [Π1 Π2]

[
K̃TRT

Peq

]
= ΓsolveR

T + Φsolve,

where Γsolve ∈ R(d+1)m×dr and Φsolve ∈ R(d+1)m×d can be
precomputed.

Final algorithm. One iteration of the reduced alternating optimiza-
tion can be summarized as follows:

1. S = K̃T

2. Turn S into R using SVDs

3. T = ΓsolveR
T + Φsolve

The only nonlinear step is 2, consisting of r SVDs of d× d matrices.
While the linear steps 3 and 1 could be combined together, it is typi-
cally more efficient to use two dr × (d+ 1)m and (d+ 1)m× dr
matrices rather than one dr × dr matrix. The complexity is inde-
pendent of the number of vertices n, however, with r on the order of
number of primitives, we still cannot guarantee real-time framerates.
In the following section we discuss how to select representative
rotations so that we need only r = O(m) while obtaining results
similar to much higher r.

3.2 Rotation clusters

Linear blend skinning constrains the resulting deformations to a
small linear subspace, where the motions of neighboring vertices
are typically highly correlated. Therefore, it seems unnecessary
to estimate local rotations at each edge set. Instead, we propose
clustering vertices undergoing similar deformations. Instead, we
cluster the vertices into V1, . . . ,Vr ⊆ {1, . . . , n} so that their best-
fit rotations can stand in for rotation of each edge set.

Linear blend skinning deformations are governed by vertex weights
wi and vertices with similar weights undergo similar rotations (re-
gardless of spatial proximity). Therefore, we cluster vertices into r
clusters based on their Euclidean distance in weight space, where for
each vertex vi we assign a vector of weights (w1(vi), . . . , wm(vi)).
In this representation rigid components comprised of vertices with
identical weights collapse to a single point and performing k-means
clustering achieves the desired grouping.

The number of clusters r can be used to trade off quality for speed.
However, we observed that typically r = O(m) is sufficient (we of-
ten simply set r = 2m), and higher numbers do not result in further
visual improvements (see Figure 4). Interestingly, rotation clusters
often improve deformation quality even with a unreduced formula-
tion where each vertex position is an unknown. The clusters act as a
regularization term that helps avoid singularities, though with small
r the unreduced optimization suffers from lack of smoothness (see
Figure 6b). Let us consider smoothness of discrete weight functions
or deformation fields in an informal perceptual sense (as is often the
case for manually painted weights) or in terms of convergence to a
C1 function [Jacobson et al. 2011]. Then, because our final defor-
mation is dictated by linear blend skinning, it is always as smooth as
the input skinning weights wi. This smoothness is thus guaranteed
at cluster boundaries and also near handle boundaries, where unre-
duced variational methods typically produce sharp discontinuities
(see Figures 6 and 7).

Figure 7: The cigar shape (top) is stretched using unreduced per-
triangle ARAP which introduces a C1 discontinuity at each point
handle (middle). Our subspace is restricted to smooth deformations,
so our result is also smooth (bottom).

Original Ours ARAP Spokes+Rims PriMoARAP Spokes

Figure 8: Left: unreduced spokes-only ARAP energy [Sorkine and Alexa 2007] produces artifacts due to indefinite terms in the energy function.
Right: our method utilizing the spokes and rims energy [Chao et al. 2010] fixes these issues and surprisingly accurately models behavior of
bumpy rubber, similar to the unreduced solution and to behavior observed in silicone ice cube trays. Meanwhile, PriMo [Botsch et al. 2006]
produces a fair wave corresponding to a thin metal sheet, but seems to ignore the bumps.

3.3 Additional weight functions

Linearly blending handle transformations can be insufficient to cre-
ate natural deformations. To enrich the space of attainable deforma-
tions, we can automatically create a set of abstract handles whose
transformations are entirely determined by our optimization. For
example, bending a cigar using two handles at its ends will tend to
introduce a pinch (see Figure 6d). By generating additional weights
functions along the cigar, we allow our optimization to find a more
pleasing deformation (see Figure 6e).

In theory, an arbitrary weight function, appended as additional four
columns of matrix M, cannot increase the deformation energy be-
cause the original deformation subspace is contained in the new
one. Still, constructing additional weights that keep the deforma-
tion fair is not straightforward. Simply adding additional bounded
biharmonic weights [Jacobson et al. 2011] tends to introduce interpo-
lation artifacts similar to Shepard interpolation (see the illustration
in [Lewis et al. 2000]). Using low-frequency Laplacian eigenvectors
is tempting, but their global support can hurt local control. Suitable
additional weights should be smooth, localized, and preserve the
nature of the original weights (especially if manually painted).

Partition of unity is usually required of skinning weights to ensure
translation invariance. Due to our translation invariant energies, our
method (somewhat surprisingly) requires only the original weights
to partition unity, the additional weights can be arbitrary. This is
because a global translation by vector t ∈ Rd is in our skinning
subspace (shifting all of the original transformations by t and keep-
ing the additional constraints unchanged shifts all vertices by t),
and therefore if the user translates all constraints by t, the resulting
optimized transformations exactly reproduce this translation. This is
a consequence of the fact the value of our energy functions (Eq. 4)
remains unchanged when translating all vertices by t.

Also, the scale of the additional weights does not matter because
the optimization considers all linear combinations. However, we do
require them to be zero at handles, i.e., where one of the original
weights has value one. This way we ensure that our constraints are
trivially feasible.

To preserve the deformation properties of the original weights, we
propose embedding our meshM in weight space, the same as when
computing rotation clusters. To this end we create smooth isotropic
cubic B-spline basis functions in weight space, centered at some
seed locations s1, . . . , sp ∈ Rm. Let e1, . . . , em ∈ Rm be unit
m-simplex vertices, ei,j = δi,j . To obtain a good distribution of the
seed locations, we employ a discrete multi-dimensional version of

optimized farthest points [Schlömer et al. 2011]. In each iteration,
we choose a new location for seed si:

si = argmax
x∈M

di(x) (16)

di(x) = min(min
j 6=i
‖x− sj‖, 1

2
min
k
‖x− ek‖) (17)

i.e., moving si as far as possible from the other seeds and corners.
We push si from the corners twice as far to facilitate the requirement
of vanishing additional weights at all ei. Because Delaunay triangu-
lation in higher dimensions is prohibitively expensive, we estimate
the argmax in Eq. 16 by random sampling onM in weight space.

Original OursPriMoLBS

Figure 9: Our method achieves visually equivalent quality as full
nonlinear optimization (PriMo) [Botsch et al. 2006] and runs much
faster.

Input model Model reduction Runtime Precomputation
Model d n Triangles Type morig mextra r 1 Iter. Full Switch Add. Weights
Gingerbread man 2 2899 5543 Tri 9 0 18 11µs 0.227s 14ms 0s
Bubble man 2 6383 11804 Tri 5 0 10 7µs 0.266s 3ms 0s
Female 3 45659 91314 Sp+rim 17 0 34 19µs 3.359s 16ms 0s
Armadillo 3 47162 86482 Tet 17 0 34 20µs 8.365s 15ms 0s
Octopus 3 149666 299328 Tet 9 0 18 10µs 9.957s 9ms 0s
Cylinder 3 4802 9600 Sp+rim 2 30 64 40µs 0.471s 29ms 4.4s
Cactus 3 5261 10518 Sp+rim 2 30 64 40µs 0.586s 35ms 4.882s
Bar 3 6084 12106 Sp+rim 2 30 64 42µs 0.582s 32ms 4.266s
Ogre 3 28837 52306 Tet 5 15 40 22µs 2.717s 6ms 12.166s
Cross 3 29090 58176 Sp+rim 2 30 64 41µs 3.738s 49ms 10.09s
Bumpy plane 3 40401 80000 Sp+rim 2 30 64 41µs 4.328s 33ms 7.812s
Wiener dog 3 48187 85672 Tet 18 15 66 43µs 12.708s 77ms 11.123s

Table 1: Model statistics and performance. d denotes the dimension, n the number of vertices, Elements refers to the type of elements used in
the energy formulation (triangles (Tri, Sp+rim) or tetrahedra Tet); Sp+rim refers to spokes and rims energy. morig is the number of original
weights and mextra is the number of additional weights, r is the number of rotation clusters. We report the time for one optimization iteration
(1 Iter.), the full precomputation time (Full), and the precomputation time when switching constraint types at handles (Switch).

The algorithm is guaranteed to converge because the distance be-
tween two closest points cannot decrease. For the final si, we define
the additional weight function simply as B(‖x − si‖/(2di(si))),
where B(t) : [0, 1]→ [0, 1] is a cubic B-spline basis function.

This way of generating additional weights is only one of many pos-
sible, but we enjoy its simplicity and speed (variational methods
such as Jacobson et al. [2011] are much slower). In our experiments,
subspaces enriched with these additional weights support natural
deformations with respect to our energy functions. Especially in
situations with a small number of original weights we observe sig-
nificant improvement of the deformation quality (see Figure 13).

Spokes+rims on surface Elements in volume

Figure 10: Our reduced model preserves the nature of different
energy functions: spokes and rims (left) behave like thin shells,
while tetrahedra (right) correspond to volumetric elasticity.

4 Results

We experimented with a number of previously discussed ARAP ener-
gies. For 2D images, we use the per-triangle energy [Liu et al. 2008].
For 3D shapes, the user’s choice of energy controls the desired be-
havior (see Figure 10). The surface-based spokes and rims energy
[Chao et al. 2010] treats models as thin shells while eliminating the
artifacts of the spokes energy [Sorkine and Alexa 2007] (see Fig-
ure 8). Alternatively, the per-tetrahedron energy [Chao et al. 2010]
treats shapes as enclosed volumes. Note that thanks to our reduced-
order formulation, the tetrahedra participate in preprocessing only,
where internal complexity is folded into our reduced system. At
runtime our method considers only the surface.

To assess deformation quality, in Figure 9 we compare our results on
the survey benchmark to those of Figure 10 in [Botsch and Sorkine
2008], with our skinning weights automatically generated using
bounded biharmonic weights and enriched with additional weights
per Section 3.3. As expected, the mesh quality of our reduced
nonlinear method surpasses the quality of linear models. Meanwhile,
the deformations are comparable to high quality nonlinear methods
[Botsch et al. 2006] that are orders of magnitude slower to compute.

Figure 11: Shape-aware IK: a female model animated solely by
positional constraints at the endpoints of the head, hands and feet.

The summary of our results can be found in Table 1. Our timings
were obtained on a single-core CPU implementation on a laptop with
a 2.5GHz Core i7-2860QM. We typically perform 15 iterations of
the local-global optimization each at about 10µs to 40µs, resulting
in total solve times of about 0.15 to 0.6 milliseconds. With our
models, this performance is close to that of an LBS shader (with 4
weights per vertex, running in parallel on a GeForce 560M GPU).
In addition to full precomputation times, we also report the time
necessary to switch constraints or change their type (i.e. invert the
system matrix in Eq. 15). In our figures and the accompanying video
we use yellow dots for positional constraints (both at point handles
or bone endpoints), green dots for unconstrained points, and red dots
when specifying full transformations. Transformations at region
handles (blue) are fully specified unless otherwise noted.

Figure 12: Three disconnected skeletons control the Wiener dog.
Additional abstract handle weights are generated along the belly
allowing it to deform elastically as the user rearranges the skeletons.

Original 15 extra weightsNo extra weights 3 of the 15 extra weights 40 rotation clusters

Figure 13: With five fully constrained region handles, our method reduces to LBS with its volume loss issues. Enriching our subspace with 15
additional weight functions (shown in red) allows our method to find more natural deformations.

In the realm of real-time animation, our approach provides shape-
aware inverse kinematics supporting both classical (Figure 11) and
disconnected (Figure 12) skeletons. To facilitate user control, our
system also supports traditional hierarchical transformation chains
(forward kinematics) even when only a few points are ultimately
used as constraints in our optimization. The blue line segments
drawn between joints denote this hierarchy and are not intended to
visualize the affine transformations at joints, which may be partially
or entirely optimized by our system. While most variational methods
require constraints on each connected mesh component, our method
can easily handle multiple connected components, implicitly “glued
together” by manually painted skinning weights (see Figure 14).

Reduced variational models are typically associated with a higher
energy value and a loss of quality due to the reduction of degrees
of freedom. While our model reduction also increases the origi-
nal energy value, projection into our deformation subspace has a
nice regularization side-effect, forcing the solution to more visually
pleasing deformations than the non-reduced method. For example,
with C1 weight functions, we can guarantee C1 deformations, unlike
non-reduced ARAP energy minimization (see Figure 7). Similarly,
the reduction of the energy term using rotation clusters (Section 3.2)
helps to avoid deformation field singularities occasionally produced
by the non-reduced method (see Figure 6).

The utility of generating additional weights at abstract handles is
illustrated in Figure 13. If all region handles are fully constrained,
there is no room for optimization and our method reduces to LBS.
However, after adding 15 additional weights, our technique results

Figure 14: Bubble Man with 17 connected components and only 5
positional handles. Our deformation subspace (LBS) is designed to
prevent the components from falling apart.

Figure 15: A cross shape with four region controls is deformed in
real-time producing a smooth, high quality shape

in more natural, shape-preserving deformations. Additional weight
functions were also used in the benchmark examples (see Figure 9)
and a cross-shape model (see Figure 15), designed to stress-test
fairness of a branching structure’s deformation.

5 Limitations and future work

To guarantee real-time performance, we use a fixed number of it-
erations in the local-global optimization and therefore, we cannot
guarantee that our solution has converged completely. However, by
initializing the optimization by the previous frame’s transformations,
we do not observe any disturbing artifacts even when using only 15
iterations (note that a reduced model typically requires much fewer
iterations than an unreduced one). Inverse-kinematics methods often
incorporate many other tunable parameters, such as balance and
joint limit constraints [Shi et al. 2007]. Incorporating such terms is
an obvious direction for improving the scope of our results.

The additional weights employed at abstract handles to bolster our
optimization space are simple to construct, but may not be optimal
for any given input mesh, linear blend skinning setup, and number of
desired additional weights. With many overlapping original weights,
our embedding in weight space causes our additional weights to
overlap more. This in turn results in the practical disadvantage of
having to support a large number of influencing handles in a shader
implementation of linear blend skinning. Specifying the maximum
number of influencing weights at any given point is an interesting
constraint on our additional weight construction that we do not yet
consider, even though previous weight reduction methods can be
used as an immediate alternative [Landreneau and Schaefer 2010].

We justify clustering vertices in weight space because vertices with
similar weights will have similar deformation gradients. This as-
sumption holds for typical weight functions with small gradients,
allowing us to use a small number of rotation groups. Robust and effi-
cient handling of abruptly changing weights would be an interesting
future direction.

6 Conclusion

Linear deformation methods are still sometimes preferred over non-
linear ones because of their speed and simplicity, resulting in com-
promises in quality [Botsch and Sorkine 2008]. By reducing both
the space of possible deformations and simplifying the elastic energy
function, our method avoids this compromise and delivers a method
for deformations that are both fast and of high quality. We introduce
new modes of control: shape-aware inverse kinematics combined
with disconnected skeletons. Our method is simple to implement,
with the time-critical inner loop only consisting of dense matrix
multiplications and low-dimensional (d× d) singular value decom-
positions. We believe our method will help to promote nonlinear
deformation methods in applications where run-time efficiency is a
primary concern.

Acknowledgements

We are grateful to Peter Schröder for an illuminating discussion,
Emily Whiting for her narration of the accompanying video, Mau-
rizio Nitti for the Wiener Dog, and Eftychios Sifakis for his open
source fast 3× 3 SVD code. We also thank Bob Sumner, Daniele
Panozzo, Sebastian Martin and Bernd Bickel for their feedback. This
work was supported in part by an SNF award 200021 137879 and
by a gift from Adobe Systems.

References

AN, S. S., KIM, T., AND JAMES, D. L. 2008. Optimizing cubature
for efficient integration of subspace deformations. ACM Trans.
Graph. 27, 5, 165:1–165:10.

AU, O. K.-C., TAI, C.-L., LIU, L., AND FU, H. 2006. Dual
Laplacian editing for meshes. IEEE Trans. Vis. Comput. Graphi.
12, 3, 386–395.

AU, O. K.-C., FU, H., TAI, C.-L., AND COHEN-OR, D. 2007.
Handle-aware isolines for scalable shape editing. ACM Trans.
Graph. 26, 3, 83.

BARAN, I., AND POPOVIĆ, J. 2007. Automatic rigging and anima-
tion of 3D characters. ACM Trans. Graph. 26, 3, 72:1–72:8.

BARBIČ, J., AND JAMES, D. L. 2005. Real-time subspace integra-
tion for St. Venant-Kirchhoff deformable models. ACM Trans.
Graph. 24, 3, 982–990.

BEN-CHEN, M., WEBER, O., AND GOTSMAN, C. 2009. Varia-
tional harmonic maps for space deformation. ACM Trans. Graph.
28, 3, 34:1–34:11.

BLAIR, P. 1994. Cartoon Animation. Walter Foster Publishing, Inc.,
Irvine, CA, USA.

BOROSÁN, P., HOWARD, R., ZHANG, S., AND NEALEN, A. 2010.
Hybrid mesh editing. In Proc. EUROGRAPHICS, Short papers,
41–44.

BOTSCH, M., AND SORKINE, O. 2008. On linear variational
surface deformation methods. IEEE Trans. Vis. Comput. Graph.
14, 1, 213–230.

BOTSCH, M., PAULY, M., GROSS, M., AND KOBBELT, L. 2006.
PriMo: Coupled prisms for intuitive surface modeling. In Proc.
SGP, 11–20.

BOTSCH, M., PAULY, M., WICKE, M., AND GROSS, M. 2007.
Adaptive space deformations based on rigid cells. Comput. Graph.
Forum 26, 3, 339–347.

CHAO, I., PINKALL, U., SANAN, P., AND SCHRÖDER, P. 2010.
A simple geometric model for elastic deformations. ACM Trans.
Graph. 29, 4, 38:1–38:6.

DER, K. G., SUMNER, R. W., AND POPOVIĆ, J. 2006. Inverse
kinematics for reduced deformable models. ACM Trans. Graph.
25, 3, 1174–1179.

FAURE, F., GILLES, B., BOUSQUET, G., AND PAI, D. K. 2011.
Sparse meshless models of complex deformable solids. ACM
Trans. Graph. 30, 4, 73:1–73:10.

FORSTMANN, S., AND OHYA, J. 2006. Fast skeletal animation by
skinned arc-spline based deformation. In Proc. EUROGRAPHICS,
Short papers.

FORSTMANN, S., OHYA, J., KROHN-GRIMBERGHE, A., AND
MCDOUGALL, R. 2007. Deformation styles for spline-based
skeletal animation. In Proc. SCA, 141–150.

FRÖHLICH, S., AND BOTSCH, M. 2011. Example-driven defor-
mations based on discrete shells. Comput. Graph. Forum 30, 8,
2246–2257.

GILLES, B., BOUSQUET, G., FAURE, F., AND PAI, D. 2011.
Frame-based elastic models. ACM Trans. Graph. 30, 2, 15:1–
15:12.

HILDEBRANDT, K., SCHULZ, C., TYCOWICZ, C. V., AND POLTH-
IER, K. 2011. Interactive surface modeling using modal analysis.
ACM Trans. Graph. 30, 5, 119:1–119:11.

HUANG, J., SHI, X., LIU, X., ZHOU, K., WEI, L.-Y., TENG,
S.-H., BAO, H., GUO, B., AND SHUM, H.-Y. 2006. Subspace
gradient domain mesh deformation. ACM Trans. Graph. 25, 3,
1126–1134.

HUANG, Q.-X., ADAMS, B., WICKE, M., AND GUIBAS, L. J.
2008. Non-rigid registration under isometric deformations. In
Proc. SGP, 1449–1457.

IGARASHI, T., MOSCOVICH, T., AND HUGHES, J. F. 2005. As-
rigid-as-possible shape manipulation. ACM Trans. Graph. 24, 3,
1134–1141.

JACOBSON, A., AND SORKINE, O. 2011. Stretchable and twistable
bones for skeletal shape deformation. ACM Trans. Graph. 30, 6,
165:1–165:8.

JACOBSON, A., BARAN, I., POPOVIĆ, J., AND SORKINE, O. 2011.
Bounded biharmonic weights for real-time deformation. ACM
Trans. Graph. 30, 4, 78:1–78:8.

JOSHI, P., MEYER, M., DEROSE, T., GREEN, B., AND SANOCKI,
T. 2007. Harmonic coordinates for character articulation. ACM
Trans. Graph. 26, 3, 71:1–71:9.

JU, T., SCHAEFER, S., AND WARREN, J. 2005. Mean value
coordinates for closed triangular meshes. ACM Trans. Graph. 24,
3, 561–566.

KAVAN, L., COLLINS, S., ZARA, J., AND O’SULLIVAN, C. 2008.
Geometric skinning with approximate dual quaternion blending.
ACM Trans. Graph. 27, 4, 105:1–105:23.

KAVAN, L., COLLINS, S., AND O’SULLIVAN, C. 2009. Automatic
linearization of nonlinear skinning. In Proc. I3D, 49–56.

KAVAN, L., SLOAN, P., AND O’SULLIVAN, C. 2010. Fast and
efficient skinning of animated meshes. Comput. Graph. Forum
29, 2, 327–336.

LANDRENEAU, E., AND SCHAEFER, S. 2010. Poisson-based
weight reduction of animated meshes. Comput. Graph. Forum 29,
6, 1945–1954.

LANGER, T., AND SEIDEL, H.-P. 2008. Higher order barycentric
coordinates. Comput. Graph. Forum 27, 2, 459–466.

LEWIS, J. P., CORDNER, M., AND FONG, N. 2000. Pose space de-
formation: a unified approach to shape interpolation and skeleton-
driven deformation. In Proc. ACM SIGGRAPH, 165–172.

LIPMAN, Y., LEVIN, D., AND COHEN-OR, D. 2008. Green
coordinates. ACM Trans. Graph. 27, 3, 78:1–78:10.

LIU, L., ZHANG, L., XU, Y., GOTSMAN, C., AND GORTLER, S. J.
2008. A local/global approach to mesh parameterization. Comput.
Graph. Forum 27, 5, 1495–1504.

http://www.google.com/search?q=Optimizing+cubature+for+efficient+integration+of+subspace+deformations
http://www.google.com/search?q=Optimizing+cubature+for+efficient+integration+of+subspace+deformations
http://www.google.com/search?q=Dual+Laplacian+editing+for+meshes
http://www.google.com/search?q=Dual+Laplacian+editing+for+meshes
http://www.google.com/search?q=Handle-aware+isolines+for+scalable+shape+editing
http://www.google.com/search?q=Automatic+rigging+and+animation+of+3D+characters
http://www.google.com/search?q=Automatic+rigging+and+animation+of+3D+characters
http://www.google.com/search?q=Real-time+subspace+integration+for+St.+Venant-Kirchhoff+deformable+models
http://www.google.com/search?q=Real-time+subspace+integration+for+St.+Venant-Kirchhoff+deformable+models
http://www.google.com/search?q=Variational+harmonic+maps+for+space+deformation
http://www.google.com/search?q=Variational+harmonic+maps+for+space+deformation
http://www.google.com/search?q=Hybrid+mesh+editing
http://www.google.com/search?q=On+linear+variational+surface+deformation+methods
http://www.google.com/search?q=On+linear+variational+surface+deformation+methods
http://www.google.com/search?q=PriMo:+Coupled+prisms+for+intuitive+surface+modeling
http://www.google.com/search?q=Adaptive+space+deformations+based+on+rigid+cells
http://www.google.com/search?q=A+simple+geometric+model+for+elastic+deformations
http://www.google.com/search?q=Inverse+kinematics+for+reduced+deformable+models
http://www.google.com/search?q=Inverse+kinematics+for+reduced+deformable+models
http://www.google.com/search?q=Sparse+meshless+models+of+complex+deformable+solids
http://www.google.com/search?q=Fast+skeletal+animation+by+skinned+arc-spline+based+deformation
http://www.google.com/search?q=Fast+skeletal+animation+by+skinned+arc-spline+based+deformation
http://www.google.com/search?q=Deformation+styles+for+spline-based+skeletal+animation
http://www.google.com/search?q=Deformation+styles+for+spline-based+skeletal+animation
http://www.google.com/search?q=Example-driven+deformations+based+on+discrete+shells
http://www.google.com/search?q=Example-driven+deformations+based+on+discrete+shells
http://www.google.com/search?q=Frame-based+elastic+models
http://www.google.com/search?q=Interactive+surface+modeling+using+modal+analysis
http://www.google.com/search?q=Subspace+gradient+domain+mesh+deformation
http://www.google.com/search?q=Subspace+gradient+domain+mesh+deformation
http://www.google.com/search?q=Non-rigid+registration+under+isometric+deformations
http://www.google.com/search?q=As-rigid-as-possible+shape+manipulation
http://www.google.com/search?q=As-rigid-as-possible+shape+manipulation
http://www.google.com/search?q=Stretchable+and+twistable+bones+for+skeletal+shape+deformation
http://www.google.com/search?q=Stretchable+and+twistable+bones+for+skeletal+shape+deformation
http://www.google.com/search?q=Bounded+biharmonic+weights+for+real-time+deformation
http://www.google.com/search?q=Harmonic+coordinates+for+character+articulation
http://www.google.com/search?q=Mean+value+coordinates+for+closed+triangular+meshes
http://www.google.com/search?q=Mean+value+coordinates+for+closed+triangular+meshes
http://www.google.com/search?q=Geometric+skinning+with+approximate+dual+quaternion+blending
http://www.google.com/search?q=Automatic+linearization+of+nonlinear+skinning
http://www.google.com/search?q=Automatic+linearization+of+nonlinear+skinning
http://www.google.com/search?q=Fast+and+efficient+skinning+of+animated+meshes
http://www.google.com/search?q=Fast+and+efficient+skinning+of+animated+meshes
http://www.google.com/search?q=Poisson-based+weight+reduction+of+animated+meshes
http://www.google.com/search?q=Poisson-based+weight+reduction+of+animated+meshes
http://www.google.com/search?q=Higher+order+barycentric+coordinates
http://www.google.com/search?q=Higher+order+barycentric+coordinates
http://www.google.com/search?q=Pose+space+deformation:+a+unified+approach+to+shape+interpolation+and+skeleton-driven+deformation
http://www.google.com/search?q=Pose+space+deformation:+a+unified+approach+to+shape+interpolation+and+skeleton-driven+deformation
http://www.google.com/search?q=Pose+space+deformation:+a+unified+approach+to+shape+interpolation+and+skeleton-driven+deformation
http://www.google.com/search?q=Green+coordinates
http://www.google.com/search?q=Green+coordinates
http://www.google.com/search?q=A+local/global+approach+to+mesh+parameterization

MANSON, J., AND SCHAEFER, S. 2011. Hierarchical deformation
of locally rigid meshes. Comput. Graph. Forum 30, 8, 2387–2396.

MCADAMS, A., ZHU, Y., SELLE, A., EMPEY, M., TAMSTORF,
R., TERAN, J., AND SIFAKIS, E. 2011. Efficient elasticity
for character skinning with contact and collisions. ACM Trans.
Graph. 30, 37:1–37:12.

MERRY, B., MARAIS, P., AND GAIN, J. 2006. Animation space:
A truly linear framework for character animation. ACM Trans.
Graph. 25, 4, 1400–1423.

MOHR, A., AND GLEICHER, M. 2003. Building efficient, accurate
character skins from examples. ACM Trans. Graph. 22, 3, 562–
568.

PEKELNY, Y., AND GOTSMAN, C. 2008. Articulated object re-
construction and markerless motion capture from depth video.
Comput. Graph. Forum 27, 2, 399–408.

SCHAEFER, S., MCPHAIL, T., AND WARREN, J. 2006. Image
deformation using moving least squares. ACM Trans. Graph. 25,
3, 533–540.

SCHLÖMER, T., HECK, D., AND DEUSSEN, O. 2011. Farthest-
point optimized point sets with maximized minimum distance.
In Proc. ACM SIGGRAPH Symposium on High Performance
Graphics, 135–142.

SEDERBERG, T. W., AND PARRY, S. R. 1986. Free-form defor-
mation of solid geometric models. In Proc. ACM SIGGRAPH,
151–160.

SHI, X., ZHOU, K., TONG, Y., DESBRUN, M., BAO, H., AND
GUO, B. 2007. Mesh puppetry: cascading optimization of mesh
deformation with inverse kinematics. ACM Trans. Graph. 26, 3,
81:1–81:10.

SORKINE, O., AND ALEXA, M. 2007. As-rigid-as-possible surface
modeling. In Proc. SGP, 109–116.

SUMNER, R. W., ZWICKER, M., GOTSMAN, C., AND POPOVIĆ, J.
2005. Mesh-based inverse kinematics. ACM Trans. Graph. 24, 3,
488–495.

SUMNER, R. W., SCHMID, J., AND PAULY, M. 2007. Embedded
deformation for shape manipulation. ACM Trans. Graph. 26, 3,
80:1–80:7.

WANG, X. C., AND PHILLIPS, C. 2002. Multi-weight enveloping:
least-squares approximation techniques for skin animation. In
Proc. SCA, 129–138.

WANG, R. Y., PULLI, K., AND POPOVIĆ, J. 2007. Real-time
enveloping with rotational regression. ACM Trans. Graph. 26, 3,
73.

WAREHAM, R., AND LASENBY, J. 2008. Bone Glow: An improved
method for the assignment of weights for mesh deformation.
Articulated Motion and Deformable Objects, 63–71.

WEBER, O., BEN-CHEN, M., AND GOTSMAN, C. 2009. Com-
plex barycentric coordinates with applications to planar shape
deformation. Comput. Graph. Forum 28, 2, 587–597.

YANG, X., SOMASEKHARAN, A., AND ZHANG, J. J. 2006. Curve
skeleton skinning for human and creature characters. Comput.
Animat. Virtual Worlds 17, 3-4, 281–292.

http://www.google.com/search?q=Hierarchical+deformation+of+locally+rigid+meshes
http://www.google.com/search?q=Hierarchical+deformation+of+locally+rigid+meshes
http://www.google.com/search?q=Efficient+elasticity+for+character+skinning+with+contact+and+collisions
http://www.google.com/search?q=Efficient+elasticity+for+character+skinning+with+contact+and+collisions
http://www.google.com/search?q=Animation+space:+A+truly+linear+framework+for+character+animation
http://www.google.com/search?q=Animation+space:+A+truly+linear+framework+for+character+animation
http://www.google.com/search?q=Building+efficient,+accurate+character+skins+from+examples
http://www.google.com/search?q=Building+efficient,+accurate+character+skins+from+examples
http://www.google.com/search?q=Articulated+object+reconstruction+and+markerless+motion+capture+from+depth+video
http://www.google.com/search?q=Articulated+object+reconstruction+and+markerless+motion+capture+from+depth+video
http://www.google.com/search?q=Image+deformation+using+moving+least+squares
http://www.google.com/search?q=Image+deformation+using+moving+least+squares
http://www.google.com/search?q=Farthest-point+optimized+point+sets+with+maximized+minimum+distance
http://www.google.com/search?q=Farthest-point+optimized+point+sets+with+maximized+minimum+distance
http://www.google.com/search?q=Free-form+deformation+of+solid+geometric+models
http://www.google.com/search?q=Free-form+deformation+of+solid+geometric+models
http://www.google.com/search?q=Mesh+puppetry:+cascading+optimization+of+mesh+deformation+with+inverse+kinematics
http://www.google.com/search?q=Mesh+puppetry:+cascading+optimization+of+mesh+deformation+with+inverse+kinematics
http://www.google.com/search?q=As-rigid-as-possible+surface+modeling
http://www.google.com/search?q=As-rigid-as-possible+surface+modeling
http://www.google.com/search?q=Mesh-based+inverse+kinematics
http://www.google.com/search?q=Embedded+deformation+for+shape+manipulation
http://www.google.com/search?q=Embedded+deformation+for+shape+manipulation
http://www.google.com/search?q=Multi-weight+enveloping:+least-squares+approximation+techniques+for+skin+animation
http://www.google.com/search?q=Multi-weight+enveloping:+least-squares+approximation+techniques+for+skin+animation
http://www.google.com/search?q=Real-time+enveloping+with+rotational+regression
http://www.google.com/search?q=Real-time+enveloping+with+rotational+regression
http://www.google.com/search?q=Bone+Glow:+An+improved+method+for+the+assignment+of+weights+for+mesh+deformation
http://www.google.com/search?q=Bone+Glow:+An+improved+method+for+the+assignment+of+weights+for+mesh+deformation
http://www.google.com/search?q=Complex+barycentric+coordinates+with+applications+to+planar+shape+deformation
http://www.google.com/search?q=Complex+barycentric+coordinates+with+applications+to+planar+shape+deformation
http://www.google.com/search?q=Complex+barycentric+coordinates+with+applications+to+planar+shape+deformation
http://www.google.com/search?q=Curve+skeleton+skinning+for+human+and+creature+characters
http://www.google.com/search?q=Curve+skeleton+skinning+for+human+and+creature+characters

