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Fig. 1. Dress examples showcasing women’s garment styles inspired by different epochs in fashion history. All are sampled from a single parametric garment

configurator created with GarmentCode.

Garment modeling is an essential task of the global apparel industry and a

core part of digital human modeling. Realistic representation of garments

with valid sewing patterns is key to their accurate digital simulation and

eventual fabrication. However, little-to-no computational tools provide sup-

port for bridging the gap between high-level construction goals and low-

level editing of pattern geometry, e.g., combining or switching garment

elements, semantic editing, or design exploration that maintains the valid-

ity of a sewing pattern. We suggest the first DSL for garment modeling –

GarmentCode – that applies principles of object-oriented programming to

garment construction and allows designing sewing patterns in a hierarchical,

component-oriented manner. The programming-based paradigm naturally

provides unique advantages of component abstraction, algorithmic manipu-

lation, and free-form design parametrization. We additionally support the

construction process by automating typical low-level tasks like placing a

dart at a desired location. In our prototype garment configurator, users can

manipulate meaningful design parameters and body measurements, while

the construction of pattern geometry is handled by garment programs imple-

mented with GarmentCode. Our configurator enables the free exploration

of rich design spaces and the creation of garments using interchangeable,

parameterized components. We showcase our approach by producing a

variety of garment designs and retargeting them to different body shapes

using our configurator. The library and garment configurator are available

at https://github.com/maria-korosteleva/GarmentCode.
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1 INTRODUCTION

“Instead of making people want what we made, we will make what

they want”. This motto is one of the motivations behind product

configurators and other services that aim to create fashion products

tailored to the needs of individual customers. In stark contrast, the

fast-fashion industry focuses on mass-production of a variety of

designs in standard sizes, relying on trends and statistics of body

shapes. The customers are left to choose from available designs and

standardized sizes, which often do not fit their body shape. This

results in customer dissatisfaction, as well as the production of dead

stock, which intensifies the negative impact of the garment indus-

try on the climate [Bick et al. 2018]. Unfortunately, the creation

of custom-made garments is an expensive, labor-intensive process,

unattainable for most people. Recent years saw launches of ser-

vices for made-to-order clothes of popular garment types, such as

Amazon t-shirts [Amazon 2023] and Unspun jeans [Unspun 2023],

offering a middle ground between the two extremes mentioned

above. These services allow making some limited adjustments to

pre-defined designs and producing garments on demand accord-

ing to the customer’s individual body shape. However, extending

such services to general garment designs remains a challenge. Cur-

rent production-grade tools are oriented towards creating single

designs: tools like Clo3D [CLO Virtual Fashion 2022] do not support

creating parametric garments. Existing research works on alterna-

tive garment modeling tools either do not take sewing patterns

into consideration or do not come close to supporting the required

complexity, see Tab. 1.
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To facilitate the development of personalized clothing designs, we

propose GarmentCode, a domain-specific language (DSL) for sewing

pattern construction, adapting the principles of object-oriented pro-

gramming to naturally allow parameterization and algorithmic sup-

port while efficiently handling the design complexity. First, Garment-

Code embodies a hierarchical representation of garment sewing

patterns with abstract components: the basic component of a gar-

ment is a panel, which is a 2D piece of fabric, and more involved,

higher-level components can be composed and modified using a

range of provided operators. Second, GarmentCode extends stitch

definition to allow specification of connectivity between high-level

components through semantic component interfaces. Stitch abstrac-

tion enables the interchangeability of components with the same

semantic interfaces even if the underlying geometry of those differs.

In turn, this interchangeability enables modularity: simplicity of

integrating novel components into the system and easy garment

construction from existing components (see an example in Sec. 5.2).

Third, our method supports the construction of advanced garment

features, such as gathers and darts, currently missing in existing

large-scale datasets and modeling approaches [Bertiche et al. 2020;

Heming et al. 2020; Korosteleva and Lee 2021]. An example of a

garment program is given in Fig. 11.

Our conceptual framework enables the definition of rich paramet-

ric design spaces, which we demonstrate in our garment configura-

tor. It allows the construction of a variety of garment styles, from

simple tops, skirts, and pants, to more elaborate complex evening

gowns (Figs. 1 and 10), while using a limited number of parametric

components, and with support for adjusting the designs according

to different body measurements. A key advantage of using a config-

urator is the automatic maintenance of a valid sewing pattern and

the inherent interchangeability of components, enabling effortless

design exploration without having to worry about low-level sewing

constraints or deep expert knowledge of patternmaking. Another

advantage is the ability to adapt garment designs by exposing in-

tuitive, physically meaningful parameters, such as various body

measurements and style parameters.

Limited versions of such configurators can be shared with end

customers to let them adjust designs within the limits acceptable

for fabrication or to dress custom virtual avatars in video games

and metaverses. Such features would welcome users to become part

of the creative process and would allow to better satisfy their in-

dividual tastes. More detailed design space definitions may assist

designers in quickly obtaining starting sewing patterns for their

creative exploration. Another envisioned application is the creation

of parametric templates for synthetically generated garment design

collections, which currently often suffer from limited variety and

simplistic designs [Bertiche et al. 2020; Heming et al. 2020; Korostel-

eva and Lee 2021]. Such design datasets play an important role

in different data-driven applications [Chen et al. 2022; Jiang et al.

2020; Korosteleva and Lee 2022; Wang et al. 2018], attracting much

research interest in recent years.

Our implementation of GarmentCode and configurator is publicly

available on GitHub
1
.

1
https://github.com/maria-korosteleva/GarmentCode

Table 1. Comparison of GarmetCode with baseline systems. Here, “Defi-

nition” means the ability to specify a single sewing pattern, “Tools” refer

to instruments supporting pattern construction, “Modular construction”

enables specifying garment parts as independent modules and constructing

new designs by part combinations, “Continuous” and “Categorical” are pa-

rameters with corresponding value types, while a “Dependent” parameter’s

value depends on other parameters, allowing for complex parameterization

and resolution of parameter value conflicts. Commercial CAD tools like

Clo3D [2022] do not support true parameterization while existing paramet-

ric garment systems [Korosteleva and Lee 2021] support only limited types

of parameterization and do not provide any modeling tools; neither of them

fully supports modularity. *Limited support.

CAD

(Clo3D [2022])

Korosteleva

and Lee [2021]

GarmentCode

(ours)
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Definition ✓ ✓ ✓

Tools ✓ × ✓*

Modular

construction

✓* × ✓

P
a
r
a
m
e
t
e
r
s

Continuous × ✓ ✓

Categorical × × ✓

Dependent × × ✓

2 RELATED WORK

2.1 Garment modeling

Industry-grade tools for garment modeling, such as Clo3D [2022],

rely on artists manually drawing and adjusting sewing pattern

shapes. Such tools enable the creation of complex garments, but the

design process is often tedious. Support for semantic parameteriza-

tion is very limited: Clo3D provides only one pattern parameterized

by body measurements – a bodice, and it is non-extensible with a

fixed parameter set. The modular configurator is akin to categor-

ical parameterization for component combination, but it offers a

fixed set of component types (upper body, sleeve, collar, cuff) and

has only one hierarchy level, and no other parameterizations are

supported (Tab. 1). Alternative methods for garment modeling are a

subject of ongoing research: for example, editing a garment model

in 3D, and automatically readjusting [Bartle et al. 2016] or inferring

a sewing pattern [Liu et al. 2018; Meng et al. 2012; Pietroni et al.

2022; Wang et al. 2009; Wolff et al. 2023] corresponding to the 3D

garment design. Another inspiring line of work aims to maximally

reduce the modeling effort by computing 3D garment models from

designs sketches [Chowdhury et al. 2022; Fondevilla et al. 2021;

Li et al. 2018; Wang et al. 2018], reconstruct sewing patterns from

images [Jeong et al. 2015; Yang et al. 2018], or 3D capture [Bang et al.

2021; Chen et al. 2015; Hasler et al. 2007; Korosteleva and Lee 2022].

However, all these methods focus on producing a single garment.

GarmentCode offers an alternative perspective on garment model-

ing, offering a design toolkit for parametric sewing patterns, which

allow for fast and convenient exploration of a created design space.

Moreover, it offers capabilities to explicitly condition the design

on body measurements. Working in the space of sewing patterns
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ensures controllable and fabrication-plausible garment designs at

each stage of the construction process.

2.2 Garment modeling at scale

The rise of deep learning sparked an interest in data-driven tech-

niques inmany domains, including various tasks related to garments,

such as virtual try-on, modeling, and neural simulation, hence cre-

ating a unique demand to generate garment designs at scale to be

used in synthetic datasets for training. Some of the works in the

area [Bertiche et al. 2020; Chen et al. 2015] rely on the combinato-

rial effect of constructing designs from a set of sub-components,

such as multiple options for sleeves, upper body, and lower body

garments. In these works, the combinations are performed on 3D

geometry, which may result in physically implausible 3D models.

These approaches do not provide corresponding sewing patterns.

Other works [Jiang et al. 2020; Korosteleva and Lee 2021; Wang et al.

2018] rely on sampling designs from a set of custom parametric

sewing pattern templates, varying the continuous style parameters

like length and width of garment elements. Korosteleva and Lee

[2021] provide a framework for describing garment templates, but

do not allow defining discrete parameters, or parameter dependen-

cies, nor support for base sewing pattern description, as indicated

in Tab. 1, rendering it hard to use for complex designs.

GarmentCode combines continuous and discrete approaches to

design variation into one framework, allowing creating garment

design templates with interchangeable components and flexible pa-

rameterizations of style and body shape. Different helper operators

(Sec. 3.6) support the construction process to reduce the workload.

2.3 Garment retargeting

The process of retargeting a garment from one body shape to an-

other is usually performed manually, with leading industry tools

like Clo3D [CLO Virtual Fashion 2022] providing support in storing

(arbitrary) displacements, specified by designers for each vertex

of garment panels individually, for each size. However, a number

of research works have been exploring automatic solutions to this

problem. Optimization-based approaches [Ait Mouhou et al. 2022;

Brouet et al. 2012; Fondevilla et al. 2021; Lee and Ko 2018; Lee et al.

2013; Wang 2018] transform the garment geometry to reproduce

design parameters such as fit, proportionality and overall design

shape on a new body model, offering impressive results. In recent

years, data-driven approaches for transferring garments across dif-

ferent shapes [Bertiche et al. 2020; Shi et al. 2021; Tiwari et al. 2020],

or both shapes and poses [Corona et al. 2021; Lal Bhatnagar et al.

2019; Ma et al. 2020; Santesteban et al. 2021] have gained popularity.

Most of these works represent garments as a displacement map over

a body model, which helps disentangle design from body shapes,

while [Corona et al. 2021] utilizes an implicit function as a more

general approach to describe various garment styles. Unlike the

approaches mentioned above, GarmentCode embeds the retargeting

capability already at the sewing pattern modeling stage, which both

reduces the need for manual editing and allows for controllable

results reflecting the intention of the designer, which is not offered

by the automatic methods mentioned above. The work of Wang

et al. [2003] provides control over the design transfer optimization

process by allowing to relate design and body feature points in 3D.

Some recent works [Jin et al. 2023; Wang et al. 2022] present case

studies of one or two garment templates implemented with body

shape parametrizations. Although they do not propose DSL-like

tools to support the implementation of a general garment, these

works demonstrate an interest in the fashion field in programmable

sewing patterns. Works like [Umetani et al. 2011; Vidaurre et al.

2020; Wang et al. 2018; Yang et al. 2018] build their methods around

parameterized base garments. Our work contributes towards a uni-

fied framework for creating such designs.

2.4 Procedural modeling and CAD DSL

Coding shapes like programs is not a novel idea. There are a number

of programming languages developed for traditional solid CAD (Fea-

turescript [Onshape 2023], OpenSCAD [Kintel, Marius and Wolf,

Claire 2023]) with rich toolkits supporting shape definition (e.g.,

collections of standard shapes), editing (e.g., extrusion, boolean op-

erations), and parameterization. Procedural modeling methods for

buildings [Haegler et al. 2010; Müller et al. 2006; Schwarz and Müller

2015], city landscapes [Birsak et al. 2022; Parish andMuller 2001] and

plants [Aono and Kunii 1984; Lane and Prusinkiewicz 2002; Linden-

mayer 1968; Makowski et al. 2019; Oppenheimer 1986] provide tools

(e.g., shape grammars) to code highly parametric generative models

of the target objects in a variety of styles, with built-in editing op-

tions (e.g., varying the number of floors and windows in a building).

Similar approaches emerge for furniture [Jones et al. 2020; Pearl

et al. 2022], providing an interesting new angle on reconstruction

problems. Due to the unique coupling of the 2D base representa-

tion with highly deformable behavior in 3D, garment engineering

presents its own challenges and requires targeted modeling tools,

but the research in this direction is limited. In addition to works on

synthetic garment datasets described above, research on procedu-

rally generated knitting instructions [Jones et al. 2022] computes

machine-knittable patterns of given garment models. GarmentCode

aims to fill the gap in the procedural generation of sewing pattern

designs. We “translate” some of the tools of traditional CAD DSL to

the garment domain, e.g., our edge loop definition for panels mirrors

the structure of parametric boundary representations, and compo-

nent copy operations are akin to linear and circular patterning in

CAD. At the same time, we introduce component abstraction, tools

for component stitching, and 2D-3D coupling, unique to garments.

3 ARCHITECTURE

3.1 Overview

Approaching sewing pattern modeling with a programming-based

paradigm, especially when built upon the basis of existing general-

purpose programming languages like Python, immediately provides

a number of benefits, such as performing auxiliary computations (ex-

amples in Sec. 3.6.3 and Appendix A), free-form parametrization of

geometry, and leveraging existing libraries built by the community.

None of these benefits are available in existing design representa-

tions, be it visual [CLO Virtual Fashion 2022] or text-based para-

metric approaches [Korosteleva and Lee 2021]. However, specifying

pattern geometry as a programwithout the support of structures and

tools designed to handle garment-specific properties is tedious and
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a)
Basic bodice:

back and front panel

b)
Fitted bodice:

Project darts and adjust waistline

d)
Final upper garment: 
Add mirrored copies 

x N 

c)
Complete bodice: 

Project collars and sleeve shapes
f )

Skirt panel de�ntion

e)
Flare skirt: 

Create N copies in a circle

Fig. 2. Construction of a fitted bodice component and a skirt for 1950s dress style pattern. Dashed arrows denote projection operators; gray arrows show some

of the body-related and stylistic parameters of presented components; thick lines on d) and e) show the interfaces of upper garment and skirt components.

Edge loop

Panel Component

Edge

Chained edges

Fig. 3. Overview of the elements of a GarmentCode architecture. High-

lighted edges on panels correspond to chosen interfaces. The body model

serves as a positioning reference. Here and in the figures below we use SMPL

female average body model [Loper et al. 2015], unless otherwise specified.

inefficient, akin to the dictionary-based specification of the existing

text-based approach [Korosteleva and Lee 2021], requiring explicit

definitions of each panel vertex and cross-referencing individual

edges for stitch specification (“flat pattern representation”), with no

support for element reuse beyond basic language capabilities.

Hence, the goal of GarmentCode is to provide a domain-specific

language for specifying parametric sewing patterns and allowing

easy reuse of defined garment elements to compose new garments

as modular programs, enabling programming efficiency and com-

plexity management. Specifically, we are bringing the principles of

encapsulation and abstraction from the object-oriented program-

ming (OOP) paradigm to garment construction. OOP has proven

to be extremely efficient when it comes to building large complex

systems across application areas, and we would like to leverage

that efficiency when representing the complexity of garment design

spaces. A panel, a stitched combination of panels, or a higher-level

combination of components all define a garment component object,
which encapsulates its particular geometry and only exposes an

abstract semantic interface, implemented as a subset of edges of

panels that comprise the component. Interfaces of two individual

components can be connected together (abstract stitch) to form a

higher-level component, and any components that implement the

same set of interfaces (in our implementation, interfaces identi-

fied by the same names) can be used interchangeably regardless of

the differences in their encapsulated geometry, enabling modular

construction.

To summarize, the GarmentCode architecture allows pattern de-

scription through the following basic types: Edge, EdgeSequence,
Component, Panel (as a special type of Component), and Interface,
as illustrated in Fig. 3. Supporting the process, a variety of tools are

implemented: a factory for typical edge sequences (e.g., dart shape),

specification of curved edges with target properties, projecting an

open edge sequence on a corner or an edge, copy operators, nor-

mal evaluation for automatic right/wrong side definition, placing

stitched components next to each other. To support downstream

processing, GarmentCode also implements unfolding the abstract

stitch definition into a flat pattern representation and serialization

of patterns into files.

Below we describe the elements that comprise our architectural

approach in detail.

3.2 Building blocks

3.2.1 Component. A component is an abstract class providing a

framework to describe a compound garment or a garment element

and holds some component processing methods (serialization, rota-

tion, translation, mirroring, etc.). Any component should contain

the following attributes:

• A set of subcomponents;

• Stitches – a list of stitching rules describing how the subcom-

ponents should be connected (see Sec. 3.3).

• A set of interface objects that describe how other components

can connect to this one (see Sec. 3.3.1).

Apart from specifying these attributes, a component construction

process may contain instructions for modifying subcomponents,

e.g., projecting an interface – a selection of edges from subcompo-

nent’s panels – of one component onto another, or smart copies, as

demonstrated in Fig. 2.

3.2.2 Panel. A panel is a “leaf” component with special structure,

so that it can act as a subcomponent, but also specify the panel

geometry. Following the work of Korosteleva and Lee [2021], Gar-

mentCode defines a panel as a closed piecewise smooth curve repre-

sented as a sequence of directed edges organized in a loop, as well

as 6D placement parameters (rotation and translation). The latter is

needed to correctly place the panel around the body but defaults

to zero translation and rotation, and can be left to be set by higher-

level components. These attributes define a panel component, in

addition to the standard component attributes, namely interfaces

and stitches. Note that a panel may contain stitches between its

own edges, e.g., if the panel contains darts, as in the fitted bodice

panel in Fig. 2.

3.2.3 Edges. An edge is an elementary building block of panels in

a sewing pattern. Every edge describes an oriented curve segment.

Specifically, GarmentCode supports straight line segments, circular

arcs, and quadratic and cubic Bézier splines as edges. This set is

ACM Trans. Graph., Vol. 42, No. 6, Article 197. Publication date: December 2023.



GarmentCode: Programming Parametric Sewing Patterns • 197:5

flexible and representative enough to model a variety of panel ge-

ometries, while ensuring smoothness and computational feasibility.

Edges are represented by their start and end vertices as attributes

(the vertex coordinates are defined in 2D). Bézier curves additionally

hold the coordinates of the their control points, while circular arcs

store the signed distance of the midpoint of the arc to the straight

line connecting the start and end vertices. Building upon the ideas

of [Korosteleva and Lee 2021], all controls are specified in a lo-

cal coordinate system of an edge: the straight segment connecting

the edge endpoints is used as the unit horizontal axis, and the left

perpendicular is the vertical axis. Such relative representation is

invariant to edge translation and rotation, and preserves the curva-

ture with uniform scaling, allowing to perform these operations on

all types of edges only though vertex manipulation.

Working with edges is supported by a variety of routines. For

simplicity of use, GarmentCode supports conversion of internal

representations from and to standard ones: absolute control point

coordinates for Bézier curves, and for circular arcs, the standard

three-point representation or the desired radius with flags indicating

one of the four arc options.

3.2.4 Edge sequences. An edge sequence specifies an ordered list

of edges. An edge sequence used in panel definition must have all

its edges chained one after another and into a loop, but other types

of edge sequences might be used in other contexts, for example,

in interfaces edges may not be chained together nor form a loop.

To manipulate edge sequences conveniently, GarmentCode imple-

ments them as a variation of Python list type and thus supports

indexing and slicing, appending, removals, and insertions, as well

as domain-specific geometry manipulation methods: translation,

rotation, scaling, and reflection around an arbitrary axis.

3.3 Stitches

The GarmentCode approach to stitch representation is one of the

key elements that enable modular component construction. We aim

to keep the stitching abstracted from the internal structure of indi-

vidual components and rather reflect a semantic connection between

high-level components. This allows substituting one component in

the connection by another with the same semantic meaning despite

differences in underlying geometry – enabling the interchangeabil-

ity property. This behavior is realized by defining an abstract stitch

as a connection between component-defined interfaces instead of

a connection between panels’ edges, as in flat sewing pattern rep-

resentations. For example, in composite garments, the bottom of a

bodice connects to the top of an under-waist garment. The same

abstract stitch would describe a connection of a fitted bodice to a

flared skirt, as in a 1950s dress, or a basic straight bodice to pants in

a jumpsuit (see Fig. 7 for patterns of these examples).

3.3.1 Interface. An interface describes how and where a particular

component can be connectedwith. An interface contains a collection

of edges of panels that can connect to another component in an

abstract stitch. An interface can be constructed directly as a subset

of panel edges (usually in panel components), or from reusing or

combining interfaces of subcomponents. Thus, a single interface can

contain multiple edges from multiple different panels (in contrast

to 1-1 edge stitches in [Korosteleva and Lee 2021]). One component

may have several interfaces.

In addition to stitches, interfaces may be useful for other purposes.

For example, in sleeves, an interface specifies a projecting shape

for correct modification of the bodice panel, which differs from the

shape of the sleeve panel edges themselves. In Fig. 4, an Armhole is

part of a Sleeve and defines the projecting shape, and Fig. 5 shows

the differences and the projection result up close.

3.3.2 Stitching rule. In our implementation, an abstract stitch is

specified simply as a pair of interfaces, wrapped in a stitching rule

object. The wrapper encapsulates the processing of the stitch flat-

tening (see below), performed at stitch declaration time.

3.3.3 Flattening stitch representation. While abstract stitches are

convenient for modeling, downstream processing tasks like simula-

tion usually require a flat representation of stitches as edge-to-edge

connection instructions. Unpacking the hierarchy of interfaces is

straightforward, however, oftentimes one or both interfaces partic-

ipating in a stitch contain multiple edges. Breaking such a stitch

down to edge-to-edge instructions requires additional processing.

To perform this conversion, GarmentCode automatically generates

additional vertices on the underlying panels to match the number

of edges in the two connecting interfaces. Once the subdivision is

completed, the set of resulting one-to-one stitches can then be used

as a flattened representation. At the current stage of development,

we use a simplifying assumption that each edge participates in no

more than one stitch.

The process of generating the needed ver-

tices is as follows. First, we note that the total

length of edges in the interfaces on either side

may not match, e.g., in stitches with gather,

as in the Regency dress in Fig. 1. To accom-

modate for non-matching lengths of interfaces, the edge lengths

are represented as fractions of the total lengths of an interface in-

stead of being used directly. The fractions from one of the interfaces

are projected onto another interface to generate additional vertices

whenever the projections fall outside of existing ones with some

tolerance, and then the process is repeated in the other direction.

The edge sequences in the interfaces are assumed to be aligned in

the expected connection order.

Our stitch flattening algorithm is rather straightforward, and sim-

ilar algorithms are likely to be behind many-to-many stitch features

in commercial visual CAD like CLO3D [CLO Virtual Fashion 2022].

3.4 Serialization

Serialization denotes a conversion of a GarmentCode hierarchical

component into a flat sewing pattern representation that can then be

passed on to downstream tasks such as cloth simulation. The process

is fairly straightforward: GarmentCode recursively converts all pan-

els involved in component construction into a text representation

and then gathers them into one file, together with flattened stitching

instructions. In this work, we serialize component instances into

the open-source JSON file format introduced in [Korosteleva and

Lee 2021], compatible with their draping pipeline.
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3.5 Parameterization format

While the opportunity for defining parameters emerges naturally

from using a programming-based paradigm, GarementCode pro-

vides configuration formats to support this feature further. In Gar-

mentCode, we propose separating body and style parameters into

two sets, with body parameters containing the measurements of

the current avatar, and style parameters specifying not only the

particular values but also the possible value ranges and type (nu-

merical, boolean, or categorical) for each parameter, to allow for

design sampling.

Since some of the useful body measurements can be derived from

others, GarmentCode provides an abstract class for loading body

configuration files, with a separate method for the specification

of formulas for derived parameters, which can be implemented in

the application through a subclass. For example, in our prototype

garment configurator, we use the waist level from the ground for

positioning the garments, which is calculated from the body height,

height of the head, and the usual waistline measurement from the

nape of the neck to the waist. The calculation of derived design

parameters, as well as the handling of parameter value conflicts,

are usually component-specific and hence should be defined by the

creators at the appropriate level.

3.6 Helpers

We propose severalroutines designed to simplify the construction

of sewing patterns. It is worth noting that the presented algorithms,

when needed, were chosen for their simplicity while providing

reasonable quality, however, better or more efficient solutions are

likely to exist. All calculations are performed at evaluation time.

3.6.1 Typical edge sequences. We implement shortcuts to create

typical edge sequences, which include creating a loop of straight

edges from a set of vertices, edge subdivision for all edge types

(adding vertices inside an existing edge specified by relative dis-

tances), and creating a triangular dart shape, specified by desired

dart width and depth.

3.6.2 Defining curve edges. In practice, curved edge design is often

driven by certain requirements, rather than by the placement of

control points. GarmentCode implements two optimization-based

routines to specify Bézier curves:

• Specifying a quadratic Bézier curve with the highest point

at a particular location, used e.g. in pencil skirts and pants

to correctly hug the hips in a manner transferable across

different bodies;

• Smoothly adjusting a cubic Bézier curve to match the desired

tangent directions at the edge ends while preserving the curve

lengths, used in defining inverted sleeve opening shapes for

curve-based sleeves.

The second routine is described in Appendix A as part of the sleeve

inversion algorithm.

On a cornerOn an edge

3.6.3 Projection operators.
Oftentimes when there is a

need to connect two panels

together, we wish the inter-

face on one panel to be in

stylistic or functional corre-

spondence with the geometry of the other, e.g. when connecting a

sleeve panel with a bodice panel. Describing and maintaining such

correspondence across independent panels and components would

break the encapsulation principle, so instead GarmentCode offers

projection operators to transfer the shape defined in a one-panel

component onto another panel. The transferred shape may be part

of a panel geometry, or be a construction geometry defined specif-

ically for use in projection, implemented as an interface. Such a

solution ensures that either of the panels can be easily modified or

substituted, without the need tomanually accommodate the changes

in the second panel, supporting our target plug-and-play garment

construction style. An example use of projections is demonstrated

in Fig. 2.

GarmentCode supports projection on an edge (injection) and pro-

jection on a corner for an arbitrary open chained edge sequence as

projection shape, and edge or pair of chained edges, correspondingly,

as target shapes. Both types support the use of curves in projection

shapes, as well as in the target edges, and hence are formulated as

optimization problems.

In both cases, the goal is to find the points on the target that

align with the “opening” (the first and the last vertices in the edge

sequence) of projection shapes. The target edges are then split at

the found points, and the projection shape is injected in between

the found points into the target edge sequence, while the leftover

“cuts” are removed. What differs between the two projection types

is the process of finding the injection points. Projection on a corner

relies on finding the points in the curve parameterization space (for

straight edges and circular arcs we use arc length parameterization)

whose 2D positions correspond to the projection shape opening:

argmin

𝑡1,𝑡2

∥(𝑒1 (𝑡1) − 𝑒2 (𝑡2)) − proj_vec)∥2 ,

s.t. 0 ≤ 𝑡1 ≤ 1, 0 ≤ 𝑡2 ≤ 1, (1)

where 𝑒1, 𝑒2 are the edges of the target corner, 𝑡1, 𝑡2 are values in

curve parameterization space, and proj_vec = proj.end − proj.start is
the vector describing the projecting shape opening.

Projection on edges also acts in curve parameterization space and

finds two points that accommodate the projecting shape and are

equidistant from the target point of injection 𝑒 (𝑡):

argmin

𝑡1,𝑡2

(∥𝑒 (𝑡 + 𝑡1) − 𝑒 (𝑡 − 𝑡2)∥ − ∥proj_vec∥)2+

+ (∥𝑒 (𝑡 + 𝑡1) − 𝑒 (𝑡)∥ − ∥𝑒 (𝑡 − 𝑡2) − 𝑒 (𝑡)∥)2,
s.t. 0 ≤ 𝑡1 ≤ 1, 0 ≤ 𝑡2 ≤ 1, (2)

where 𝑒 is the target edge, 𝑡 is the requested placement of the pro-

jecting shape 𝑡1, 𝑡2 are the shifts, all specified in respective curve

parameterizations, and proj_vec = proj.end − proj.start is the vector
describing projecting shape opening.

In case of projection on an edge, the projecting shape is automat-

ically rotated such that proj_vec aligns with the estimated insertion

vector (𝑒 (𝑡 + 𝑡1) − 𝑒 (𝑡 − 𝑡2)), following the edge direction. The in-
serted shape may be reflected over the insertion vector following a

user-specified parameter to appear on the other side. Rotation align-

ment in projection on the corner is left to be specified externally to

ensure design flexibility: within certain limits, different rotations of
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Fig. 4. Samples of garment components that we design using GarmentCode (stitches are not depicted for clarity). Each component’s appearance is conditioned

on style parameters and body measurements, some of which are illustrated with gray arrows. *Cuffs for sleeves and pants are the same component, shown twice
to demonstrate potential use in both cases.

the same shape projected on a corner would produce different but

equally valid results.

3.6.4 Smart copy. The garment designs often exhibit reflection sym-

metry w.r.t. the sagittal plane (left-right symmetry), so describing

only one of the halves often suffices. To support such a design short-

cut, GarmentCode provides a mirroring operator, which reflects a

component over a vertical line, including its shape and the location

(used in our upper garment components, showcased throughout

the paper). For other types of repetitive designs, GarmentCode pro-

vides a distribution of components copied along a line or a circle,

an example use of which is demonstrated in Fig. 11.

3.6.5 Panel normal. The notion of the right and wrong sides of a

fabric is represented as the direction of the panel normal (positive

orientation corresponding to the “right”, usually outwards-facing

side). The normal direction is defined by the counterclockwise tra-

versal of edges. GarmentCode can automatically update the edge

loop traversal such that the right side of the fabric points outside of

the body, under the assumption that a body model is aligned with

the axes in the coordinate basis in which the panel’s 6D placement

is specified. To do so, we evaluate the position of the panel center-of-

mass (COM), and for each edge determine whether it traverses the

COM on the right or on the left using the cross product of the edge

vector from its end to start vertex with the vector from COM to the

edge start vertex. The normal is then the prevalent direction of those

cross products among the panel edges. If the normal is not oriented

outwards of the center of the body, the edge loop is reversed to

flip the normal. Large curvature arcs in curve edges may interfere

with this process, so we use their linear approximation. We find the

extremal points of the curve (furthest away from the straight line

of an edge) and use them as new panel vertices, connecting them

by straight edges.

In our implementation, the panel normal is adjusted upon every

update to the panel’s placement, ensuring correct normals through-

out. However, updating the normals of all involved panels at the

time of component serialization may also suffice.

3.6.6 Placement support. GarmentCode simplifies the task of cor-

rectly manipulating the component placement. First, all placement

modifications performed at component level are automatically prop-

agated to subcomponents while preserving their relative placement

(that was set on the lower levels of the hierarchy). Second, Garment-

Code provides a helper to adjust the translation of one component so

that its chosen interface is aligned with another component’s inter-

face in 3D, which can be used to align components by their stitches.

The helper simply evaluates the 3D centers-of-mass of the edge se-

quences described by the interfaces, and the modified component’s

translation is updated by the location difference on the two COMs.

The modified component may additionally be shifted outward of

the component COM to create a gap between two interfaces.

4 APPLICATION: GARMENT CONFIGURATOR

We apply the GarmentCode architecture described in Sec. 3 to build a

garment configurator. The configurator allows selecting and assem-

bling various high-level components and interactively manipulating

their parameters, displaying the resulting sewing pattern. We design

a collection of parametric garment components: various styles of

skirts, such as flare, godet, pencil, gather, and compound, with the

flare skirt implemented with two different topologies; bodice (i.e.,

components covering the torso, which can be fitted or loose), pants,

sleeves (with optional cuffs), and different collar shapes. See Fig. 4.
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Fig. 5. Connecting a sleeve to a bodice. The edges on the sleeve side should

create a concave shape compared to the sleeve opening shape on the bodice,

so that the sleeve curves away from the body when stitched (see details

in Appendix A). Our sleeve component defines a bodice opening shape as

an additional interface for correct projection and connection.

Fig. 6. Sleeve styles created from the same sleeve component by varying

sleeve length, cuff length, and gather parameters

Many of these components can represent garments on their own, but

an additional meta-component enables combining those elements

into complex dresses (Fig. 1) and jumpsuits (Fig. 7). Components

are parameterized w.r.t. body measurements (bust size, waist length,

etc.), and style features (like lengths of elements). Most of the style

parameters are defined to depend on body measurements or each

other (e.g., collar width is bound between neck width and shoul-

der size), which additionally enables body retargeting and ensures

pattern validity.

A selection of garments sampled from our parametric template

is presented in Fig. 10. An example garment program is provided

in Fig. 11. Flexible implementation of our GUI allows any garment

programs with the recommended parameterization format to be

loaded as GUI with little-to-no tweaks.

4.1 Example construction process

Here we describe an example process of constructing a dress in

a 1950s style with GarmentCode. This dress requires a definition

of a flare skirt, fitted bodice, collars, and sleeves. The process is

illustrated in Fig. 2.

A fitted bodice is created to accommodate the natural body cur-

vature and accentuate the waistline; darts are employed to create

this effect. Since we assume that the body is left-right symmetric,

we start building this piece by defining two quadrilateral panels

representing one half of the front and the back of the bodice, fol-

lowing the body measurements (Fig. 2, a). The front panel is wider

and longer to accommodate the extra curvature on the chest. We

add darts (Fig. 2, b) by projecting a triangular shape onto the side

of the front panel, such that the side with a dart is the same length

as the back side, and the bottom of the front and back panel, and

removing some length from the side as well. The bottom length of

both pieces equals half of the body waist measurement.

We combine the bodice component with other components to

create an upper garment. First, we define a collar shape and project

it onto the inner corners of the front and back panels. Secondly, we

take a sleeve component and project a corresponding opening shape

onto the outside corners of the front and back panels (Fig. 2, c; Fig. 5).

Applying the projection operator makes the bodice design agnostic

to the types of sleeves and collars used in this step, hence these

components are easily replaceable with other designs. The next step

is simply to mirror the upper garment component created so far, as

described in Sec. 3.6.4. The bottom edges of the final four panels are

designated as the interface of this upper component (Fig. 2, d).

We approximate a 1950s-style flare skirt with trapezoid panels

replicated multiple times and distributed around the body (Fig. 2, e).

The same shape can be achieved with two or even one panel – a sec-

tion of a circle, but we show a more complex option to demonstrate

the capabilities of GarmentCode. The tops of the panels should fol-

low the body waist size, and the bottoms are wider, creating a flare

effect. The sequence of the top edges of the skirt panels is designated

to be a skirt interface. The final step is to connect the bottom of the

upper garment with the top of the skirt, which is done automatically

(see Sec. 3.3).

5 EVALUATION

5.1 Element parameterization

The power of parameterization in garment design can bewell demon-

strated on a sleeve example Fig. 6. The same building block can

produce various sleeve silhouettes, from modern streetwear style

to a vintage balloon sleeve, merely by varying a few parameters.

The GarmentCode representation and parameterization open up an

easy way for experimenting with designs based on human-readable

parameters, rather than editing sewing patterns at the low level.

5.2 Handling complexity

The convenience of manipulating garments through hierarchical

component structure is well-demonstrated through an example of a

compound skirt (Fig. 8). Having the base skirts (pencil, flare, gather)

and their corresponding parameter spaces defined, creating a com-

pound skirt that uses existing components as layers is trivial: it

requires an initialization of the base skirt (hugging the hips), and

multiple copies of the skirt type used for the different levels, initial-

izing their size based the bottom size of the one above, connecting

their tops to bottoms of previous ones, and using the placing helper

for correct alignment. With the base skirts implemented, extending

our component library with the compound skirt component takes

just 50 lines of code (see skirt_levels.py in supplementary code).

Thanks to the component abstraction, it seamlessly integrates into

the library: it can be used in place of other skirts or pants by simply

adding its class name to the list of supported components in the

meta-component parameter range for bottoms types.

5.3 Body retargeting

Our garment components are parameterized by body measurements,

which makes it easy to fit a garment design on a different body.
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Fig. 7. Retargeting garments conditioned on body measurements across different body shapes.

Fig. 8. Two design samples from a compound skirt component. With trivial

implementation, this component allows combinations of existing skirts and

their parametrizations, resulting in complex garment styles.

The parameterizations are introduced in the areas of garments that

tightly hug the body, e.g., the waist of flare skirts and pants. The

fitted bodice component is fully specified by body measurements

(waist and bust circumferences, bust line, waistline, and back width)

since its purpose is to accentuate the body curves. Some style pa-

rameters are made dependent on the body measurements, e.g., the

length of a flare skirt is specified as a fraction of leg length and

varies according to the wearer’s height.

To demonstrate body retargeting, we take several body shape

samples from SMPL [Loper et al. 2015] and manually acquire their

body measurements. Fig. 7 shows the retargeting results. A 1950s-

style dress recognizable hourglass silhouette relies on a proper fit

of the tailored bodice component. The correct fit of the dress is

fully preserved across large body shape variations thanks to the

semantic encoding of GarmentCode components. The skirt length

varies with the leg length, hence leaving approximately the same

part of the leg uncovered in different body shapes. The tight-fitting

pants in the jumpsuit and the pencil skirt in the strapless dress

successfully adapt to different body shapes and proportions. The

bottom of the pencil skirt is parameterized relative to the hip size,

enabling the preservation of the defining upside-down triangular

silhouette across all body models.

5.4 Reproducing a real-world pattern

To evaluate the patterns created with GarmentCode, we reproduce

one of the professional garment patterns from Mood Fabrics [2020]

by adjusting the parameters of the demo configurator, see Fig. 9.

We observe that the overall 3D shape and design intention are well

reproduced. However, a number of details vary. Our panel definition

excludes inner loops such as diamond darts, resulting in an excessive

stitch in the waist area. Without the support for fold lines (both in

our system and in the downstream simulator), the sleeve panel needs

to be defined as two. Since we currently do not support stitching
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Fig. 9. Reproducing a production sewing pattern “Birch dress” of MoodFab-

rics [2020]. The MoodFabrics pattern is in grey (top) with the final garment

on the right (photo provided by MoodFabrics), and ours is in pink (bottom)

with the final garment on the left. Some discrepancies occur simply due

to different design decisions and body sizes, while others highlight the

limitations of the base GarmentCode architecture, as discussed in Sec. 5.4.

multiple layers of fabric, we can only model one-sided cuff and

turtle neck components, whereas in the original pattern these are

double-sided, with half of the panel folded inside.

Other differences are not dictated by the architectural limitations,

but simply by the choices made when designing our example gar-

ment components. Our sleeve element uses smoother curves com-

pared to the original pattern, resulting in a mismatch. The difference

in lengths between the waist and the hip is distributed between the

darts and the skirt sides differently, resulting in misaligned darts.

Remaining variations (e.g. side dart width) are simply due to differ-

ences in body sizes between our body model and the standard sizing

used in the original pattern. The showcased limitations provide

inspiration for further development of the GarmentCode system.

6 DISCUSSION

We introduced a new framework for representing and designing

parameterized garments. Our architecture encourages composing

garments as hierarchical structures with interchangeable paramet-

ric components akin to configurable puzzle pieces. This approach

enables exponential growth of design possibilities whenever a new

component is added to the collection, expanding the design space,

which can be easily explored through semantic parameters with lit-

tle manual overhead, or sampled when constructing design datasets.

We demonstrated how our framework can be employed to create

parametric garment design templates suitable for product config-

urators or in design samplers for synthetic garment datasets. Our

templates offer extended design spaces, garment transfer across

different body shapes, and produce valid sewing patterns for each

instance, which can be passed on to a physics-based simulator or

adapted for fabrication.

Our presented system changes the paradigm of garment construc-

tion to programming-based, which does not follow the traditional

design workflow, and presents other challenges like the need for

explicit specification of vertex coordinates in panels, which may be

an obstacle for industry adoption. However, the successful cases

of embracing programming in the creative domains, such as solid

modeling CAD/DSL systems [Kintel, Marius and Wolf, Claire 2023;

Onshape 2023], procedural tools for plans [Makowski et al. 2019],

buildings [Müller et al. 2006], or city landscapes [Parish and Muller

2001], and even such widespread fields as web design, give us rea-

son to believe that fashion creators might be willing to acquire the

needed programming skills to access unique features GarmenCode

provides. Pairing programming-based parametric construction with

a visual tool for specifying panel and edge geometry could be an

interesting avenue for future work.

Creating a new design tool for garment construction is an am-

bitious and complex goal. GarmentCode aims to demonstrate the

potential of our idea and provides a solid proof-of-concept imple-

mentation, but it is not all-encompassing. GarmentCode could be

expanded with additional helpers to improve the toolkit: readjusting

the edge shape after dart insertion for a smooth connection, adding

a curved dart calculator, adding rotation alignment to the placement

by stitches, etc. On the architecture level, the simplified definition

of a panel does not allow specification of internal loops, hence Gar-

mentCode cannot seamlessly represent panels with holes (Fig. 9).

The architecture could also be extended to incorporate elements

that are sewn on top of a fabric piece, such as pockets and flounces.

Likewise, GarmentCode currently has limited support for sharp

folds, and more tools are needed to efficiently specify and assemble

pleats and smocking patterns. We also wish to further accommodate

the differences between sewing patterns for garment fabrication

vs. simulation: for example, merging excessively fragmented panels

in the final pattern to reduce the number of stitches needed (e.g.,

removing the central stitch for front and back panels). Representing

different stitch appearances in the spirit of [Rodríguez and Cirio

2022] is also an interesting direction to explore.

Finally, there is a considerable variation in sewing pattern ge-

ometry even within the basic garment elements, which is not fully

represented in our implemented garment components, making it

difficult to reproduce real garment designs merely by varying the

semantic parameters of the demo configurator (Fig. 9). An additional

engineering effort is required to accommodate such variations of

real-world patterns.

GarmentCode achieves several considerable advancements through

a simple architecture. It is evident that the problem of garment con-

struction is under-explored, and we hope our work will inspire

further research on computational support of this important engi-

neering problem.
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Fig. 10. A selection of design samples from our parametric garment template. The segmentation corresponds to panels and stitches in the respective sewing

patterns.
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Fig. 11. Example of a garment program written with GarmentCode, showcasing a skirt used in our 1950s dress example. The ThinSkirtPanel class defines a

single trapezoid-shaped panel. SkirtManyPanels creates an instance of the panel according to style parameters (desired length, number of panels, and flare,

where 1 sun = full circle skirt), and body measurements (waist to condition the top opening, and hips height to condition the length). The panel is then placed,

and its copies are distributed on a circle around the body (using distribute_Y() operator) and stitched. The top edges of all panels constitute the interface of a

final skirt.
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Fig. 12. T-shirts designed with different rest angles of sleeves (denoted 𝜃 )

draped in the same pose. Note the differences in how well the fabric follows

the arm angle.

A CONSTRUCTING CURVED ELEMENTS

One of the advantages of the programming-based paradigm of gar-

ment modeling is the ability to utilize computational tools for defin-

ing garment elements that are difficult to specify correctly by hand,

e.g., when it comes to manipulating smooth curves. Here we elabo-

rate on one such example to complement the experiments presented

in the paper.

A.1 Inverting sleeve opening

As shown in Fig. 5, the connection between the sleeve and a chosen

bodice block is non-trivial, requiring the shape of the sleeve to be an

“inverse” of the shape of the sleeve opening on the bodice in order to

correctly wrap around the arm. In addition to these constraints, the

shape of the inverse connection on the sleeve defines the rest angle

of the sleeve in 3D: the arm angle at which there are neither folds

nor tensions in the garment fabric. Smaller angles allow putting

arms up more easily and are thus good for activewear, while bigger

angles create fewer folds in the armpit zone when the arms are

down, hence more suitable for officewear, as shown in Fig. 12.

For sleeve openings based on curves, defining sleeve edges cor-

rectly is especially challenging, since the inversion should preserve

the length of the edge while following the desired rest angle and

maintaining smoothness of connection of sleeve panels. Garment-

Code helps with this task.

Our process assumes that the projecting shape for a bodice is

defined as a cubic Bézier curve with both control points on one

side of the edge. The first step is then to create an initial guess

for the inverted sleeve shape: the control point towards the end

of the edge is flipped to the other side (flipping the 𝑦-coordinate

in its relative representation), and the edge direction is aligned

with an axis perpendicular to zero angle sleeve rest shape. In our

implementation, the 𝑥-axis corresponds to a fully horizontal sleeve,

and the perpendicular is the vertical direction. The edge is then

rotated by a desired rest angle 𝜃 .

The second step is an optimization pro-

cess, in which the edge extension and new

positions of curvature control points are

optimized s.t. the length of the curve is

preserved, while the curve tangents at the

endpoints are aligned with the downward

direction at the top and the desired sleeve

angle at the bottom. The first condition

ensures a smooth connection at the top

between the front and back sleeve panels, while the second one

enables the inversion effect and supports the chosen rest angle. The

function to minimize is as follows:

𝐸 (𝑐1, 𝑐2, 𝑠) = (∥𝑒 (𝑐start, 𝑐1, 𝑐2, 𝑐end + 𝑠 · 𝑣)∥ − 𝑙)2+

+
𝑇0 (𝑒 (𝑐start, 𝑐1, 𝑐2, 𝑐end + 𝑠 · 𝑣)) −𝑇 ∗

0

2 +
+
𝑇1 (𝑒 (𝑐start, 𝑐1, 𝑐2, 𝑐end + 𝑠 · 𝑣)) −𝑇 ∗

1

2 +
+ 𝜆 (𝐶max (𝑒 (𝑐start, 𝑐1, 𝑐2, 𝑐end + 𝑠 · 𝑣)))2 ,

where 𝑐1, 𝑐2 are the cubic Bézier control points, 𝑐start, 𝑐end are initial

edge endpoints, 𝑒 (𝑐start, 𝑐1, 𝑐2, 𝑐end) is a curved edge with given

endpoints and control points, 𝑠 is the scaling factor of the edge vector
𝑣 = 𝑐

end
−𝑐start, the𝑇0 (·), 𝑇1 (·) functions evaluate the curve tangent

at the start and the end point of the edge curve, with𝑇 ∗
0
, 𝑇 ∗

1
being the

target tangent values as described above. Finally, 𝐶max (·) evaluates
the maximum curvature of the edge and is used to regularize the

curve smoothness.

The given process produces a correct sleeve inversion for sleeve

openings of arbitrary size and for a desired sleeve rest angle, allow-

ing us to define both as garment style parameters, as is done on

our prototype garment configurator. The optimization process is

included in the core GarmentCode as an operator.
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