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Figure 1: Given a sparse set of constraints defined on the input surface, we interpolate a dense, non-uniform, anisotropic and non-orthogonal
frame field. We then deform the surface to warp this frame field into a cross field, which we use to guide a uniform, isotropic and orthogonal
quadrangulation of the deformed surface. Finally, we deform the resulting quad mesh back onto the original surface and obtain a non-uniform,
anisotropic and non-orthogonal quadrangulation that follows the prescribed frame field (color scale represents element areas).

Abstract

We introduce frame fields, which are a non-orthogonal and non-
unit-length generalization of cross fields. Frame fields represent
smoothly varying linear transformations on tangent spaces of a
surface. We propose an algorithm to create discrete, dense frame
fields that satisfy a sparse set of constraints. By computing a surface
deformation that warps a frame field into a cross field, we generalize
existing quadrangulation algorithms to generate anisotropic and
non-uniform quad meshes whose elements shapes match the frame
field. With this, our framework enables users to control not only
the alignment but also the density and anisotropy of the elements’
distribution, resulting in high-quality adaptive quad meshing.

CR Categories: I.3.5 [Computer Graphics]: Computational geom-
etry and object modeling—Curve, surface, solid and object repres.
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1 Introduction

Cross fields assign to every point of a surface a smoothly varying
pair of orthogonal directions on the tangent plane. They are ex-
tensively used in Computer Graphics for generating quadrilateral
meshes [Bommes et al. 2013a], for non-photorealistic rendering

[Hertzmann and Zorin 2000; Palacios and Zhang 2007], texture syn-
thesis [Lefebvre and Hoppe 2006; Li et al. 2011], and in architectural
geometry [Liu et al. 2011; Panozzo et al. 2013].

The topology of a cross field is determined by singular points and
separatrix lines connecting them: the singularities divert the flow of
tangential directions, and the separatrices divide the surface into uni-
form patches. The arrangement of these topological features can be
used to design cross fields that follow certain surface characteristics,
such as curvature extrema and principal curvature lines, as well as
to vary the field’s density [Bommes et al. 2013a].

We introduce frame fields, which generalize cross fields by incor-
porating anisotropy, scaling and skewness while maintaining the
topological structure of a cross field. A frame field is defined at
each point of a surface by a pair of – possibly non-orthogonal and
non-unit-length – tangent vectors, and their opposite vectors. It can
be seen as a smoothly varying linear transformation on the tangent
bundle of a smooth surface. Several natural quantities, such as the
curvature tensor, the stress tensor, or a parameterization Jacobian,
can be encoded using frame fields. We show that by decoupling the
rotational component from the scaling and shearing, a frame field
can be uniquely decomposed into a smooth cross field and a smooth
symmetric tensor field on the tangent bundle.

We propose an interpolation algorithm that generates a dense frame
field from a sparse set of constraints. Depending on the application,
the constraints can be manually designed or automatically extracted
from the surface geometry.

A frame field indicates the overall structure of an anisotropic
and scale-varying quad meshing of the surface. In traditional
parametrization-based quadrangulators [Bommes et al. 2013a], a
given cross field describes the desired local alignment of mesh el-
ements, whose ideal shape is assumed to be square. Frame fields
remove this assumption: they additionally describe the length of
mesh edges and their skewness, thus fully specifying the desired
local shape of mesh elements.

We show how to warp a frame field into a cross field with a varia-
tional approach, by deforming the input surface inR3. The resulting
surface is isotropically quadrangulated; by warping it back to the
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original shape, we generate a non-homogeneous, anisotropic and
skewed quad mesh, similar to the kind of meshes manually designed
by professionals for animation or CAD purposes. The singularities,
introduced during the isotropic quadrangulation to accommodate
for the intrinsic curvature of the deformed shape, handle the change
of tessellation density in the adaptive quad mesh (see Figure 1). In
addition to quadrilateral meshing, frame fields can also be used to
guide deformations of images and surfaces.

The contributions of this paper can be summarized as follows:

1. We define frame fields, highlighting their relations to cross
fields and providing the mathematical foundations for their
canonical representation over triangle meshes.

2. We present an algorithm to generate a frame field that interpo-
lates a set of given constraints.

3. We apply frame fields to extend a popular class of isotropic
mesh quadrangulation algorithms to generate meshes with
anisotropic and non-uniform quad faces.

4. We present a cross-hatching technique for visualizing a frame
field.

2 Related work

We review the literature on cross fields, which are orthogonal and
unit-length frame fields, and we discuss existing anisotropic meshing
approaches. We also briefly touch on the relation between interpo-
lating linear transformations and frame fields.

Cross fields were initially proposed by Hertzmann and Zorin
[2000] for non-photorealistic rendering by means of cross-hatching.
Following the seminal work on vector field design [Zhang et al.
2006; Fisher et al. 2007], cross fields have been formally defined
and studied a few years later, and also generalized to a wider set of
symmetries [Palacios and Zhang 2007; Ray et al. 2008]. A cross
field can be created by specifying its singularities [Ray et al. 2008;
Crane et al. 2010], or by prescribing a sparse set of directional con-
straints and letting the topology emerge from a smoothing process
[Bommes et al. 2009; Ray et al. 2009; Knöppel et al. 2013]. Cross
fields do not encode scale or anisotropy, which restricts their appli-
cation to tasks such as hatching-based NPR [Hertzmann and Zorin
2000; Palacios and Zhang 2007] or uniform, isotropic remeshing
[Ray et al. 2006; Kälberer et al. 2007; Bommes et al. 2009; Lai et al.
2010; Pietroni et al. 2011]. Cross fields have been recently used to
design thrust networks and self-supporting surfaces [Panozzo et al.
2013]. Conjugate fields [Liu et al. 2011] are non-orthogonal cross
fields which can be used to create planar quad meshes.

Anisotropic quadrilateral meshing. In the context of remesh-
ing, anisotropy allows increasing the approximation power of a
discretization without increasing the element count [Alliez et al.
2003; Kovacs et al. 2010]. Anisotropic, quad-dominant meshes are
also commonly used to define control grids for subdivision surfaces
that align with shape features, in order to reduce the distortion of the
limit surface during animation [DeRose et al. 1998].

Anisotropic, polygonal meshes can be generated by tracing curva-
ture lines from a set of seed points whose density is proportional
to the curvature values [Alliez et al. 2003; Marinov and Kobbelt
2004]. The resulting meshes are quad-dominant but often contain
other polygonal elements as well, which makes them challenging
to use for FEM or subdivision surfaces. Element alignment to prin-
cipal curvature directions is not necessarily desired in applications
where the user requires explicit control over the alignment, e.g. for
animation purposes [Takayama et al. 2013].

Figure 2: Uniform quadrangulation (MIQ) vs. our anisotropic quad-
rangulation. A similar number of quads is used in both cases to cover
the whole Armadillo (see also Figure 10 for a full view of our result).
The same constraints are given as input in both cases; the nearest
cross field to our frame field is used for the MIQ. The Haursdorff
error w.r.t. the input surface is 20% lower with our variable-scale
meshing: 1.5e-4 compared to 1.8e-4 for MIQ, measured w.r.t. the
bounding box diagonal.

A different approach to create quad meshes with variable density
is proposed in [Huang et al. 2008; Zhang et al. 2010; Ling et al.
2011]. The quadrangulation is defined as the Morse-Smale complex
of the solution of a wave equation, modeled with an anisotropic
surface metric. Unfortunately, this type of methods provides only
limited control over the placement of singularities and edge align-
ment, which are both highly desirable practical requirements.

Liu et al. [2011] generalize [Bommes et al. 2009] to conjugate
direction fields, with the purpose of designing architectural structures
made of flat quadrangular elements. The method specifically targets
the architectural application and is computationally expensive.

Anisotropy of elements can also emerge from techniques aimed at
producing very coarse quad layouts [Tarini et al. 2011; Bommes et al.
2013b]. In this case, however, the anisotropy is a casual byproduct
rather than a controlled result stemming from input requirements.

Kovacs et al. [2010] propose an adaptation of [Bommes et al. 2009]
to generate curvature-aligned, anisotropic quad meshes. Their key
idea is to embed the surface in a 6D space and use the Riemannian
metric induced by the embedding to drive the parametrization and
quad meshing. The method is restricted to anisotropy implied by
curvature directions, and it is unable to insert singularities that are
necessary to change the scale of the quads. A similar metric is also
used in [Lévy and Bonneel 2012; Zhong et al. 2013] for anisotropic
triangular remeshing.

As remarked in [Kovacs et al. 2010], higher-dimensional embed-
dings are effective to manage anisotropy, but they mask the relation
between Gaussian curvature and field topology, which makes it diffi-
cult to place singularities based on the modified metric. In contrast,
we rely on a 3D deformation that warps the anisotropic metric in-
duced by our frame fields into a Euclidean metric. This way, both
curvature-related and density-related irregular vertices of the final
tessellation emerge from curvature-related singularities of the cross
field on the deformed surface. An example result obtained with our
method is compared in Figure 2 with a uniform quad mesh obtained
with the popular Mixed-Integer Quadrangulation (MIQ) of Bommes
et al. [2009]. The color scale depicts the area of mesh elements
(red/smaller to blue/larger), highlighting the adaptivity of our result.

Interpolation of 2D transformations. Images and 2D shapes can
be manipulated by interpolating a sparse set of linear transformations,
see e.g. [Schaefer et al. 2006; Jacobson et al. 2011; Yücer et al.



2012]. Frame fields provide a natural way to interpolate linear
transformations on the tangent bundle of a 2-manifold: they can
interpolate 2D shear, scaling and rotations efficiently, as explained
in Section 5. Several previous works discuss interpolation of linear
and affine transformations in Euclidean spaces for deformation and
animation purposes (see, e.g., [Alexa et al. 2000; Rossignac and
Vinacua 2011]), while our method operates on surfaces.

3 Frame fields

Let S be a smooth, oriented surface embedded in R3, let p be a
point on S and TpS the tangent plane at p.

A frame fp at a point p of S is defined as a cyclically ordered set of
four vectors 〈v,w,−v,−w〉 on TpS (hereafter, angular brackets
represent cyclic order), such that v and w are linearly independent,
and the angle of the counterclockwise rotation of v onto w is smaller
than π.

Note that every pair of consecutive vectors in this cyclic order, i.e.,
(v,w), (w,−v), (−v,−w), (−w,v), together with the origin p
define a right-handed basis (generally non-orthonormal and even
non-orthogonal) for TpS.

If v,w are an orthonormal pair, i.e., v = u and w = u⊥, with
|u| = 1, then the resulting frame 〈u,u⊥,−u,−u⊥〉 is called a
cross.

A frame field F associates to each point p of S a frame in the
tangent plane TpS. A cross field is a frame field where all frames
are crosses; this is consistent with the definition in [Ray et al. 2008].

Given a frame fp at p, let us put an arbitrary right-handed orthonor-
mal basis B on TpS and let us express the vectors of frame fp
with respect to B. We denote by V = [v,w] the 2 × 2 matrix
having as columns the coordinates of v and w w.r.t. the basis B.
The determinant of V is always positive, since v and w are linearly
independent and form an angle between 0 and π. If fp is a cross,
then [u,u⊥] is a rotation matrix. Conversely, every 2 × 2 matrix
with a positive determinant defines a frame, and every 2× 2 rotation
matrix defines a cross.
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Figure 3: Canonical decomposition of a frame (left) into a tensor
W (middle) and a cross (right). W transforms the cross into the
frame (right-to-left).

Canonical decomposition. We can unambiguously represent a
frame fp = 〈v,w,−v,−w〉 by a combination of a cross x =
〈u,u⊥,−u,−u⊥〉 and a linear, symmetric positive definite (SPD)
map W on the tangent plane TpS, such that

fp = Wx = 〈Wu,Wu⊥,−Wu,−Wu⊥〉. (1)

To show this, let us set a local right-handed orthonormal basis on
TpS and define V = [v,w] as before. Since V has full rank,
it admits a unique polar decomposition V = UP where U is
an orthogonal matrix and P is an SPD matrix. Moreover, since

detV > 0, U is a rotation (in fact, it is the rotation nearest to the
linear map V) and P contains the stretch factors intrinsic to V. We
rewrite the polar decomposition as V = WU, where

W = UPUT . (2)

Note that W is SPD (see Figure 3). Let u be the unit-length vector
corresponding to the first column of U, i.e., U = [u,u⊥], then:

W [u,u⊥,−u,−u⊥] = [v,w,−v,−w]. (3)

Any cyclic permutation of the four columns of the matrix built from
u represents the same cross field, and its transformation through W
returns a corresponding cyclic permutation of the matrix built from
v,w. Thus we can safely declare that fp = Wx:

Lemma 3.1. Let fp = 〈v,w,−v,−w〉 be a frame on TpS . There
exists a unique cross x = 〈u,u⊥,−u,−u⊥〉 and a unique SPD lin-
ear map W such that fp = Wx = 〈Wu,Wu⊥,−Wu,−Wu⊥〉.

In summary, a frame field F on S can be uniquely decomposed
into a cross field X and an SPD tensor field W . The decom-
position is defined point-wise, therefore it cannot be directly
used to characterise the differential properties of the frame field.
In the following, we rely on the differential properties of the
components to define the corresponding properties of the frame field.

Definition 3.2. A frame field is said to be continuous/smooth if
both X andW are continuous/smooth.

Note that while this can potentially restrict the space of continu-
ous/smooth frame fields, we did not experience this problem in our
experiments. As we will discuss in Section 5, we always generate
a smooth frame field by optimizing for a smooth cross field and a
smooth SPD tensor field.

Discrete frame fields. LetM be a triangle mesh approximating
a smooth surface S . Similarly to [Ray et al. 2008], we discretize the
frame field F on S as a piecewise-constant field onM, constant
inside each triangle.

A frame ft on triangle t is represented by the two canonical compo-
nents (Lemma 3.1): a cross x and an SPD linear map W. The cross
x is represented by an angle w.r.t. a local orthonormal basis B on
the plane of t, modulo rotations of π/2 [Ray et al. 2008]. The map
W is represented as an SPD 2× 2 matrix w.r.t. the same basis B.

An advantage of this representation over a more explicit one, which
directly encodes two of the four vectors of the frame, is that W is
independent of the choice of the representative vectors. However,
the representation is not globally consistent, since the basis B is
different for every triangle. Note that, apart from special cases, it
is impossible to choose a globally consistent (smooth) basis for the
entire mesh due to the hairy ball theorem.
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A discrete cross field is said to
be smooth if it minimizes the
smoothness energy proposed
in [Ray et al. 2008] (see their
Eq. 16), i.e., if the differences
between adjacent crosses are
small. To compare between
frames on two adjacent trian-
gles, we need to locally express
the frame field in a common ref-
erence system. Let t1 and t2 be two triangles sharing an edge, and
let f1 = {x1,W1}, f2 = {x2,W2} be the two corresponding
frames expressed in the bases of the triangles’ planes, B1 and B2.
The change of basis for the cross part of the frame field is the



rotation R12 = B1B
−1
2 . The same matrix R12 is also used to

transport the tensor part: let us decompose W1 = U1P1U
T
1 and

W2 = U2P2U
T
2 , where the U’s and P’s are the rotation and

SPD matrices, respectively (as in the canonical decomposition). To
change the reference system of W2 to be compatible with W1 we
have to substitute U2 with R12U2. Consequently, W2 expressed
in the same reference system of W1 becomes R12W2R

T
12.

Alternatively, the same construction could be adapted to discretize
frame fields on vertices and linearly interpolate them inside faces.
In this case, the cross field would be defined using [Knöppel et al.
2013], and the linear part interpolated using barycentric coordinates.
We opted for the piecewise-constant definition since it fits better
with the following algorithmic part, where we generate a map whose
Jacobian matches a piecewise-constant matrix defined per triangle.

4 Frame field visualization

A visualization of a given frame field on a mesh can be desirable
in a variety of applications. The corresponding task for cross fields
is elegantly solved in [Palacios and Zhang 2011] by using line
integral convolution (LIC). A frame field has additional features
to be conveyed, which makes its visualization more difficult: while
skewness can be represented naturally with LIC, scale and anisotropy
cannot. As noted in [Palacios and Zhang 2011], these attributes
might be mapped over color, but the mapping would be arbitrary
and unintuitive.

We rather resort to a cross-hatching technique: we superimpose two
line-hatchings in the two directions specified by the frame field; the
spacing between the lines in one direction indicates the length of the
frame field component in the other direction. This cross-hatching
tends to sketch rectangles with the size and shape indicated by the
frame field, providing an intuitive visualization without the need to
compute a full quadrilateral remeshing as in Section 7.

To make the resulting images readable even in the presence of strong
scale variations, we superimpose two different cross-hatching pat-
terns: a thick, black one at a given scale proportional to the frame
field scale, and a thinner, light blue one, which is 0.2 times finer.

We implemented the above concept in a
realtime, texture based renderer for frame
fields defined over triangle meshes. First,
we procedurally generate a pseudo-random,
blue-noise, tileable texture, which features
an irregular layout of vertical segments of
varying lengths (see inset). A simple dart-
throwing technique is employed to popu-
late the texture with vertical strokes while
ensuring that no two segments are closer than a given threshold.
Next, a two-layered UV-mapping is propagated over the surface fol-
lowing the frame field, i.e., the parametrization of the vertices of a
given triangle t has a Jacobian that is close to the frame ft. Similarly
to [Sorkine et al. 2002], we start at an arbitrarily chosen triangle
and iteratively expand over neighbors, until each triangle is covered
twice: exactly once for each of the two directions of the frame field.
During the propagation, the UV coordinates computed by different
triangles incident on the same vertex are averaged together if they
are similar enough, otherwise texture seams are generated. In the
final rendering, each fragment accesses the texture twice at the two
UV locations, creating the two superimposed directions forming the
cross-hatching (for each cross hatching pattern).

This simple approach is effective in hiding texture seams thanks to
the stochastic nature of the texture, and because the seams of the
two superimposed directions appear in different positions. Since
no semantics is attached to the stroke length, seams that are almost

horizontal in texture space are less evident; for this reason, during
the UV propagation, we prioritize expansion over edges that are
close to vertical in texture space. Similarly, texture distortions in the
vertical texture direction do not disrupt the directions of the lines:
when deciding whether to lump texture coordinates, we can tolerate
more discrepancies in the V direction, thus reducing the number of
seams.

The visualizations of the frame field appearing in various figures are
realtime screenshots of this simple technique.

5 Frame field interpolation

Many natural quantities can be encoded as a frame field, such as
the curvature tensor, or the stress tensor of a self-supporting sur-
face [Vouga et al. 2012]. We provide a user-friendly way for de-
signing frame fields, which can be employed in applications such
as anisotropic meshing or user-defined image deformation. This
method consists in generating a smooth frame field that satisfies a
sparse set of given constraints f̂1, . . . , f̂k on triangles t1, . . . , tk.

The canonical decomposition of Lemma 3.1 is applied to each con-
strained frame, obtaining a set of cross field constraints x̂1, . . . , x̂k

and a set of linear transformations Ŵ1, . . . ,Ŵk. Note that both the
crosses and the matrices are defined in the local reference systems
at each triangle, as described in Section 3.

The discrete smooth cross field X that satisfies the constraints
x̂1, . . . , x̂k on the corresponding faces is computed using [Bommes
et al. 2009]. We interpolate the coefficients of the symmetric tensor
fieldW independently as harmonic scalar fields that satisfy the con-
straints. However, this cannot be done directly, since each constraint
is expressed in a different reference system, and it is impossible to
pick a consistent reference system for the entire surface. Following
an approach similar to [Palacios and Zhang 2007], we define a face-
based discrete Laplacian operator LB that encodes the changes of
the reference systems and we use it to interpolate the coefficients of
the symmetric tensors as follows:

LB(wT
1 ,w

T
2 , ...,w

T
n )

T = 0 (4)

subject to wj = ŵj , j ∈ C

where each wi ∈ R3 is a vector that contains the three entries of
Wi (one coefficient is redundant since the matrix is symmetric), C
is the set of the constrained faces and ŵj are the constraints. Note
that the different components of the wi’s are not separable due to
the presence of rotations that transform between adjacent bases;
therefore, the sparse matrix LB has size 3n × 3n, where n is the
number of faces of meshM. The entries of LB are described in
Appendix A. The validity of the interpolation result is guaranteed by
the following lemma, whose proof is provided in Appendix B.

Lemma 5.1. All matrices Wi obtained by solving Eq. (4) are SPD,
provided that all constraints Ŵj are SPD.

Note thatW is a generic SPD tensor field, which cannot be directly
interpolated as a 2-RoSy field, since the latter is equivalent to a
traceless symmetric tensor (see Appendix of [Palacios and Zhang
2007]).

Alternative parametrization. The fact that our frame represen-
tation is unique and independent of the labeling of the four frame
vectors as v,w, etc., eases the task of interpolating between frames
whose vectors are labelled inconsistently, by simply interpolating
between the three unique coefficients of W (regardless of labeling).
For this reason, we prefer using this representation to alternatives,
like using the matrix P (as done in [Alexa et al. 2000] for planar



mesh morphing), even though its coefficients a, b, c have the benefit
of being more directly linked to intuitive quantities like scale and
skeweness (see Figure 3). Direct interpolation of such geometric
properties has been used, e.g., in [Pal et al. 2014] in a much simpler
setting, to interpolate the scales of orthogonal reference systems
induced by a singularity-free direction field. In our general setting,
this type of interpolation requires a much more complex derivation
of the Laplace operator to account for inconsistent labeling of frame
vectors. Of course, the choice of field representation affects the in-
terpolation results, but according to our experiments, the differences
appear to be small in practice (see Figure 4).

Figure 4: Different parameterizations for interpolation. The frame
field is constrained just at the four corners. Left: interpolation of
the coefficients of W. Right: direct interpolation of the magnitudes
of v and w and the angle between them.

6 Frame-driven deformation

A frame-driven deformation of a surface strives to warp a frame
field defined over the surface into a cross field. In this way, we can
apply the existing technology for processing cross fields to our frame
fields, in particular, to the generation of anisotropic and non-uniform
quadrilateral meshes (Section 7).

3D embedding. Let (A, gF ) be an abstract manifold, where
gF = W−TW−1 is the metric implied by a smooth frame field
F defined on A. We want to compute an embedding S ′ of this
abstract manifold such that the canonical metric on S ′ (induced by
the ambient Euclidean space) is similar to gF , or equivalently, such
that the frame field is warped into a cross field.

It follows from the Nash embedding theorem [Nash 1956] that,
in general, a Euclidean embedding of (A, gF ) exists in higher di-
mensions; in particular, Lévy and Bonneel [2012] report that 10
dimensions are necessary to obtain a smooth embedding for a 2-
manifold. However, for our applications, such a high-dimensional
embedding would be impractical: it cannot be used for image and
surface deformation, and it is unclear how it could be useful for
anisotropic meshing. As noted by Kovacs et al. [2010], there is
no direct connection between the intrinsic curvature of a surface
embedded in a high-dimensional space and the actual singularities
of a cross field. Moreover, our experimental results indicate that in
practice, three dimensions are sufficient to express gF sufficiently
well. For these reasons, we obtain an approximation of the metric
by computing an embedding in 3D, that is, by deforming the input
surface S.

Deformation energy. In our discretization, the frame field is de-
fined on all triangles of a meshM: given a triangle t ofM, we
denote by ft the frame associated with t and by Wt the correspond-
ing W matrix computed in the local coordinate system of t. The map
Wt transforms the cross xt in triangle t into the frame ft. There-
fore, the ideal deformation for the triangle t is W−1

t . As discussed
before, it might be impossible to exactly deform all triangles to their
ideal target shape and maintain a closed mesh; we thus minimize an

energy that penalizes deviations from the ideal transformations:

E(p′) =
∑
t∈M

min
Qt∈SO(3)

At

∥∥∥Jt(p
′)−QtW̃

−1
t

∥∥∥2
F

(5)

where p′ is the vector of unknown vertex positions of the deformed
mesh, At is the area of t, Jt(p

′) is the Jacobian of the deformation
of triangle t, and W̃t is the 3× 3 version of Wt, expressed in the
global 3D coordinate system. The best-fitting (unknown) rotation
matrix Qt provides an additional degree of freedom that factors out
triangle rotations, providing a richer space to minimize the energy.

Block coordinate descent. The energy (5) is similar to the
ARAP energy proposed in [Sorkine and Alexa 2007; Liu et al. 2008].
This energy can be quickly and reliably minimized using block
coordinate descent: we iteratively alternate between fixing Q and
optimizing for p′ (which amounts to solving a sparse linear system),
and fixing p′ and optimizing for Q (which amounts to a set of local
Procrustes problems that can be solved using SVD). The gradient of
the energy w.r.t. p′, for fixed Q, can be compactly written as:

∇E(p′) = −4(Lp′ − b) (6)

where L is the standard cotan Laplacian matrix of M and b is
defined row-wise as:

bi =
∑

j∈N (i)

1

2

(
cot θijQt(i,j)W̃

−1
t(i,j)+ (7)

+ cot θjiQt(j,i)W̃
−1
t(j,i)

)
(pj − pi),

where pi and pj are vertex positions of the input mesh,N (i) denotes
the indices of the vertices adjacent to vertex i, t(i, j) is the triangle
to the left of the half-edge (pj − pi), and θij is the angle of t(i, j)
opposite of this half-edge. For the derivation of the gradient see
Appendix C.

Initialization. To initialize the optimization, we use the vertex
positions in the original mesh as p′ and we randomly generate
rotations by very small angles to initialize Q. Such small rotations
are not necessary (the identity matrix is actually the most natural
candidate) but we found that they help the solver to avoid local
minima in areas with zero mean curvature, while not affecting the
optimization anywhere else. Note that self-intersections commonly
appear during deformation (see the ears in Figure 1) and do not
require any special treatment.

7 Frame-field aligned quadrangulation

Since the deformation problem in the previous section is over-
constrained, the deformed frame field is not exactly a cross field. For
each triangle t′ that is a deformed version of triangle t, we substitute
the deformed frame ft′ = Jtft (where Jt is the Jacobian of the
deformation) with its nearest cross, which is obtained through polar
decomposition (see Canonical decomposition in Section 3).

Next, we smooth the cross field and use it to parametrize the de-
formed mesh with [Bommes et al. 2009]. We then remesh the
deformed surface with [Ebke et al. 2013], producing a uniform quad
remeshing. Note that any other method capable of smoothing a
standard cross field and computing a quad mesh aligned with it can
be employed instead. In this sense, our framework can be seen as
a way to generalize any such system to deal with anisotropy, scale
variation and non-orthogonality.

In the last step, we apply the reverse deformation to the resulting
quad mesh: the final result is a remeshing of the original mesh
M that is compliant with the original frame field. The reverse



anisotropic MIQ ours

Figure 5: Frame-field aligned quadrangulation vs. Anisotropic
MIQ [Bommes et al. 2009]: a frame field imposing a strong transi-
tion of scale along the Cigar dataset (top left); the corresponding
frame-driven deformation (top right); a remeshing obtained with
Anisotropic MIQ (bottom left) and our remeshing (bottom right).
Green areas in the top left picture represent constrained parts: the
ratio between the scales imposed on the two parts is 10.

deformation is computed trivially using barycentric coordinates,
since the underlying triangle meshes (deformed and original) share
the same connectivity, and the quad remeshing algorithm generates
vertices that lie on the deformed mesh.

If the input frame field was obtained through interpolation of con-
straints, the same constraints are maintained during the cross field
smoothing phase on the deformed surface. The cross field in all
other triangles is interpolated as in standard MIQ. In this way, new
singularities may arise in the smoothed cross field, reflecting the in-
trinsic (Gaussian) curvature of the deformed surface [Bommes et al.
2013a]. Intuitively, these singularities include the ones necessary to
accommodate for changes in tessellation density in the final result
(see Figure 5 and other figures throughout this paper for examples).
In other words, after the deformation, the singularities needed for
adaptive tessellation become equivalent to the singularities needed
for a uniform tessellation and can be dealt with as such.

Anisotropic MIQ. We compare our approach to Anisotropic MIQ
proposed in [Bommes et al. 2009] for aligning meshes to curva-
ture fields. In Anisotropic MIQ, anisotropic scales associated with
curvature are used as gradients during the parametrization phase
to scale mesh elements accordingly. Since this is done after the
cross field has been fixed, its topology cannot be altered, so no new
singularities may arise to accommodate for the changes in scale. In
the example shown in Figure 5 we use an orthogonal frame field
with a large change of scale. The Anisotropic MIQ is able to handle
the change of scale along the longitudinal direction, which does not
require transitions in the connectivity. The size of elements in the
transversal direction is maintained constant. This is a compromise
between the scales enforced at the two halves of the Cigar; many
irregular vertices are crowded together near the four singularities of
the field to compensate for an abrupt change of scale towards the
extremities.

8 Results and applications

The statistics on our experiments are reported in Table 1. We assess
the quality of our frame-driven deformation by measuring how well
it succeeds in warping the frame field into a cross field. Let W′

t be
the W matrix of the warped field Jtft at triangle t, where Jt is the
Jacobian of the deformation. We measure how much W′

t differs

Dataset # Tris Ed Time (sec.) # Quads
Int. Deform. Parametr. Remesh.

Legs 29k 0.033 3.05 3.07 12.66 0.84 8.6k
Hand 35k 0.186 7.11 4.58 20.59 1.35 19.5k
Cube 40k 0.018 12.67 17.85 39.36 7.72 5.5k
Cigar 49k 0.020 22.22 23.59 4.36 1.77 28.8k
Face 52k 0.058 7.92 12.81 49.23 1.32 6.2k
Bunny 56k 0.045 19.49 8.38 40.13 1.62 14.4k
Horse 77k 0.050 11.23 10.08 58.77 2.46 9.3k
Armadillo 155k 0.072 25.82 22.33 802.56 3.92 18.2k
Ptex 46k 0.108 10.14 23.89 12.62 1.20 5.4k
Fertility 46k 0.416 8.55 22.40 3.47 1.15 18.5k

Table 1: Statistics on our datasets: input size (# Tris), metric error
of the field-driven deformation (Ed), processing time in seconds and
output size (# Quads). We measured the processing time for all steps
of our method, i.e. frame field interpolation (Int., Section 5), surface
deformation (Deform., Section 6), cross field smoothing and surface
parametrization (Parametr., Section 7) and remeshing (Remesh.).
For cross field smoothing and parametrization we use MIQ [Bommes
et al. 2009] and for quad remeshing we use QEx [Ebke et al. 2013].

from the identity and we integrate this over the whole mesh:

Ed =
1

AM

∑
t∈M

At

∥∥W′
t − I

∥∥
F
,

where AM is the total area of mesh M and At is the area of a
triangle t. The deformation error is moderate in all experiments,
suggesting that the computed 3D embedding is a good approximation
of the metric implied by the frame field (Table 1).

Depending on the provided constraints, the deformation obtained
by minimizing Eq. (5) might produce meshes that are not suffi-
ciently smooth to be processed with MIQ. In this case, we add a
regularization term to the deformation energy as follows:

Er(p′) = (1− λ) E(p′) + λ ‖L(p′ − p)‖2. (8)

A fixed λ = 0.1 was used for all experiments.

Isotropic scale. Figure 6 illustrates an example of large variation
of isotropic scale on the Cube. One side of the surface is constrained
to have an orthogonal, isotropic frame field aligned to principal
curvature directions. A similar frame field, scaled down six times,
is the constraint on the opposite side. The region in the middle

Figure 6: Large change of scale, isotropic: The singularities neces-
sary to warrant transition of scale naturally arise when smoothing
the cross field on the deformed mesh.



Figure 7: Large change of scale, anisotropic: Both ears of the
Bunny are assigned an anisotropic frame field, one stretched in the
longitudinal direction and the other stretched in the transversal
direction.

is unconstrained to allow for a smooth scale transition. Figure 5
illustrates another such example, where the scales imposed on the
two halves of the Cigar differ by a factor of 10, and the transition
region towards the middle of the Cigar is relatively narrow. In both
cases, the alignment in the constrained regions is preserved, and
the singularities necessary to accommodate for the change of scale
are automatically introduced. Note that they are always placed in
regions where the deformed mesh has a high Gaussian curvature.

Anisotropic scale. Figure 7 illustrates an example of large
anisotropic scaling. The frame field is isotropic, at unit scale and
aligned with the principal curvature directions on the whole Bunny
except at its ears, where anisotropic scaling is added by imposing
an opposite stretch direction on each ear. Our method remeshes the
entire model while satisfying the constraints even on the left ear,
where the anisotropy is perpendicular to the mesh features.

Skewness. Figure 8 shows an example of large skewness on the
Legs dataset. The frame-driven deformation greatly stretches the
legs to compensate for the high shearing, and the singularities nec-
essary to accommodate the transition from diagonal to longitudinal
orientation are automatically introduced.

Sparse constraints. Given a set of manually placed sparse con-
straints, our method can generate high-quality meshes that are simi-
lar to those manually generated by an artist. Figures 1 and 9 show

Figure 8: A highly skewed frame field is imposed in the middle part
of the legs to obtain a diagonal alignment of the “fishnet stockings”,
while an orthogonal, longitudinal alignment is imposed at the feet
and the hips. The singularities necessary to change the orientation
of the meshing are inserted by our algorithm.
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Figure 9: Field design and quad remeshing from sparse constraints.
A sparse set of constraints (green quads) is specified on the input
surface to orient and size the frame field; a dense frame field is
obtained by interpolation, and the surface is deformed to obtain
a cross field. Top right: Color represents deformation error on
a square root scale, see Table 1. The histogram represents the
distribution of the per-triangle deformation error. Bottom right: The
final quad mesh adheres to the input constraints and closely follows
the interpolated frame field (color represents face area).

two examples on the Head and Horse datasets, respectively. The
green quads placed on the input meshes represent the frame field con-
straints. A point on the original mesh that projects onto a point on a
constraint-quad is constrained to have a frame field that is formed as
follows: we take the “horizontal” and “vertical” barycentric coordi-
nates of the projected point (corresponding to bilinear interpolation
on the quad) and use them to interpolate the two horizontal and
vertical edges of the quad, respectively. The two resulting vectors
form the constraint frame.

Dense input. In Figure 10 an artist specified the frame field on
the hands and feet of the Armadillo by drawing a dense quad mesh.
The frame field is then interpolated over the rest of the surface, and
a pure quad mesh is generated. The singularities forced by the user
constraints are preserved, and new ones are added to smoothly fill
the unconstrained region. Note that our algorithm is not able to
exactly preserve the connectivity provided by the artist.

Curvature-aligned. Figure 11 shows an example of curvature-
aligned meshing on the Hand dataset. The frame field is defined
by principal curvatures (including both directions and magnitudes)
where the curvature anisotropy is high enough, and it is smoothly
interpolated on the remaining faces. Note how the frame-driven
deformation tends to compress the fingers along their length and
squeeze the flattest region of the palm. The resulting quad mesh
correctly follows the anatomy of the hand and exhibits anisotropic
elements that are consistent with the curvature field.

Ptex conversion. Our algorithm can be used to convert a standard
UV mapping to a Ptex mesh [Burley and Lacewell 2008]. The frame
field is defined as the Jacobian of the UV mapping on faces that are
far enough from the parametrization seams, and it is interpolated on
the other faces. As shown in Figure 12, the quad mesh generated by
our algorithm can be directly used for Ptex, since it perfectly aligns
with the UV parametrization and gracefully handles the mismatches
of scale and anisotropy at the seams.



Figure 10: An artist manually drawn a quad mesh on hands and feet
plus a sparse set of constraints (green quads). Our method produces
a complete quad mesh which preserves the singularities specified
by the artist and add new ones to ensure a smooth interpolation of
the constraints. The layout is analogous to Figure 1; red and blue
bullets depict irregular vertices.

Image warping and surface deformation. Figure 13 presents
two simple examples of image and surface deformation. Note that
differently from other deformation methods, our deformation is
entirely intrinsic. We believe that the use of frame fields can com-
plement traditional methods for image warping and deformation.
However, a more thorough study and experimentation is necessary
to make this approach practicable.

Figure 11: An orthogonal but highly non-uniform and anisotropic
frame field is interpolated from principal curvatures; the resulting
quad mesh closely follows the anatomy of the hand.

Figure 12: We convert a standard UV mapping to a Ptex mesh
[Burley and Lacewell 2008] by using the parametrization’s Jacobian
as a frame field. The checkerboard texture depicts the input UV
parametrization; the frame field is constrained in green areas and it
is interpolated in white areas.

9 Limitations and concluding remarks

Frame fields represent a smoothly varying linear transformation
over the tangent space of a surface and are a natural extension of
cross fields enriched with scale, anisotropy and skewness. We have
defined frame fields formally, discretized them over triangle meshes
and proposed a method to generate fields that satisfy a set of user-
provided constraints. We have demonstrated how they can be applied
to solve practical geometry processing problems such as the design
of anisotropic and non-homogeneous quad meshes and image or
surface deformation.

A practical limitation of our approach is the fact that the frame-driven
deformation (Section 6) may deteriorate the quality of the triangula-
tion, especially when the constraints imply a large difference in scale.

Figure 13: Image and surface deformation. The Worm is scaled
progressively along its spine, its airscrew is made bigger and the
post shorter, by placing a few frame constraints, interpolating them
over the entire domain and then performing frame-driven deforma-
tion. The Giraffe is deformed into a horse-like animal by placing
anisotropic scaling constraints on its neck and legs.



Figure 14: An experiment similar to Figure 5, but where we try to
impose a difference of a factor 100 in the scales. Our implementation
of MIQ is not able to generate a pure isotropic quad mesh due to the
low element quality on the deformed model.

Triangle size differences can introduce numerical problems in the
MIQ method [Bommes et al. 2009] which we use to quadrangulate
the deformed surface. In practice, we did not notice any problems
as long as the ratio between the largest and the smallest scales of
frames was lower than 10, which is sufficient for many practical
scenarios. We show in Figure 14 a case where our implementation
of MIQ failed to generate a pure quad mesh due to the presence
of more than a thousand flipped faces in the parametrization step.
A possible way to alleviate this problem is to perform isotropic
triangular remeshing after the deformation. This is not an intrinsic
limitation of our method, because any technique capable of produc-
ing uniform quadrangulations over a given surface can be employed
on our deformed mesh in lieu of [Bommes et al. 2009]. Another
limitation is the lack of guarantees that our Euclidean embedding
process terminates with low metric error, although we only noticed
this problem for almost degenerate fields, as shown in Figure 15.

Frame fields open interesting possibilities for future work, both in
terms of generation techniques and novel applications. A custom
user interface could be designed to allow artists to intuitively and
interactively specify the scaling and anisotropy constraints. This
interface could take advantage of the possibility to handle orientation
constraints separately from sizing constraints, and enable to warm-
start each optimization step, improving the results incrementally
as additional constraints are added. It would also be interesting to
compute the surface embedding directly from the sparse set of frame
constraints, without generating an intermediate frame field that is
currently used to guide the deformation algorithm. By combining
the two steps, it might be possible to improve the locations and the
number of field singularities.

We believe that this work may have a potentially high impact in many
geometry processing applications, such as the design of anisotropic
and skewed planar quadrilateral meshes and in the generation of
brick tessellations for structural geometry. A generalization of 6-
symmetry fields with non-uniform lengths and non-uniform rotation
angles could be used to create anisotropic, semi-regular triangle
meshes. Extending frame fields to 3D could provide the foundation
for anisotropic and adaptive hexahedral meshing.
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Prescribed shape
(smaller angle 10 degrees) 

Our result 
(smaller angle ~20 degrees)

Figure 15: We prescribe an extreme skewness in the green region
in the back of the Fertility model. Our algorithm generates a pure
quad mesh that does not precisely satisfy the provided constraints:
We prescribed a minimal angle of 10 degrees, but our mesh has a
minimal angle of around 20 degrees in the constrained region.
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A Derivation of LB

Let ti, tj be two adjacent triangles ofM, let Wi, Wj be their W
matrices, expressed in the respective local bases Bi,Bj , and let Rij

be the change of basis between ti and tj . The matrices Rij are fixed
per given mesh and choice of local bases on its faces. Let us denote

Wi =

[
wia wib

wib wic

]
Rij =

[
rija rijb
rijc rijd

]
. (9)

A uniform Laplacian for scalar functions onM that are constant on
the faces is an n× n matrix defined as

L =
∑

(i,j)∈H

Lij , where Lij [i, i] = −1, Lij [i, j] = 1. (10)

Lij are n× n matrices whose entries are zeros except entries [i, i]
and [i, j] as specified above;H denotes the set of half-edges ofM.
We define a corresponding Laplacian matrix for our problem by
taking into account that each matrix Wi contains three unknowns,
and that a change of basis is necessary to compare the matrices of
adjacent triangles. The matrix Wj expressed in the same basis of
Wi becomes Wij = RijWjR

T
ij , where

wija = r2ijawja + 2rijarijbwjb + r2ijbwjc ,
wijb = rijarijcwja+

+(rijbrijc + rijarijd)wjb + rijbrijdwjc ,
wijc = r2ijcwja + 2rijcrijdwjb + r2ijdwjc .

Thus we want a matrix operator that computes the differences be-
tween wia and wija, wib and wijb, and wic and wijc. We represent
each Wi by vector wi = [wia, wib, wic]

T and we build a 3n× 3n
matrix LB defined as

LB =
∑

(i,j)∈H

LB
ija + LB

ijb + LB
ijc (11)

where

LB
ija[3i, 3i] = −1 , LB

ija[3i, 3j] = r2ija ,
LB

ija[3i, 3j + 1] = 2rijarijb , LB
ija[3i, 3j + 2] = r2ijb ,

LB
ijb[3i+ 1, 3i+ 1] = −1 , LB

ijb[3i+ 1, 3j] = rijarijc ,
LB

ijb[3i+ 1, 3j + 1] = rijbrijc + rijarijd ,
LB

ijb[3i+ 1, 3j + 2] = rijbrijd ,
LB

ijc[3i+ 2, 3i+ 2] = −1 , LB
ijc[3i+ 2, 3j] = r2ijc ,

LB
ijc[3i+ 2, 3j + 1] = 2rijcrijd ,

LB
ijc[3i+ 2, 3j + 2] = r2ijd ,

and all other entries of the matrices are zero. Here we assume the
indices of matrix entries start at zero.

B Proof of Lemma 5.1

We provide the proof in the plane. On a generic meshM the proof
is similar, but it involves further technicalities related to changes
of local coordinate systems, which make the Laplace equation not
separable for the three components of each wi.

In the plane, we can express all matrices Wi in a unique basis, so
no changes of coordinates are necessary. In this case, we can rewrite
Eq. (4) as three equations

LMwa = 0, LMwb = 0, LMwc = 0 (12)

subject to constraints, respectively,

wja = ŵja, wjb = ŵjb, wjc = ŵjc, j ∈ C, (13)

where wa,wb,wc collect the wia, wib, wic coefficients of the Wi

matrices, respectively, while LM is a standard n×n uniform Lapla-
cian matrix depending just on the connectivity ofM. The solution
of each constrained equation can be obtained in a standard way
by removing the rows and columns of LM corresponding to the
constraints, and then building a right-hand term that depends only
on the constraints. Therefore, each constrained equation becomes
a linear system of the type LMf wz = bz , for z = a, b, c, where
LMf is the Laplacian matrix reduced to the n− k free terms of the
Laplace equation and bz is a linear combination of the ŵjz coeffi-
cients. Since the matrix LMf is the same in all three systems, the
solution is of the type

Wi =
∑
j∈C

αijŴj , (14)

where the αij coefficients depend only on LMf . Since we solve a
discrete Laplace equation with positive weights, the solution must
satisfy the discrete maximum principle [Wardetzky et al. 2007], i.e.,

min
j∈C

ŵjz ≤ wiz ≤ max
j∈C

ŵjz. (15)

This implies that all the αij coefficients are non-negative and they
cannot be all zero (actually, it can be proven that they sum to 1): if
for a given j we had αij < 0, then by setting the constraint ŵjz > 0
and all other ŵhz = 0, we would obtainwiz < 0, which violates the
maximum principle; similarly, if all αij were zero, the maximum
principle would be violated by setting all ŵjz strictly positive.

To conclude, let v be a non-zero vector. We have

vTWiv = vT

(∑
j∈C

αijŴj

)
v =

∑
j∈C

αijv
TŴjv, (16)

and we know that all Ŵj are SPD, so we must have vTŴjv > 0
for all j, and since all αij are non-negative and at least one of them
is positive, we must have vTWiv > 0. �

C Gradient of E

Following [Pinkall et al. 1993; Liu et al. 2008], the energy in Eq. (5)
can be rewritten in terms of the half-edges ofM as follows:

E =
∑

(i,j)∈H

min
Qt(i,j)∈SO(3)

cot θij‖(p′i − p′j)−Qt(i,j)W̃
−1
t(i,j)(pi − pj)‖

2.

If we fix the rotations Q, the partial derivative of E w.r.t. p′i is

∂E
∂p′i

= 2
∑

j∈N (i)

(cot θij + cot θji)(p
′
i − p′j)− (17)

−
(
cot θijQt(i,j)W̃

−1
t(i,j) + cot θjiQt(j,i)W̃

−1
t(j,i)

)
(pi − pj)

which can be rewritten in terms of the standard vertex-based cotan
Laplacian matrix L ofM as∑
j∈N (i)

2
(
cot θijQt(i,j)W̃

−1
t(i,j) + cot θjiQt(j,i)W̃

−1
t(j,i)

)
(pj − pi) − 4(Lp′)i.

By substituting with bi (Eq. (7)) in the above equation and collecting
all terms, we obtain the gradient in Eq. (6).


