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This additional material provides a formal algebraic definition of
frame fields as generalizations of N-symmetry (a.k.a. N-RoSy) fields
and a rigorous statement of the basic theory developed in the paper.

1 Algebra of frame fields

Let S be a smooth orientable surface embedded inR3 and let p be a
point on S. We define np to be the surface normal of S at p, TpS
the tangent plane at p and TS the tangent bundle of S. A chart for
S is a pair (U, φ) where U is a subset of S and φ : U → R2 is a
homeomorphism of U onto an open subset ofR2; an atlas for S is
a collection of charts {(Uα, φα)|α ∈ A} such that ∪α∈AUα = S.

A vector field F : S −→ TS maps each point p to a vector lying on
TpS . Given an atlas for S , as above, F is smooth at p if and only if
F ◦ φ−1

α is smooth for all Uα containing p.

In the following, we generalize the concept of (smooth) vector
fields by considering different equivalence classes of vectors on
tangent planes. A simple example is the direction field, in which we
factor out the length of the vectors. For u,v vectors, we define the
equivalence class:

v ∼1 u ⇔ v = au for some scalar a > 0. (1)

If we consider the quotient space of each tangent plane with respect
to this equivalence relation, and the related quotient tangent bundle
TS/∼1, a field FD : S −→ TS/∼1 maps each point on the
surface to a direction. It is customary to take unit-length vectors as
representatives of their equivalence classes, so that a direction field
can be regarded as a vector field where the length of all vectors is
1. This is equivalent to identifying the quotient space of the tangent
plane at p to the unit circle centered at p. Note that if we take a vector
field F and we define its corresponding directional field F/∼1 by
mapping each vector in the image ofF to its representative direction,
then F/∼1 is undefined at points where F vanishes. Vanishing
points of vector fields, as well as isolated points where directional
fields are undefined, are called singularities.

1.1 Rotational symmetry fields

Let V ' R2 be a two-dimensional Euclidean vector space; let
C ⊂ V be the set of all unit-length vectors of V . Let Θ 2π

n
: V → V

be the endomorphism that rotates a vector by the angle of 2π
n

; the
restriction of Θ 2π

n
to C is also an endomorphism. For an integer

k ≥ 0, let us define the concatenation of k instances of Θ 2π
n

as

Θk
2π
n

= Θ 2π
n
◦ . . . ◦Θ 2π

n
= Θ 2kπ

n
. (2)

We have Θn
2π
n

= Id, hence there exist just n distinct endomorphisms

Θk
2π
n

, with k = 0, . . . , n− 1. We define the following equivalence
relation on C for a given n:

u ∼n v ⇔ u = Θk
2π
n

(v) for some k ≥ 0. (3)

The quotient space C/∼n is called an n-RoSy space (the name RoSy
is borrowed from [Palacios and Zhang 2007]). An element of such a

space, i.e., an n-RoSy, can be represented as the collection of the n
unit-length vectors of C that belong to the same equivalence class.
Alternatively, any vector of C can be taken as a representative of its
equivalence class in the n-RoSy space.

Let S be a smooth surface and p a point on S, as before. If we take
TpS as the vector space V and the unit circle on TpS centered at p
as C, then we can define the n-RoSy space on the tangent plane of p,
denoted asRSnp = TpS/∼n. Analogously, we define the quotient
tangent bundle, i.e., the collection of all n-RoSy spaces for all points
of S, as

RSnS = TS/∼n . (4)

An n-RoSy field on S is a field F : S −→ RSnS . RoSy fields
have been studied by several authors in the literature. The works
of Palacios and Zhang [2007] and Ray et al. [2008] provide several
results on RoSy fields, among which the definition of smoothness,
curvature and turning numbers that characterize singularities.

Note that n-RoSy’s identify vectors of any length that can be mapped
onto each other by an integer multiple of rotation Θ 2π

n
. Therefore,

they abstract both size (as direction fields do) and rotations for
fixed period jumps. Note also that direction fields as defined above
correspond to 1-RoSy fields.

A 4-RoSy field is commonly called a cross field. In the following, we
generalize cross fields to obtain fields that incorporate the concepts
of scale, anisotropy and skewness.

1.2 Frame fields

From now on, we restrict ourselves to n = 4, while introducing
several generalizations to cross fields. For convenience, we rename
the 4-RoSy tangent bundleRS4

S of a surface S as the cross space
of S, and we denote it by CSS .

Let V ' R2 be again a two-dimensional Euclidean vector space.
Let us consider the endomorphism on V × V defined as R(u,v) =
(v,−u), and its concatenation defined as Rk = R ◦ . . . ◦R where
R appears k times in the concatenation. We have R4 = Id, thus
there exist only 4 distinct functions R0 = Id,R1, R2 and R3. We
define the following equivalence relation on V × V:

(u,v) ∼R (u′,v′) ⇔ (u,v) = Rk(u′,v′) (5)
for some k ∈ {0, 1, 2, 3}.

The quotient space (V × V)/∼R is called the frame space of V .
A frame, i.e., an element of (V × V)/∼R, can be represented as
a cyclically ordered set of four vectors 〈u,v,−u,−v〉, where the
angle brackets denote cyclic order. The four representatives in V×V
of an element of (V × V)/∼R are the pairs of consecutive elements
in such a cyclic order, i.e.: (u,v), (v,−u), (−u,−v) and (−v,u).

Similarly to what we did before, we can define the frame spaceFSS
of S as the quotient space TS2/∼R of the two-dimensional tangent
bundle of S, and then define a frame field as a function

F : S −→ FSS .



In what follows, we will only consider non-degenerate, right-handed
frames, i.e., the equivalence classes of pairs (u,v) of linearly inde-
pendent vectors that form (counterclockwise) an angle θ, 0 < θ < π.
We will thus require that all frames in the image of a frame field are
non-degenerate, right-handed.

A cross field can be regarded as a special case of frame field, in which
the representatives of all frames are orthonormal pairs of vectors.
Algebraically, this can be obtained by a canonical projection of
the tangent bundle into the two-dimensional tangent bundle, and
extending such projections to their respective quotient spaces, as
follows:

E : TS −→ TS2, u 7→ (u,u⊥)
ER : CSS −→ FSS , [u] 7→ 〈u,u⊥,−u,−u⊥〉 (6)

where u⊥ = Θπ
2

(u) is the vector orthogonal to u obtained by
rotating u by the angle of π

2
, and [u] denotes the equivalence class

of vector u in the cross space. Note that ER is well defined, i.e., it
gives the same cyclic order of vectors, no matter what vector u is
used to represent a given cross. Given a cross field X , its frame field
version is trivially ER ◦ X .

Conversely, a frame can be regarded as the scaled and sheared
version of a cross. We first extend linear maps in the plane to
linear maps in the frame space. Let V ' R2 be a two-dimensional
Euclidean vector space, and W : V −→ V a non-singular linear
map (i.e., detW 6= 0 if W is represented by a matrix on a basis
for V). We naturally extend the map W to a frame linear map as
follows:

WR : (V × V)/∼R−→ (V × V)/∼R, (7)
〈v,w,−v,−w〉 7→ 〈W(v),W(w),W(−v),W(−w)〉 .

Note that WR is well defined since W is linear and non-singular,
thus, for any v we have W(−v) = −W(v).

Now let us consider a unit-length vector u ∈ TpS, where p is
a point on S. Let us take the cross [u] ∈ CSS and a linear map
Wp : TpS −→ TpS. If we deform each vector of [u] through
Wp, we obtain a frame, i.e., Wp

R ◦ ER([u]) is a frame in FSS ,
which deforms [u] through Wp

R. Next we show that there is a
canonical way to represent a frame as a pair formed of a cross and a
symmetric deformation.

Lemma 1.1. Canonical decomposition.
Let fv,w = 〈v,w,−v,−w〉 ∈ FSS be a non-degenerate, right-
handed frame. There exists a unique cross field [u] ∈ CSS and a
unique symmetric positive definite (SPD) linear map W such that
fv,w = WR(ER([u]).

Proof: Set a local Euclidean reference system (x,y) in the vector
space spanned by fv,w (tangent plane). Then v and w have coordi-
nates (vx,vy) and (wx,wy) in this reference system, respectively.
Since fv,w is non-degenerate and right-handed, the matrix

V =

(
vx wx

vy wy

)
has full rank and positive determinant. Therefore, V admits a unique
polar decomposition V = UP where U is a rotation matrix and P
is a symmetric positive definite matrix. We may rewrite the polar
decomposition as WU = V where W = UPUT is also SPD.
With abuse of notation, let us identify each vector with the column
of its two coordinates. Let u be the unit-length vector corresponding
to the first column of U, i.e., U = [u,u⊥] Let us build the 4 × 2
matrices [u,u⊥,−u,−u⊥] and [v,w,−v,−w], then we have

W [u,u⊥,−u,−u⊥] = [v,w,−v,−w]. (8)

Any cyclic permutation of the four columns of the matrix built from
u returns a corresponding cyclic permutation of the matrix built
from v,w, thus we can conclude that WR(ER([u]) = fv,w. �

Next we extend the canonical decomposition to frame fields. In
order to do this, we must first define linear maps acting on the
tangent bundle of the surface S. Let p be a point on S; a linear
map Wp : TpS −→ TpS is a linear function that associates to
each vector v on the tangent plane TpS another vector lying on the
same tangent plane. Let {(Uα, φα)|α ∈ A} be an atlas for S, let
φα be defined at p, and let Jα be the Jacobian of φα. Then we can
represent Wp through the following commutative digram:

TpS
Wp- TpS

R
2

Jα

?
W̄p- R

2

J−1
α

6

where W̄p is a (uniquely defined) linear map in the Euclidean plane,
expressed as a 2× 2 matrix. Now let us define the tensor field

W : S −→ LS , W(p) = Wp

where LS is the space of linear maps on the tangent bundle of S.
We can define a map

ωα : φα(Uα) ⊂ R2 −→M2,2, φα(p) 7→ W̄p

where M2,2 is the space of 2×2 matrices. We say thatW is smooth
if and only if all ωα are smooth according to the Frobenius norm
on M2,2. We can extend the tensor fieldW to the frame space in a
canonical way as follows:

WR : FSS −→ FSS ,

if v,w ∈ TpS then

〈v,w,−v,−w〉 WR7→ 〈Wp(v),Wp(w),Wp(−v),Wp(−w)〉.

Finally, given a cross field X and a smooth tensor fieldW as above,
we say that the frame field defined as F(p) =WR(ER(X (p))) is
smooth if and only if both X andW are smooth. The proof of the
following proposition readily follows:

Proposition 1.2. Let F be a (non-degenerate, right-handed) frame
field on S and for each p ∈ S let (Xp,Wp) be the canonical
decomposition of F(p) as defined in Lemma 1.1. Let X be the frame
field obtained by collecting all Xp’s, and W be the tensor field
obtained by collecting all Wp’s for all p ∈ S. Then F is smooth if
and only if both X andW are smooth.

In summary, a frame field can be decomposed into a cross field and
an SPD tensor field, and the smoothness of a frame field can be
defined in terms of the smoothness of these two fields.
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