Frame Fields: Anisotropic and Non-Orthogonal Cross Fields Additional material

Daniele Panozzo ¹		Enrico Puppo ²	Marco Tarini ^{3,4}	Olga Sorkine-Hornung ¹	
¹ ETH Zurich	² Università di Genova		³ Università dell'Insubria, Varese		⁴ ISTI-CNR Pisa

This additional material provides a formal algebraic definition of frame fields as generalizations of N-symmetry (a.k.a. N-RoSy) fields and a rigorous statement of the basic theory developed in the paper.

1 Algebra of frame fields

Let S be a smooth orientable surface embedded in \mathbb{R}^3 and let p be a point on S. We define n_p to be the surface normal of S at p, $\mathbf{T}_p S$ the tangent plane at p and **T**S the tangent bundle of S. A chart for S is a pair (U, ϕ) where U is a subset of S and $\phi : U \to \mathbb{R}^2$ is a homeomorphism of U onto an open subset of \mathbb{R}^2 ; an *atlas* for S is a collection of charts $\{(U_\alpha, \phi_\alpha) | \alpha \in A\}$ such that $\bigcup_{\alpha \in A} U_\alpha = S$.

A vector field $\mathcal{F}: \mathcal{S} \longrightarrow \mathbf{T}\mathcal{S}$ maps each point p to a vector lying on $\mathbf{T}_p \mathcal{S}$. Given an atlas for \mathcal{S} , as above, \mathcal{F} is smooth at p if and only if $\mathcal{F} \circ \phi_{\alpha}^{-1}$ is smooth for all U_{α} containing p.

In the following, we generalize the concept of (smooth) vector fields by considering different equivalence classes of vectors on tangent planes. A simple example is the *direction field*, in which we factor out the length of the vectors. For \mathbf{u}, \mathbf{v} vectors, we define the equivalence class:

$$\mathbf{v} \sim_1 \mathbf{u} \Leftrightarrow \mathbf{v} = a\mathbf{u}$$
 for some scalar $a > 0$. (1)

If we consider the quotient space of each tangent plane with respect to this equivalence relation, and the related quotient tangent bundle TS/\sim_1 , a field $\mathcal{F}_D : S \longrightarrow TS/\sim_1$ maps each point on the surface to a direction. It is customary to take unit-length vectors as representatives of their equivalence classes, so that a direction field can be regarded as a vector field where the length of all vectors is 1. This is equivalent to identifying the quotient space of the tangent plane at p to the unit circle centered at p. Note that if we take a vector field \mathcal{F} and we define its corresponding directional field \mathcal{F}/\sim_1 by mapping each vector in the image of \mathcal{F} to its representative direction, then \mathcal{F}/\sim_1 is undefined at points where \mathcal{F} vanishes. Vanishing points of vector fields, as well as isolated points where directional fields are undefined, are called *singularities*.

1.1 Rotational symmetry fields

Let $\mathcal{V} \simeq \mathbb{R}^2$ be a two-dimensional Euclidean vector space; let $\mathcal{C} \subset \mathcal{V}$ be the set of all unit-length vectors of \mathcal{V} . Let $\Theta_{\frac{2\pi}{n}} : \mathcal{V} \to \mathcal{V}$ be the endomorphism that rotates a vector by the angle of $\frac{2\pi}{n}$; the restriction of $\Theta_{\frac{2\pi}{n}}$ to \mathcal{C} is also an endomorphism. For an integer $k \geq 0$, let us define the concatenation of k instances of $\Theta_{\frac{2\pi}{n}}$ as

$$\Theta_{\frac{2\pi}{n}}^{k} = \Theta_{\frac{2\pi}{n}} \circ \ldots \circ \Theta_{\frac{2\pi}{n}} = \Theta_{\frac{2k\pi}{n}}.$$
 (2)

We have $\Theta_{\frac{2\pi}{n}}^{n} = Id$, hence there exist just n distinct endomorphisms $\Theta_{\frac{2\pi}{n}}^{k}$, with $k = 0, \ldots, n-1$. We define the following equivalence relation on C for a given n:

$$\mathbf{u} \sim_n \mathbf{v} \iff \mathbf{u} = \Theta_{\frac{2\pi}{n}}^k(\mathbf{v}) \text{ for some } k \ge 0.$$
 (3)

The quotient space C/\sim_n is called an *n*-RoSy space (the name RoSy is borrowed from [Palacios and Zhang 2007]). An element of such a

space, i.e., an *n*-RoSy, can be represented as the collection of the *n* unit-length vectors of C that belong to the same equivalence class. Alternatively, any vector of C can be taken as a representative of its equivalence class in the *n*-RoSy space.

Let S be a smooth surface and p a point on S, as before. If we take $\mathbf{T}_p S$ as the vector space \mathcal{V} and the unit circle on $\mathbf{T}_p S$ centered at p as C, then we can define the *n*-RoSy space on the tangent plane of p, denoted as $\mathcal{RS}_p^n = \mathbf{T}_p S/\sim_n$. Analogously, we define the quotient tangent bundle, i.e., the collection of all *n*-RoSy spaces for all points of S, as

$$\mathcal{RS}^n_{\mathcal{S}} = \mathbf{TS}/\sim_n . \tag{4}$$

An *n-RoSy field* on S is a field $\mathcal{F} : S \longrightarrow \mathcal{RS}_S^n$. RoSy fields have been studied by several authors in the literature. The works of Palacios and Zhang [2007] and Ray et al. [2008] provide several results on RoSy fields, among which the definition of smoothness, curvature and turning numbers that characterize singularities.

Note that *n*-RoSy's identify vectors of any length that can be mapped onto each other by an integer multiple of rotation $\Theta_{\frac{2\pi}{n}}$. Therefore, they abstract both size (as direction fields do) and rotations for fixed *period jumps*. Note also that direction fields as defined above correspond to 1-RoSy fields.

A 4-RoSy field is commonly called a *cross field*. In the following, we generalize cross fields to obtain fields that incorporate the concepts of *scale*, *anisotropy* and *skewness*.

1.2 Frame fields

From now on, we restrict ourselves to n = 4, while introducing several generalizations to cross fields. For convenience, we rename the 4-RoSy tangent bundle \mathcal{RS}_{S}^{4} of a surface S as the *cross space* of S, and we denote it by \mathcal{CS}_{S} .

Let $\mathcal{V} \simeq \mathbb{R}^2$ be again a two-dimensional Euclidean vector space. Let us consider the endomorphism on $\mathcal{V} \times \mathcal{V}$ defined as $R(\mathbf{u}, \mathbf{v}) = (\mathbf{v}, -\mathbf{u})$, and its concatenation defined as $R^k = R \circ \ldots \circ R$ where R appears k times in the concatenation. We have $R^4 = Id$, thus there exist only 4 distinct functions $R^0 = Id, R^1, R^2$ and R^3 . We define the following equivalence relation on $\mathcal{V} \times \mathcal{V}$:

$$(\mathbf{u}, \mathbf{v}) \sim_R (\mathbf{u}', \mathbf{v}') \iff (\mathbf{u}, \mathbf{v}) = R^k(\mathbf{u}', \mathbf{v}')$$
for some $k \in \{0, 1, 2, 3\}.$

$$(5)$$

The quotient space $(\mathcal{V} \times \mathcal{V})/\sim_R$ is called the *frame space* of \mathcal{V} . A *frame*, i.e., an element of $(\mathcal{V} \times \mathcal{V})/\sim_R$, can be represented as a cyclically ordered set of four vectors $\langle \mathbf{u}, \mathbf{v}, -\mathbf{u}, -\mathbf{v} \rangle$, where the angle brackets denote cyclic order. The four representatives in $\mathcal{V} \times \mathcal{V}$ of an element of $(\mathcal{V} \times \mathcal{V})/\sim_R$ are the pairs of consecutive elements in such a cyclic order, i.e.: $(\mathbf{u}, \mathbf{v}), (\mathbf{v}, -\mathbf{u}), (-\mathbf{u}, -\mathbf{v})$ and $(-\mathbf{v}, \mathbf{u})$.

Similarly to what we did before, we can define the *frame space* \mathcal{FS}_S of S as the quotient space \mathbf{TS}^2/\sim_R of the two-dimensional tangent bundle of S, and then define a *frame field* as a function

$$\mathcal{F}:\mathcal{S}\longrightarrow\mathcal{FS}_{\mathcal{S}}$$

In what follows, we will only consider *non-degenerate, right-handed* frames, i.e., the equivalence classes of pairs (\mathbf{u}, \mathbf{v}) of linearly independent vectors that form (counterclockwise) an angle θ , $0 < \theta < \pi$. We will thus require that all frames in the image of a frame field are non-degenerate, right-handed.

A cross field can be regarded as a special case of frame field, in which the representatives of all frames are orthonormal pairs of vectors. Algebraically, this can be obtained by a canonical projection of the tangent bundle into the two-dimensional tangent bundle, and extending such projections to their respective quotient spaces, as follows:

$$E: \mathbf{TS} \longrightarrow \mathbf{TS}^{2}, \qquad \mathbf{u} \mapsto (\mathbf{u}, \mathbf{u}^{\perp}) \\ E_{R}: \mathcal{CS}_{S} \longrightarrow \mathcal{FS}_{S}, \qquad [\mathbf{u}] \mapsto \langle \mathbf{u}, \mathbf{u}^{\perp}, -\mathbf{u}, -\mathbf{u}^{\perp} \rangle$$
(6)

where $\mathbf{u}^{\perp} = \Theta_{\frac{\pi}{2}}(\mathbf{u})$ is the vector orthogonal to \mathbf{u} obtained by rotating \mathbf{u} by the angle of $\frac{\pi}{2}$, and $[\mathbf{u}]$ denotes the equivalence class of vector \mathbf{u} in the cross space. Note that E_R is well defined, i.e., it gives the same cyclic order of vectors, no matter what vector \mathbf{u} is used to represent a given cross. Given a cross field \mathcal{X} , its frame field version is trivially $E_R \circ \mathcal{X}$.

Conversely, a frame can be regarded as the scaled and sheared version of a cross. We first extend linear maps in the plane to linear maps in the frame space. Let $\mathcal{V} \simeq \mathbb{R}^2$ be a two-dimensional Euclidean vector space, and $\mathbf{W} : \mathcal{V} \longrightarrow \mathcal{V}$ a non-singular linear map (i.e., det $\mathbf{W} \neq 0$ if \mathbf{W} is represented by a matrix on a basis for \mathcal{V}). We naturally extend the map \mathbf{W} to a *frame linear map* as follows:

$$\mathbf{W}_{R} : (\mathcal{V} \times \mathcal{V}) / \sim_{R} \longrightarrow (\mathcal{V} \times \mathcal{V}) / \sim_{R},$$
(7)
$$\langle \mathbf{v}, \mathbf{w}, -\mathbf{v}, -\mathbf{w} \rangle \mapsto \langle \mathbf{W}(\mathbf{v}), \mathbf{W}(\mathbf{w}), \mathbf{W}(-\mathbf{v}), \mathbf{W}(-\mathbf{w}) \rangle.$$

Note that \mathbf{W}_R is well defined since \mathbf{W} is linear and non-singular, thus, for any \mathbf{v} we have $\mathbf{W}(-\mathbf{v}) = -\mathbf{W}(\mathbf{v})$.

Now let us consider a unit-length vector $\mathbf{u} \in \mathbf{T}_p S$, where p is a point on S. Let us take the cross $[\mathbf{u}] \in CS_S$ and a linear map $\mathbf{W}^p : \mathbf{T}_p S \longrightarrow \mathbf{T}_p S$. If we deform each vector of $[\mathbf{u}]$ through \mathbf{W}^p , we obtain a frame, i.e., $\mathbf{W}^p_R \circ E_R([\mathbf{u}])$ is a frame in \mathcal{FS}_S , which deforms $[\mathbf{u}]$ through \mathbf{W}^p_R . Next we show that there is a canonical way to represent a frame as a pair formed of a cross and a symmetric deformation.

Lemma 1.1. Canonical decomposition.

Let $f_{\mathbf{v},\mathbf{w}} = \langle \mathbf{v}, \mathbf{w}, -\mathbf{v}, -\mathbf{w} \rangle \in \mathcal{FS}_S$ be a non-degenerate, righthanded frame. There exists a unique cross field $[\mathbf{u}] \in \mathcal{CS}_S$ and a unique symmetric positive definite (SPD) linear map \mathbf{W} such that $f_{\mathbf{v},\mathbf{w}} = \mathbf{W}_R(E_R([\mathbf{u}]))$.

Proof: Set a local Euclidean reference system (\mathbf{x}, \mathbf{y}) in the vector space spanned by $f_{\mathbf{v},\mathbf{w}}$ (tangent plane). Then \mathbf{v} and \mathbf{w} have coordinates $(\mathbf{v}_x, \mathbf{v}_y)$ and $(\mathbf{w}_x, \mathbf{w}_y)$ in this reference system, respectively. Since $f_{\mathbf{v},\mathbf{w}}$ is non-degenerate and right-handed, the matrix

$$\mathbf{V} = \left(\begin{array}{cc} \mathbf{v}_x & \mathbf{w}_x \\ \mathbf{v}_y & \mathbf{w}_y \end{array}\right)$$

has full rank and positive determinant. Therefore, V admits a unique polar decomposition V = UP where U is a rotation matrix and P is a symmetric positive definite matrix. We may rewrite the polar decomposition as WU = V where $W = UPU^T$ is also SPD. With abuse of notation, let us identify each vector with the column of its two coordinates. Let u be the unit-length vector corresponding to the first column of U, i.e., $U = [u, u^{\perp}]$ Let us build the 4×2 matrices $[u, u^{\perp}, -u, -u^{\perp}]$ and [v, w, -v, -w], then we have

$$\mathbf{W}[\mathbf{u},\mathbf{u}^{\perp},-\mathbf{u},-\mathbf{u}^{\perp}] = [\mathbf{v},\mathbf{w},-\mathbf{v},-\mathbf{w}].$$
(8)

Any cyclic permutation of the four columns of the matrix built from **u** returns a corresponding cyclic permutation of the matrix built from **v**, **w**, thus we can conclude that $\mathbf{W}_R(E_R([\mathbf{u}]) = f_{\mathbf{v},\mathbf{w}})$.

Next we extend the canonical decomposition to frame fields. In order to do this, we must first define linear maps acting on the tangent bundle of the surface S. Let p be a point on S; a linear map $\mathbf{W}_p : \mathbf{T}_p S \longrightarrow \mathbf{T}_p S$ is a linear function that associates to each vector \mathbf{v} on the tangent plane $\mathbf{T}_p S$ another vector lying on the same tangent plane. Let $\{(U_\alpha, \phi_\alpha) | \alpha \in A\}$ be an atlas for S, let ϕ_α be defined at p, and let \mathbf{J}_α be the Jacobian of ϕ_α . Then we can represent \mathbf{W}_p through the following commutative digram:

where $\bar{\mathbf{W}}_p$ is a (uniquely defined) linear map in the Euclidean plane, expressed as a 2 × 2 matrix. Now let us define the tensor field

 $\mathcal{W}: \mathcal{S} \longrightarrow \mathcal{L}_{\mathcal{S}}, \qquad \qquad \mathcal{W}(p) = \mathbf{W}_p$

where $\mathcal{L}_{\mathcal{S}}$ is the space of linear maps on the tangent bundle of \mathcal{S} . We can define a map

$$\omega_{\alpha}: \phi_{\alpha}(U_{\alpha}) \subset \mathbb{R}^2 \longrightarrow \mathbf{M}_{2,2}, \quad \phi_{\alpha}(p) \mapsto \bar{\mathbf{W}}_p$$

where $\mathbf{M}_{2,2}$ is the space of 2×2 matrices. We say that \mathcal{W} is smooth if and only if all ω_{α} are smooth according to the Frobenius norm on $\mathbf{M}_{2,2}$. We can extend the tensor field \mathcal{W} to the frame space in a canonical way as follows:

$$\mathcal{W}_R:\mathcal{FS}_{\mathcal{S}}\longrightarrow\mathcal{FS}_{\mathcal{S}},$$

if $\mathbf{v}, \mathbf{w} \in \mathbf{T}_p \mathcal{S}$ then

$$\langle \mathbf{v}, \mathbf{w}, -\mathbf{v}, -\mathbf{w} \rangle \stackrel{\mathcal{W}_R}{\mapsto} \langle \mathbf{W}_p(\mathbf{v}), \mathbf{W}_p(\mathbf{w}), \mathbf{W}_p(-\mathbf{v}), \mathbf{W}_p(-\mathbf{w}) \rangle.$$

Finally, given a cross field \mathcal{X} and a smooth tensor field \mathcal{W} as above, we say that the frame field defined as $\mathcal{F}(p) = \mathcal{W}_R(E_R(\mathcal{X}(p)))$ is smooth if and only if both \mathcal{X} and \mathcal{W} are smooth. The proof of the following proposition readily follows:

Proposition 1.2. Let \mathcal{F} be a (non-degenerate, right-handed) frame field on S and for each $p \in S$ let $(\mathbf{X}_p, \mathbf{W}_p)$ be the canonical decomposition of $\mathcal{F}(p)$ as defined in Lemma 1.1. Let \mathcal{X} be the frame field obtained by collecting all \mathbf{X}_p 's, and \mathcal{W} be the tensor field obtained by collecting all \mathbf{W}_p 's for all $p \in S$. Then \mathcal{F} is smooth if and only if both \mathcal{X} and \mathcal{W} are smooth.

In summary, a frame field can be decomposed into a cross field and an SPD tensor field, and the smoothness of a frame field can be defined in terms of the smoothness of these two fields.

References

- PALACIOS, J., AND ZHANG, E. 2007. Rotational symmetry field design on surfaces. ACM Trans. Graph. 26, 3.
- RAY, N., VALLET, B., LI, W. C., AND LÉVY, B. 2008. Nsymmetry direction field design. ACM Trans. Graph. 27, 2, 10:1– 10:13.