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Abstract

We present an image editing tool that allows to de-
form and composite image regions using an intu-
itive sketch-based interface. Users simply draw the
outline of the source image region and sketch a new
boundary shape onto the location where this region
is to be pasted. The deformation optimizes a shape
distortion energy, and we use Poisson cloning for
subsequent compositing. Since the correspondence
between the source and target boundary curves is
not known a priori, we propose an alternating op-
timization process that interleaves minimization of
the deformation energy w.r.t. the image region inte-
rior and the mapping between the boundary curves,
thus automatically determining the boundary cor-
respondence and deforming the image at the same
time. Thanks to the particular design of the defor-
mation energy, its gradient can be efficiently com-
puted, making the entire image editing framework
interactive and convenient for practical use.

1 Introduction

Gradient domain approaches have been success-
fully used for image manipulation. Preserving the
gradients of the image domain leads to image de-
formation techniques [2, 5, 6, 10], which allow ro-
tating and possibly scaling the image, but minimize
deformation. Preserving the gradients of the image
function (i.e., the colors) can be used to seamlessly
paste a region of an image into another image, a
technique called Poisson image editing [9]. Choos-
ing the right region to be copied and pasted is not
always easy, and several ways of using optimiza-
tion to identify the region in the source and target
images have been proposed [1, 7, 8].

Our idea is to allow deformation of the image re-
gion in this process. This would be an important im-
provement for several of the automatic approaches,
as the source and target boundary curves could be

Figure 1: The fish is deformed by applying a sin-
gle sketch and seamlessly placed in an underwater
scene.

different in shape. The shape can also be controlled
by the user, who would simply sketch the boundary
curves of the image part to be copied in the source
image and the corresponding region in the target im-
age. This simple and intuitive user interface is what
we advocate in this work.

Starting with the two boundary curves, we try to
minimize the deformation of the corresponding im-
age domain. For this purpose, we define a rotation-
invariant deformation energy (Section 3), essen-
tially following the ideas of the gradient domain im-
age deformation techniques mentioned above. Note
that we are not assuming that the mapping between
the two boundary curves is known. Instead, mini-
mizing the deformation energy determines both, the
mapping of the boundary curves onto each other,
and the mapping of the region enclosed by the
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boundary curves. We solve this minimization prob-
lem by interleaving the optimization of the inte-
rior region and optimization of the boundary curve
mapping. In Section 4 we explain how this can be
done by computing the gradient of the energy func-
tion with respect to the boundary vertices and then
projecting these gradients onto the tangents of the
boundary curve.

Using a least squares approach for enforcing the
mapping of the boundary curves allows varying the
degree of precision with which the deformation fol-
lows the boundary conditions, to enable gesturing
of quick and crude sketches, as well as carefully
drawn, precise curves. In the results section we
show how this leads to a very easy to control im-
age editing tool.

2 Framework

The user selects a region of the source image by
drawing a simple closed curve. We represent this
image region by a quad mesh S = {V, E} of a cer-
tain user-defined resolution, typically coarser than
the original pixel grid in order to save computation
time, similarly to [5, 10]. We will denote the origi-
nal vertex positions of S by v ∈ R2n, a 2n-vector
containing the coordinates of the n vertices (the n
x-coordinates followed by the n y-coordinates). We
refer to the position of the i-th vertex as vi ∈ R2

and the set of neighbors of vertex i is N (i).
The user then draws another simple closed curve

into the target image to indicate placement and de-
formation of the selected image region. Depending
on the input device, the sampling rate, and the ex-
pertise of the user, it might be necessary to filter
out some noise in the sketched curve. After con-
necting the pixel midpoints with line segments, we
apply the Douglas-Peucker polyline simplification
algorithm [4] using a small ε. The result of this pro-
cedure is a piecewise linear target boundary curve,
which we denote as γ.

The goal is to find displaced vertex positions
v′ ∈ R2n of the quad mesh that

1. minimize the distance of boundary vertices to
γ and

2. minimize a deformation energy, which is in-
variant to rotation and isotropic scale.

In the following section we will briefly explain how
we define the energy based on the results of gradient
domain mesh deformation techniques [11].

Figure 2: The user deforms an image region simply
by drawing the desired new boundary curve γ, here
shown as blue dots. The image region is represented
by a quad mesh S, in this case using a very coarse
resolution (each quad is 20× 20 pixels).

3 Deformation energy

It is common to measure deformation as a function
of first and second derivatives of the mapping [3,
12]. The Laplacian of a mesh can be represented
per vertex as

δi = L(vi) = vi − (1/|N (i)|)
X

j∈N (i)

vj . (1)

The mapping v → v′ is a pure translation if all δi

remain unchanged. It is an isotropic scaling if the δi

are all scaled by the same factor. And it is a rotation
if all δi are rotated by the same angle. To measure
deformation, we estimate isotropic scale and rota-
tion locally (i.e., a similarity transformation), and
compare the original δi to the deformed ones.

A similarity transformation in 2D has the form

Ti = Ti(s, w) =

�
s w
−w s

�
.

It can be estimated locally by considering each ver-
tex and its neighbors, and then fitting the best simi-
larity transformation in the least squares sense

Ti(v
′) = arg min

s,w

X
j∈{i}∪N (i)

‖Tivj − v′
j‖2.

Note that Ti is a linear function in the v′.
We use these local similarity transformations to

transform the original Laplacians δi and then com-
pare them to the ones of the deformed mesh. The
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Figure 3: Comparison of deformation results using different handle weights ω (from left to right: ω = 1.0,
ω = 0.5, ω = 0.1). The top row shows results of the initial deformation while the bottom row shows
the same results after applying our deformation minimization algorithm. The undeformed image region is
shown in Figure 2.

squared difference of these vectors will be the de-
formation energy:

Ed(v′) =

nX
i=1

‖Ti(v
′)δi − L(v′i)‖2 (2)

This is a quadratic expression in v′. So it can be
written as

Ed(v′) = ‖Adv
′‖2

= 〈Adv
′,Adv

′〉

= v′TAT
dAdv

′.

(3)

It could be minimized by setting its partial deriva-
tives to zero, leading to the equation Adv

′ = 0.
This means v′ = 0 is among the minimum energy
states of Ed(v′). The additional constraint that the
boundary vertices of the mesh have to be close to
the curve γ will yield non-zero solutions to the en-
ergy minimization.

4 Constrained energy minimization

We wish to find a deformation that minimizes
the deformation energy so that all boundary ver-
tices of the image region are close to the sketched
curve γ. Assume we knew the target positions

h ∈ R2c for the boundary vertices (again, h con-
sists of the c concatenated x-coordinates and then
the y-coordinates, and we denote the positions as
hi, i ∈ C). Then we could define an additional
quadratic energy term

Eb(v
′,h) =

X
i∈C

‖v′i − hi‖2 = ‖Ahv
′ − h‖2

= v′TAT
hAhv

′ − 2v′TAT
hh + hTh,

where Ah ∈ R2c×2n is a matrix that extracts the
vector of constrained vertices out of v′. Assume
w.l.o.g. that C = {1, . . . , c}, then Ah has the sim-
ple form

Ah =

�
Ic×c 0c×(n−c) 0c×n

0c×n Ic×c 0c×(n−c)

�
. (4)

Any weighted combination of the two energy terms

Ec(v
′,h) = Ed(v′) + ω2Eb(v

′,h) (5)

is again a quadratic energy in v′, i.e.

Ec(v
′,h) = v′T

�
AT

dAd + ω2AT
hAh

�
v′−

− 2v′Tω2AT
hh + ω2hTh.

(6)

Now the resulting linear system defining the mini-
mum energy state is nonhomogeneous, resulting in



Figure 4: Comparison of an unoptimized (left) with
an optimized mesh (right). The unoptimized mesh
shows strong shearing artifacts which results in dis-
tortions of the image. After applying our energy
minimization algorithm the resulting mesh is much
more regular and thus visual distortions in the im-
age are minimized. See Figure 6 for a higher reso-
lution image.

a unique solution when more than two vertices are
constrained and ω > 0.

Of course, we don’t have target positions h for
the handle vertices a priori. All we know is that they
are supposed to be on γ. So our approach to mini-
mizing the energy is to compute target positions on
the curve γ that minimize Ed(v′), i.e., the positions
are defined as

arg min
h∈γ

Ed(v′). (7)

The minimization is done iteratively, using a gra-
dient descent approach. We first compute a rough
initial mapping of the boundary vertices onto the
user-sketch, i.e., matching the source boundary and
the target sketch based on arc-lengths. We then take
a small step into the negative direction of the gra-
dients of the deformation energy with respect to the
boundary vertices in order to find new handle po-
sitions resulting in smaller deformation energy and
thus less distortion of the mesh. Since the handle
positions are constrained to lie on the user-sketched
boundary, we reproject the new handle positions
onto the sketch and iterate the algorithm until a min-
imum is reached.

The deformation resulting from the rough arc-
lengths based mapping is what we call “initial
deformation” and compare our optimized results
against.

4.1 Gradient on the boundary

Knowing the positions of the boundary vertices h,
we can compute v′ as the minimum energy state of

Ec(v
′,h) by taking the gradient of the energy w.r.t.

v′. From Eqn. (6) follows:

∂Ec

∂v′ = 2(AT
dAd + ω2AT

hAh)v′ − 2ω2AT
hh.

Setting the gradient to zero, we obtain

v′(h) = ω2(AT
c Ac)

−1AT
hh, (8)

where Ac ∈ R(2n+2c)×(2n) is the combined rect-
angular matrix

Ac =

�
Ad

ωAh

�
,

such that AT
dAd + ω2AT

hAh = AT
c Ac.

We proceed to compute the gradient g of the de-
formation energy functional with respect to the han-
dles h: g = ∇Ed(v′(h)). According to the chain
rule,

g = ∇Ed(v′(h)) =

�
∂v′

∂h

�T

∇Ed(v′).

Recall that the Jacobian matrix
�

∂v′

∂h

�
is the matrix

of partial derivatives:

�
∂v′

∂h

�
=

0
BB@

∂v′
1

∂h1
· · · ∂v′

1
∂h2c

...
. . .

...
∂v′

2n
∂h1

· · · ∂v′
2n

∂h2c

1
CCA .

Direct computation of the Jacobian is inefficient:
from Eqn. (8) one can see that it requires explicitly
having the inverse matrix (AT

c Ac)
−1, which is ex-

pensive and would necessitate prohibitive storage,
because the inverse matrix is generally not sparse.
We describe how we circumvent this problem in
Section 4.3.

4.2 Efficient gradient computation

Since the gradient descent algorithm requires sev-
eral iterations until a minimum is reached, we are
interested in computing g as efficiently as possible.
The first part needed for the computation of g is
∇Ed(v′):

∇Ed(v′) = 2
�
AT

dAd

�
v′. (9)

We can use the fact that v′ is the solution of Lapla-
cian mesh editing, which can be accelerated by
computing the Cholesky factorization of the system



matrix AT
c Ac . Since this matrix does not change

during our iterations, we can reuse this factoriza-
tion; computing v′ for a different right hand side
then only requires a (fast) backsubstitution step.

4.3 Efficient Jacobian computation

From Eqn. (8) we can directly obtain the Jacobian
of v′, since v′ is a linear function of h:

∂v′

∂h
= ω2(AT

c Ac)
−1AT

h.

According to the structure of Ah (Eqn. (4)), it
is easy to see that the Jacobian simply consists
of the relevant columns of (AT

c Ac)
−1. Let us

denote the individual columns of (AT
c Ac)

−1 by
m1,m2, . . . ,m2n. Then
�

∂v′

∂h

�
= ω2(m1, · · · ,mc,mn+1, · · · ,mn+c).

To avoid explicitly computing the inverse matrix
and then taking some of its columns, we observe
what happens if we actually use all the columns.
By “pretending” that the Jacobian actually equals
ω2(AT

c Ac)
−1, we obtain the following “overcom-

plete gradient”:

g̃ = (ω2(AT
c Ac)

−1)T(2(AT
dAd)v′) (10)

= 2ω2(AT
c Ac)

−1AT
dAdv

′. (11)

(Here we used the fact that since AT
c Ac is symmet-

ric, its inverse is also symmetric.) We can easily
obtain g̃ as the solution of the following linear sys-
tem:

(AT
c Ac)g̃ = 2ω2(AT

dAd)v′.

This system is quite efficient to solve: it only re-
quires one more back-substitution, since the pre-
factorization of the system matrix AT

c Ac is already
given.

Finally, we observe that since the real gradient
g only has 2c rows, and in order to compute it we
need the 2c columns of the inverse matrix, we can
actually obtain g from g̃ simply by erasing the un-
necessary rows and only keeping the rows 1, . . ., c,
n + 1, . . ., n + c.

4.4 Reprojecting gradients

To minimize deformation energy we apply the gra-
dient descent algorithm. Given the gradient g of

the deformation energy with respect to the handle
vertices h, we compute new handle positions h′ by
taking a small step into the opposite direction of the
gradient of h:

h′ = h− λg.

Recall that we require the boundary vertices h to
lie on the user-sketched curve γ in order for the de-
formed shape S ′ to follow the user-sketch. The new
handle positions h′ that result from an optimization
iteration generally do not lie on γ anymore. To fix
this, we reproject the handles h′ onto γ.

We have implemented the reprojection of h′ onto
γ as a simple orthogonal projection; i.e., for each
handle vertex v′c, c ∈ C, we find the nearest point
on γ. We denote the vector of reprojected handle
vertices by h′

proj. The reprojected handle h′
proj

is then used to compute the new energy gradient,
and the algorithm is iterated until convergence. We
found that approximately 50 iterations combined
with a stepsize of λ = 0.5 yielded good visual re-
sults in all cases and thus used those values in all
our examples .

5 Deforming and cloning

To finally compute the deformed image from the de-
formed quad mesh we apply texture mapping with
bilinear interpolation, which can be quickly per-
formed by graphics hardware. Lastly, the resulting
image is composited onto the target background im-
age with Poisson cloning as illustrated in Figure 1.
For completeness, in the following we briefly de-
scribe the compositing algorithm.

The final image is a result of an optimization pro-
cess that minimizes the squared difference between
the gradients of the unknown region in the target
image and the given gradients of the pasted image
for target boundary conditions. This results in a so-
lution that has gradients similar to the original im-
age while the boundary constraints ensure that the
resulting colors match the given boundary colors.

The optimization amounts to solving the Poisson
equation on the pasted image domain, to reconstruct
the three color channels. Using sparse linear solver
libraries, e.g. TAUCS [13], we can do this very ef-
ficiently by factoring the Laplace matrix once and
solving by backsubstitution. This even allows inter-
actively moving the pasted region around the target
image, since only the right-hand side of the system



changes, and thus the cloning can be recomputed
very quickly.

6 Results

We have successfully applied the proposed method
to various images and show comparison results be-
tween original, initially deformed and optimized
images in Figure 6 and Figure 7. As can be seen
in the resulting optimized images, visual distortions
in the deformed image are minimized by our ap-
proach, while still following the user’s sketch.

In Figure 8 we show the deformation energy gra-
dients with respect to the handle vertices. The
length of the gradient vectors is exaggerated by a
factor of 10 for illustration purposes. Note that
in the initially deformed mesh, the gradient vec-
tors have large components tangential to the bound-
ary curve, indicating that mesh deformation could
be reduced by moving vertices along the bound-
ary. As the minimization procedure progresses, tan-
gential components become smaller and the proce-
dure converges in all gradients being orthogonal to
the sketch. Figure 4 shows another example of an
optimized mesh. Applying our energy minimiza-
tion algorithm removes the strong shearing artifacts
clearly noticeable in the initially deformed mesh.
The result is a mesh with a structure very close to
the original mesh, leading to smaller visual distor-
tion in the deformed image.

The performance of our approach depends on the
size of the involved linear system, i.e. on the size
of the underlying mesh that is to be deformed. See
Table 1 for a comparison of execution time against
various mesh sizes, taken from the example in Fig-
ure 5. While using coarse meshes provides interac-
tive feedback within fractions of a second, higher
resolutions take significantly longer to compute but
result in less distortions in the final deformed im-
age. Note that only the minimization operation (last
column in Table 1) has to be executed when redraw-
ing a sketch, all other parts are precomputed.

We show a comparison of the influence of
varying handle weights on the deformation re-
sults in Figure 3. Note that exactly following the
user-sketch using higher handle weights results in
stronger deformations in the initial deformation re-
sult. Our proposed deformation minimization re-
moves those distortions while still following the
user-drawn outline.

vertices init fact. ∇Ed min.
300 0.047 0.234 0.172 0.344
916 0.141 0.765 1.141 1.078
3491 0.438 2.562 4.204 4.39

Table 1: Performance data measured in seconds on
an Intel Core 2 Duo 2.4 Ghz with 2 GBytes RAM.
From left to right: Number of vertices in the un-
derlying quad mesh, time to create the system ma-
trix Ac, time needed to compute a sparse factor-
ization of AT

c Ac, time needed for computing the
AT

dAd part of the gradient of the deformation en-
ergy and time needed to execute 50 iterations of our
minimization algorithm in order to compute the op-
timized image.

7 Discussion

We have presented a fast and robust optimization
technique that implements sketch based image de-
formation resulting in high quality deformation re-
sults without visible distortions.

Our technique is interactive up to medium mesh
resolutions and provides quick feedback when re-
drawing a boundary since the most expensive com-
putations (factoring the system matrix and comput-
ing ATA) only have to be done once. It is also easy
to implement since computing the gradient with re-
spect to the handle vertices, as shown in Eqn. (11),
reduces to simply solving two linear systems.

The constrained energy minimum is usually not
unique – depending on the initial boundary match-
ing the gradient descent procedure converges to the
closest local minimum. Also, as the deformation
energy is invariant under rotations, near circular
boundaries could lead to ambivalent minimum en-
ergy states. In practice, we have not observed this
problem. In any case, the user could add informa-
tion on corresponding points on the boundary to re-
solve ambiguities.

Our current implementation requires the user to
resketch the whole boundary for each modification,
which can be cumbersome. Future work may thus
include boundary manipulation techniques, allow-
ing the user to edit small parts of the boundary
instead of doing a complete resketch. This may
be achieved by using intuitive curve editing inter-
faces [6].



Figure 5: Deformation results using various mesh resolutions. From left to right: Using quad sizes of
20× 20, 10× 10 and 5× 5 pixels, with constant handle weights ω = 1.0.

(a) Original (b) Initial Deformation (c) Energy Minimized

Figure 6: Bending a pineapple. The result of the initial deformation (b) shows strong distortions. After
minimizing the deformation energy, visible distortions are eliminated (c).

(a) Original (b) Initial Deformation (c) Energy Minimized

Figure 7: Bending the top of a cactus to the right. Again, the original, undeformed image is shown in (a),
the initially deformed image in (b) and the optimized image after applying 50 iterations of our deformation
minimization algorithm is shown in (c).



0 iterations 1 iteration 5 iterations 50 iterations

Figure 8: Development of a deformed mesh and its associated gradients of the handle vertices (blue lines)
during the optimization process. The image on the top left corresponds to the leftmost, unoptimized mesh
while the image on the top right corresponds to the optimized mesh on the right after applying 50 iterations
of our optimization algorithm. Gradient vectors are scaled by a factor of 10 for illustration purposes.
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Peter Seidel. Laplacian surface editing. In
Proceedings of the Eurographics/ACM SIG-
GRAPH Symposium on Geometry Processing,
pages 179–188. ACM Press, 2004.

[12] Demetri Terzopoulos, John Platt, Alan Barr,
and Kurt Fleischer. Elastically deformable
models. In Proceedings of ACM SIGGRAPH,
pages 205–214, 1987.

[13] Sivan Toledo. TAUCS: A Library of Sparse
Linear Solvers, version 2.2. Tel-Aviv
University, Available online at http://
www.tau.ac.il/˜stoledo/taucs/,
September 2003.


