
Integrable PolyVector Fields

Olga Diamanti∗

ETH Zurich
Amir Vaxman

Vienna University of Technology
Daniele Panozzo

ETH Zurich
Olga Sorkine-Hornung

ETH Zurich

Abstract

We present a framework for designing curl-free tangent vector fields
on discrete surfaces. Such vector fields are gradients of locally-
defined scalar functions, and this property is beneficial for creating
surface parameterizations, since the gradients of the parameteriza-
tion coordinate functions are then exactly aligned with the designed
fields. We introduce a novel definition for discrete curl between un-
ordered sets of vectors (PolyVectors), and devise a curl-eliminating
continuous optimization that is independent of the matchings be-
tween them. Our algorithm naturally places the singularities required
to satisfy the user-provided alignment constraints, and our fields are
the gradients of an inversion-free parameterization by design.

CR Categories: I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling—Geometric algorithms, languages, and
systems

Keywords: PolyVectors, curl-free fields, quad meshing

1 Introduction

The design of vector fields on discrete surfaces is an important
problem in geometry processing, with applications in surface pa-
rameterization, texture synthesis, stylized rendering, remeshing and
architectural geometry [Hertzmann and Zorin 2000; Lefebvre and
Hoppe 2006; Palacios and Zhang 2007; Li et al. 2011; Liu et al.
2011; Bommes et al. 2013b]. In most of these applications, vector
fields are computed to serve as a guiding basis for the construction
of global parameterizations, which is also the focus of this paper.

Vector fields are typically designed by prescribing a small set of
user-defined alignment constraints, which are then interpolated. The
resulting field is prescribed as the desired gradient of a parametriza-
tion function, and the parameterization is computed by minimizing
the difference between the tangent field and the gradient of the func-
tion in the least-squares sense, leading to a Poisson equation. In this
optimization problem, perfect alignment of the gradient of the re-
sulting parameterization function to the sparse set of constraints can
be enforced using linear equality constraints [Kälberer et al. 2007;
Bommes et al. 2009]. However, the computation of the function
by a least-squares solution may introduce unbounded errors away
from the constraints and compromise local injectivity, resulting in in-
verted elements . Inverted and degenerate elements make the global
parametrization unsuitable for practical purposes (e.g., they lead to
holes during remeshing [Ebke et al. 2013]). Previous works avoid

∗e-mail:olga.diamanti@inf.ethz.ch

Figure 1: Parameterization using integrable fields. Given a set of
user-provided constraints (left), we optimize for an integrable field,
which exactly aligns to the corresponding parameterization (right),
while staying close to the constraints.

them using heuristic weighting [Bommes et al. 2009] or relaxation
by a reduction of the search space [Bommes et al. 2013a]. All these
methods further increase the parametrization distortion.

The key insight that guides our approach is that the gradients of
a global parametrization, with or without inversions, are curl-free
vector fields. We thus directly devise conditions that guarantee that
the final vector field will be curl-free, and that the corresponding
parameterization will additionally be free of inverted elements. We
propose an algorithm that penalizes the violation of these conditions.
Using our algorithm automatically places the singularities in a way
that minimizes the distortions.

We formally introduce the notion of integrability and curl for
PolyVectors, which are unordered sets of tangent vectors defined
on every face of the surface. We develop a formula to measure the
PolyVector curl, and optimize for its removal; our formulation does
not require explicit pairings of vectors between the unordered sets
on adjacent elements. In this manner, the individual vector pairings
(often called matchings) are free to change during the optimization,
naturally inducing field singularities. Our algorithm relies on a
nonlinear optimization, involving no integer variables, and supports
user-provided directional constraints, which may be free to align
with either the u or the v coordinate of the parameterization, without
the necessity to constrain such a choice.

The conditions that ensure an inversion-free parameterization are
not imposed as hard constraints by our algorithm, but as a penal-
ization term that tends to avoid invalid configurations. This term
is then minimized using a nonlinear and nonconvex optimization.
Thus our algorithm is theoretically not guaranteed to find a global
minimum, i.e., a fully inversion-free parameterization. However,
we demonstrate its robustness and applicability by running it on a
global parameterization benchmark proposed in [Myles et al. 2014],
which contains 116 models. Our algorithm successfully produces
integrable fields on all models, and the induced parameterizations
contain no inversions.

0

1

0

1

Figure 2: Our algorithm optimizes for general curl-free fields. From left to right: a parameterization, its gradients, the scalar function
corresponding to v (blue), the periodic function corresponding to u (orange), a scalar function whose gradient is added to the original
gradients of the parameterization, the resulting parameterization.

2 Related work

The design of tangent vector fields on surfaces has been pioneered
in [Zhang et al. 2006; Fisher et al. 2007]. These methods compute
smooth fields that satisfy alignment constraints, and can also gener-
ate divergence-free or curl-free fields. A recent method by Azencot
et al. [2013], which is based on a functional representation, allows
joint design of fields on multiple surfaces, in addition to the design
of symmetric fields.

Cross fields. Cross fields were initially motivated by nonphoto-
realistic cross-hatching rendering, where a set of four orthogonal
directions is necessary at each point. A cross field is a set of four
unit-length vectors related by a rotation of π/2 radians. They have
been formally defined and generalized to a wider set of symmetries,
e.g. N -RoSy, in [Kälberer et al. 2007; Palacios and Zhang 2007;
Ray et al. 2008].

A cross field can be created by specifying its singularities [Ray et al.
2008; Crane et al. 2010] or by prescribing a sparse set of direc-
tional constraints and letting the topology emerge from a smoothing
process [Ray et al. 2009]. A smoothness measure on cross fields
is defined as the relative angle difference between the two vectors
of adjacent crosses that have the smallest relative angle difference.
Such smoothness can be equivalently defined as the angle differ-
ence between any two vectors of adjacent crosses up to an integer
in-plane rotation by π/2 [Bommes et al. 2009], or by factoring out
the symmetry using a complex representation and complex powers
to encode it [Knöppel et al. 2013]. The design of cross fields on
symmetric surfaces has been studied in [Panozzo et al. 2012].

Non-orthogonal and non-homogeneous N-RoSy fields.
N -RoSy fields do not encode scale and anisotropy, and the angles
between their vectors are fixed to 2π/N . To lift the angle restriction
and generalize integer matching, permutation matrices have been
introduced in [Liu et al. 2011] and employed to represent conjugate
fields, which can be converted into planar quadrilateral meshes.
Frame fields, which are pairs of line fields with independent scales
and angle, can be encoded by a composition of cross fields and
affine maps [Panozzo et al. 2014]; such frame fields can be used for
anisotropic quadrangulation with varying element size.

PolyVector fields. A general formulation, which includes all pre-
viously mentioned fields as special cases, has been proposed in
[Diamanti et al. 2014]. PolyVectors are general unordered vector
sets, encoded as the roots of a complex polynomial. The coefficients
of the polynomial can be interpolated over a surface by solving a
linear system, indirectly interpolating the polynomial roots. Addi-
tional constraints, such as angle bounds or conjugacy, can be easily
enforced with a local-global optimization. Our algorithm enhances
the PolyVector framework by introducing a new set of properties
that guarantees the integrability of the fields, while maintaining the
continuous and general formulation.

Integrability. To the best of our knowledge, the approach of Ray
et al. [2006] is the only method that explicitly attempts to improve
the integrability of a vector field prior to using it in the computation
of a field-aligned global parameterization. Ray et al. propose to
rescale the vectors to minimize the curl as a heuristic that improves
the integrability, but rescaling alone is too restrictive to guarantee a
truly integrable field on surfaces which are not homeomorphic to a
disk. Apart from [Ray et al. 2006], all other field-design methods fo-
cus on creating smooth fields that, in the majority of the applications,
are used as ideal (target) gradient fields for a global parameteriza-
tion. Smoothness is correlated with integrability, as we discuss in
Section 3, albeit not guaranteeing it. Therefore, the resulting pa-
rameterizations are not precisely aligned with the desired field and
may even have inversions. [Myles et al. 2014] compute a global
parameterization by tracing the separatrices of a given field and then
parameterizing each patch of the induced partitioning. Heuristic
steps are used to reduce alignment artifacts due the non-integrability
of the field, which can lead to arbitrary misalignments in the result-
ing parameterization. We provide a more direct and simple algorithm
that controls the alignment, while avoiding numerical tracing and
heavy post-processing.

Integrable poly-vector field topology. A global parametrization
is a map from a surface with a non-flat metric to the plane, inducing
distortion for any non-developable surface. In order to control the
distortion and generate a locally-injective map, cone singularities
must be introduced. Singularities are heuristically computed for
a smooth field in [Bommes et al. 2009], or optimized for directly
on the parameterization function in [Myles and Zorin 2012; Myles
and Zorin 2013]. [Lipman 2012; Bommes et al. 2013a; Ray et al.
2006] guarantee the generation of a locally-injective map by fixing
the field topology, at the price of limiting the solution space. In our
case, the singularities are automatically introduced by the algorithm
where needed.

Quadrangulation. Tangent fields can be used directly to create
quad-dominant meshes, without computing an intermediate parame-
terization, by tracing their separatrices [Alliez et al. 2003; Marinov
and Kobbelt 2004]. The resulting quad-dominant meshes can be
converted to pure quadrilateral meshes with a step of Catmull-Clark
subdivision. However, such methods can handle singularities only
by subdivision, without any control of quad quality near the singular-
ities. In light of this fact, quad meshes are usually computed using a
parameterization; the parametric domain is then regularly meshed by
a grid and lifted back to the surface [Kälberer et al. 2007; Bommes
et al. 2009; Bommes et al. 2013a; Ebke et al. 2013; Ebke et al.
2014]. The main difficulty in creating a quadrangulation over a gen-
eral parameterization is that the parameterization must be seamless,
i.e., close up on parameterization seams with perfect alignment and
grid translation, in order for the quadrilateral mesh to be consistent.
The gradients of such parameterizations are by definition curl-free
everywhere, including across seams, and in addition integrate into
integers around singularities for grid consistency. Seams can be
avoided by assuming a rotational symmetry between the gradients

Figure 3: Solving a Poisson equation can result in arbitrary mis-
alignments between the input field and the gradients of the recon-
structed scalar function (left). Alignment can be enforced using
harder constraints (middle), potentially leading to inverted elements
(in red) and/or higher distortion. Our method optimizes for a field
that avoids inversions in the parameterization and adheres well to
the constraints.

of the parameterization functions, by using a periodic trigonometric
representation [Ray et al. 2006]. However, this only applies when
the goal is a conformal parameterization represented by 4-RoSy
fields, and cannot be easily generalized to frame fields.

A completely different approach to mesh quadrangulation consists
in designing scalar functions whose Morse-Smale complex is a
quadrilateral grid on the surface [Dong et al. 2006; Zhang et al.
2010; Ling et al. 2014]. Unfortunately, aligning to constraints is
difficult to achieve in this setting. To the best of our knowledge, the
only methods that guarantee perfect alignment of the mesh edges to
(arbitrarily many) user-defined constraints require extensive manual
input, e.g. in the form of sketches [Takayama et al. 2013; Campen
and Kobbelt 2014]. If our fields are used to compute a seamless
parameterization for quadrangulation, we can guarantee that all
edges of the quadrangulation correspond to the designed field and
continuously align everywhere, up to the integer roundings. As we
demonstrate in Section 6, the integer grid misalignment becomes
smaller as we increase the resolution of the output mesh.

3 Gradients of scalar functions and field-
aligned parameterizations

We address the design of tangent vector fields for the purpose of
surface parameterization, i.e., fields that are the gradients of the
scalar coordinate functions of the parameterization. The isolines
of the parameterization are then orthogonal to these vector fields
by design. The fields should satisfy the user-provided alignment
constraints if they are not contradictory; otherwise, comply to them
as much as possible. Ideally, a field-based parameterization design
algorithm should provide as much freedom as possible in the choice
of imposed alignment constraints, and at the same time always com-
pute a valid parameterization. Finally, the resulting parameterization
should introduce minimal metric distortion and avoid inversions.

To achieve these goals in the context of vector-field design, we first
need to study how these parameterization properties relate to the
properties of vector fields. We discuss multiple vertex-based scalar
functions on discrete surfaces and the properties of their gradients
as sets of integrable vector fields. We then focus on special sets,
defined per surface point, that consist of four ordered vectors and
are of particular interest for inversion-free parameterizations.

3.1 Vertex-based scalar functions

We denote the input discrete surface mesh by S = (V, E ,F), where
V, E ,F denote the set of vertices, edges and triangle faces, respec-
tively. Discrete scalar functions h : S → R are defined by their

values on the mesh vertices; their values inside a triangle are ob-
tained by linearly interpolating the function values at the triangle
vertices, using hat functions.

A tangent vector field assigns a vector αf to each face f ∈ F ;
αf lies on the plane spanned by the face. The gradients ∇h of
discrete scalar functions are a particular case; since the functions are
piecewise linear, their gradients are piecewise constant, i.e., constant
on every face f ∈ F .

Discrete curl. The linearly-interpolated values of a discrete scalar
function h on two adjacent faces f, g ∈ F coincide on their mutual
edge e. The derivatives of h are well-defined inside triangles f
and g, since h is linear there, and the directional derivatives along
edge e coincide. This can be expressed using the per-face gradients
∇hf ,∇hg and the edge vector e as:

〈∇hf , e〉 = 〈∇hg, e〉.

It trivially follows that 〈∇hf , e〉 − 〈∇hg, e〉 is zero for any func-
tion h. Replacing ∇hf ,∇hg with general tangent vectors αf , αg ,
we obtain 〈αf , e〉 − 〈αg, e〉, which is a well-established definition
of the discrete curl of the vector field α on the edge [Polthier and
Preuß 2003; Kälberer et al. 2007]. A vector field α is hence curl-free
across edge e if and only if:

〈αf , e〉 = 〈αg, e〉. (1)

Similarly to the continuous case, the gradients of a discrete scalar
function have zero curl. However, the converse is true only with an
important restriction: a curl-free vector field α in a simply-connected
surface patchP ⊂ S is always the gradient of some scalar function h
defined within the patchP . If the entire mesh S is simply-connected,
then the scalar function h can be defined globally on all vertices.

Poisson integration. Given a tangent vector field α on a simply-
connected surface, which is also the gradient of a scalar function h,
we can reproduce h up to an additive factor τ by solving a linear
system, using the discrete gradient operator G : V → F [Botsch
et al. 2010]:

Gh = α. (2)

Since |F| ≥ |V|, this system is overdetermined. For a general field
α, this system has a solution only if α is curl-free (which trivially
holds if α is the gradient of a scalar function). If α is not curl-free,
or if the surface is not simply-connected, we can solve this system
in the least-squares sense, i.e. the Poisson equation:

min
h
‖Gh− α‖22 ⇒ ∆h = divα, (3)

where ∆ is a discrete Laplace operator. This system always has a
solution. The gradient of the resulting scalar function is a projection
of α onto the space of gradient vector fields, and, as such, onto the
space of curl-free vector fields as well.

Solving the above Poisson problem to produce a scalar function
from a vector field is numerically inexpensive, as it reduces to

solving a sparse linear system. It is
thus commonly used in many geometry
processing algorithms, where a tangent
field is designed as a candidate in lieu
of the exact gradient of a field-aligned
parameterization. Unfortunately, the ac-
tual gradient of the Poisson-integrated
function might have arbitrarily large de-

viations in alignment and sizing from the originally designed field
(see inset, and Figure 3). Introducing a weighting scheme to enforce
better alignment of the gradients in the constrained parts often works,
but might introduce an unpredictable and uncontrolled deviation of

the gradient of the parameterization from the tangent vector field in
unconstrained regions, unless the tangent vector field α is curl-free
by intended design.

In light of this fact, designing curl-free vector fields for the purpose
of constructing scalar functions is an attractive approach, as it en-
sures that the resulting field is exactly the gradient of the desired
scalar function, without introducing alignment or sizing errors.

Harmonic fields. Curl-free vector fields are synonymous with
gradients of scalar functions only on simply-connected patches. For
non-simply-connected domains, there exist curl-free fields which are
not gradients of any globally-defined continuous function, but which
play an important role in our framework. Consider the annulus
in Figure 2: the gradients of the two parameterization coordinate
functions are both curl-free, yet only∇v (blue) is the gradient of a
continuous scalar function. There is no continuous scalar function
whose gradient corresponds to the field that circles the annulus
(orange). However, it is the gradient of a periodic function (Figure
2, middle), which can be converted into a continuous scalar function
by cutting its domain until it is simply connected. Such vector fields
are called harmonic fields, and they are vital for creating periodic
functions on surfaces: they are the part of the vector field which
“closes up” the parameterization around any chosen seam, creating
the seamless effect. The gradient of any scalar function can be added
to the harmonic field without breaking this effect, while providing
additional degrees of freedom for the parameterization (Figure 2,
right). Our approach designs general curl-free fields, consisting of
harmonic fields and gradients of scalar functions, which are then the
proper fields for designing seamless parameterizations.

3.2 Multiple scalar parameterization functions

A mesh parameterization is a pair of scalar functions (u, v) : V →
R2 representing the mapping between surface points and points on
a plane. This is a special case of multiple scalar functions defined on
a single surface; their gradients are a collection of vectors on every
face f ∈ F , which we call a vector-set field.

Matchings and curl-free sets. Let us consider two adjacent faces
f, g with their respective vector-sets. We define a matching as a
bijective pairing of the individual vectors in the vector-set of f with
those of g. If every pair of matched vectors has zero curl on the edge
shared between f, g, we denote the pairing as a curl-free matching.
If for every two adjacent faces on the mesh we have a curl-free
matching, the entire vector-set field is curl-free.

Inconsistencies and singularities. Consider an ordered 1-ring
of consecutive faces {f1, . . . , fm} around a vertex j and assume
there is a matching defined for all edges. Pick a single vector in face
f1, follow into face f2 by picking its paired vector, and continue
until face f1 is visited again. If we land on the same vector we
started with, the matching is consistent around vertex j, which is
then called a regular vertex. Otherwise, the matching is inconsistent
and vertex j is a singularity.

Separable scalar functions. Suppose we have a vector-set field
on a simply-connected surface patch P ⊂ S that does not contain
any singularity. In this case, the vector-set field can be decomposed
into a collection of tangent vector fields, each field containing one
vector per face: starting from one vector on a face, we follow the
matchings (on edges) to the adjacent faces, until the entire patch
is visited. We then do the same for any remaining vector, until
the entire field is claimed. If the matchings are curl-free, we can
integrate each tangent vector field into a separate scalar function;
thus, the vector-set field represents a set of scalar functions, such as
the u and v coordinate functions of a parameterization.

Singularities and overlapping patches. The global decomposi-
tion into separate tangent vector fields cannot be done if the vector-
set field on a patch contains singularities, and thus we cannot in-
tegrate it into separate scalar functions. However, for any regular
point, we can find a neighborhood with no singularities in its interior
(the neighborhood may still have singularities on its boundary). In
such a neighborhood, we can locally integrate the vector-set field to
obtain scalar functions. Next, consider two overlapping neighbor-
hoods, where the vector sets are integrated into scalar functions in
each neighborhood. The integrated functions in the region shared by
both neighborhoods are related by permutations and additive factors,

0

1

as we show next with an exam-
ple. Consider two simple over-
lapping patches (inset): P1 =
(f1, f2) ,P2 = (f2, f3), where
f1, f2, f3 are consecutive faces
around the 1-ring of a singular-
ity vertex. Since these patches
do not contain the singularity in
their interior (it is on their mutual
boundary), we can decompose
and integrate the vector-set field
of P1 into separate scalar func-
tions A1 . . . An, and the vector-
set field of P2 into functions
B1 . . . Bn (we only show the

function corresponding to the orange vectors in the figure). Since
both scalar function sets A and B share the same vector-set α2 on
face f2, they basically have the same gradients there, but up to order.
Therefore, the elements in the sets A and B are related by additive
factors (due to the integration) and a permutation:A1

...
An

∣∣∣∣∣∣∣
f2

= Π

B1

...
Bn

∣∣∣∣∣∣∣
f2

+

τ1...
τn

 , (4)

where Π : A|f2 → B|f2 is a permutation operator, and τi ∈ R are
the additive factors (in the inset, the orange vector on the left flap is
permuted with the opposite of the orange vector on the right flap).
Thus, curl-free vector-set fields can be integrated with zero error into
separate scalar functions on overlapping patches. The functions on
the different patches are interchangeable in the shared region with
the ones on another patch: their relation is completely defined by
permutations and additive factors . This is particularly appealing for
parameterization applications that are invariant to certain permuta-
tions: for example, for the purpose of quadrangulating a mesh via
global parameterization, the exact assignment of u and v directions
is not important, as they are equivalent up to rotation and translation
by certain factors. Intuitively, rotating a regular quadrilateral grid
image by π/2 radians (permuting coordinates), or translating it by a
constant offset (additive factor) produces an identical image, and a
similar invariance holds when the grid is lifted onto the surface.

Seams. The concept of interchangeable functions

u

v

is well-established in computer graph-
ics, and is usually formulated in a dif-
ferent, but equivalent, way. Instead of
defining scalar functions on overlapping
neighborhoods, it is possible to equiv-
alently cut the mesh into a single, disk-
topology patch with all singularities on
its boundary (inset). The boundary seg-
ments of this patch are commonly re-
ferred to as seams, and the entire bound-
ary is a tree of mesh edges connecting
all singularities (as well as cut handles

for surfaces with a non-vanishing genus). Since there are no singu-
larities in the interior of this patch (which covers the whole mesh),
and since the vector-set field is curl-free, we can always separate
it into individual tangent vector fields, and subsequently integrate
those into globally-consistent scalar functions, defined on the ver-
tices of this patch. Note that these vertices correspond to the mesh
vertices only in the patch interior; the mesh vertices on the seams
appear multiple times as patch corners. Thus, the integration returns
multiple scalar values for the mesh vertices on the seams, which are
related by a permutation and an additive factor, as discussed earlier.

Seamless quadrangulations and frame fields. For the purpose
of quadrangulation, a square grid texturing the plane is lifted back
onto the original surface using the inverse of the parameterization. It
is desirable that the (inverse) parameterization function embeds the
planar quad grid onto the surface in a seamless manner, i.e., the grid
appears regular everywhere. However, only topological disks can be
parameterized without introducing seams; if seams are present, they
might be visible following this lifting.

Note that the appearance of a quadrilateral grid is invariant to both ro-
tation by π/2 and integer translation. As long as the planar image of
the parameterization on the seams only transforms by such rotations
and translations, the seams will not be visible. In terms of parameter-
ization functions, this amounts to representing the parameterization
with four (dependent) functions {u, v,−u,−v}, each representing
the four (signed) alignments of a quad mesh. These functions are re-
lated across seams by a permutation and/or translation by an integer
multiple of grid edge length, producing an identically looking grid
on the surface. Note that the gradients of these functions are not gen-
erally related by rotational symmetries unless the parameterization
is conformal. Seamless quadrangulations can then be computed in
three steps:

1. Construct a curl-free vector-set field {α, β,−α,−β} (a curl-
free frame field).

2. Cut the mesh into a disk so that the singularities are on its
boundary, and integrate the field to obtain the scalar functions.

3. Make sure the additive factors on the cuts are integer-valued.

We tackle the first two steps in our work: if the frame field is
curl-free, then we can compute scalar parameterization functions
whose gradient is exactly aligned with the field. On the cuts, the
scalar functions agree up to permutations, which corresponds to
the invariance to permutations of the integer grid. Unfortunately,
the curl-free property does not guarantee that the additive factors
would be integer-valued; this has to be taken into account in a
separate design. However, we demonstrate that while curl-free fields
only guarantee seamless integration up to integer consistency, a low
integration error is achieved after the final integer rounding step.

To conclude, the design of multiple scalar functions is reducible
to the design of curl-free vector-set fields. If the singularities are
prescribed in advance, the problem can be reduced (by cutting the
mesh and separating the vector-set into single vector fields) into
the problem of designing curl-free vector fields with the given sin-
gularities. However, this is not a good practice in general, since
positioning singularities and determining matchings a priori con-
siderably shrinks the available search space, potentially leading to
suboptimal solutions. Instead, the entire set of possible local match-
ings can be encoded with integer rotation variables [Bommes et al.
2009] or permutations [Liu et al. 2011], and an extra curl condition
can be incorporated per matching. Unfortunately, the introduction of
combinatorial choices increases the computational complexity and,
again, might lead to suboptimal results.

Smooth vs. curl-free fields Alternatively, it is a common prac-
tice to ignore the curl-free constraints and design smooth vector-set

fields, either symmetric [Knöppel et al. 2013] or general [Diamanti
et al. 2014]. Two vector sets are perfectly smooth across an edge
if there is a matching between them, so that every matched pair is
parallel. Parallelity is measured by flattening the related triangle flap
to the plane. It is clear that the curl of the sets of the edge is zero.
Perfect smoothness cannot be attained in general, due to curvature,
and it is then common to compute “as-smooth-as-possible” vector-
set fields [Crane et al. 2010; Knöppel et al. 2013; Diamanti et al.
2014]. However, the resulting fields and the smooth matchings (the
ones that match the most parallel vectors) are only approximately
curl-free matchings at best. While such a solution avoids the difficult
curl-free constraints for vector sets altogether, it is susceptible to un-
expected errors and misalignments in the integrated scalar functions
after the Poisson step (Figure 4).

smoothness matching curl matching

Figure 4: Smooth matchings might not be curl-free matchings, in-
ducing errors and misalignments in the integrated scalar function.

3.3 Inversion-free parameterizations

In addition to the “seamlessness” property discussed earlier, a basic
requirement for parameterization functions (or mappings) is to be
inversion-free. A mapping that does not satisfy this property results
in inverted faces in the parametric domain, and thus cannot be
used for practical purposes, such as texture mapping or surface
quadrangulation.

An equivalent requirement is that the cross product of∇u and∇v
on the surface always points in the same direction as the surface
normal. It follows that the angle between ∇u and ∇v must be
convex (between 0 and π). This condition can be directly imposed
on the gradients of u and v, when put as row vectors, as follows:

det
(
∇u>,∇v>

)
> 0. (5)

The mapping induced by such u and v is then inversion-free.

If u and v are obtained via Poisson integration from two general
(not curl-free) tangent vector fields, this condition might not be
satisfied: u and v are integrated separately, while the injectivity
property is a joint condition. Methods that guarantee an inversion-
free parameterization thus either couple the optimization of the two
functions u and v in a nonlinear term [Schüller et al. 2013] or solve
a sequence of convex subproblems [Lipman 2012; Bommes et al.
2013a], ensuring that the parameterization is free of inversions.

If a curl-free frame field is used to design a quadrangulation, Eq. (5)
readily translates into a condition on the matchings: a curl-free frame
field induces an inversion-free parameterization if and only if its curl-
free matching is order-preserving, meaning that the geometric order
of the vectors on two adjacent faces is identical after the matching
(see Figure 5).

In summary, to design an inversion-free parameterization, it suffices
to produce a vector-set field with the following properties:

• The vector-set field should satisfy the user-provided constraints
and be as smooth as possible.

Figure 5: A curl-free frame field induces an inversion-free parame-
terization if and only if its curl-free matching is order-preserving.

• The vector-set field should be curl-free, to ensure exact align-
ment of the parameterization to the designed field.

• The curl-free matchings must be order-preserving, to ensure
local injectivity of the parameterization.

• The vectors in every face should be properly oriented (see
Equation 15 below).

In the next section, we formulate a framework to solve for vector-set
fields which precisely satisfy these properties; our method performs
a continuous optimization that incorporates all possible matchings,
and thus naturally induces singularities.

4 Integrable PolyVector fields

Equipped with the formal properties necessary for vector-sets to be
the gradients of the coordinate functions of an inversion-free seam-
less parameterization, we next present the mathematical elements
used in our algorithm for designing such fields. To represent vector-
sets, we employ PolyVectors [Diamanti et al. 2014]. We briefly
summarize the basic concepts and properties of PolyVectors to make
this paper self-contained.

Vector fields as complex numbers. We define a local coordi-
nate system for every face, which we identify with the complex
plane and use to represent tangent vectors as complex numbers. We
use a discrete connection to compare two vectors αf , αg ∈ C that
are defined in adjacent faces f, g with a mutual edge e; this amounts
to translating one coordinate system onto another by using the nor-
malized edge vector as a common denominator. This formulation
is equivalent to isometrically unfolding the triangle flap f, g onto
a plane, and then comparing vectors directly after the alignment of
their local coordinate systems. The vectors αf and αg are said to be
equal if and only if:

αfef = αgeg, (6)

where ef and eg are the complex conjugates of the representations
of the edge vector e in the local complex coordinate systems of faces
f and g, respectively. This is a discrete Levi-Civita (LC) connection
[Crane et al. 2010]. The smoothness of a vector field can then
be measured by the following Dirichlet energy, which penalizes
deviation from the LC connection:

ED(α) =
∑

(f,g)∼e∈E

‖αfef − αgeg‖2. (7)

We define a smooth vector field to be a vector field that minimizes
this energy, thus being “as-LC-as-possible” [Diamanti et al. 2014].

PolyVector fields. A PolyVector [Diamanti et al. 2014] encodes
an unordered set of n tangent vectors {α1,f , · · · , αn,f} on a face f .
The vectors are considered as the roots of a unique monic complex
polynomial, and thus the unordered set is encoded by its complex
coefficients. Partial symmetry of vectors within the set, includ-
ing N-RoSy fields [Knöppel et al. 2013], can be encoded by the
PolyVector representation, producing special cases of polynomials.

For instance, an n-RoSy field is encoded as zn − an, where a is an
arbitrary single vector from the n-RoSy set.

The smoothness of PolyVectors can then be reduced to the smooth-
ness of their polynomial coefficients (as measured by the Dirichlet
energy in Eq. (7)), and these coefficients are compared using the
proper LC-connection [Diamanti et al. 2014].

4.1 Curl-free PolyVector fields

We define an n-PolyVector field to be curl-free if and only if for
each edge e between two faces f, g, there is a matching such that
every matched vector-pair is curl-free per the definition in Eq. (1).
Given the complex representation of the field vectors, the condition
for zero curl across the edge now becomes

Re(αfef) = Re(αgeg). (8)

PolyCurl. Using the PolyVector framework, we can write an op-
timization that factors out the matchings, allowing us to optimize
for curl-free fields by minimizing a continuous energy. Assume
again two adjacent faces f, g sharing edge e, and an n-PolyVector
field α consisting of the tangent vectors {α1,f , · · ·αn,f} on face f
and {α1,g · · ·αn,g} on face g. We define the following two real curl
polynomials (where r ∈ R):

Pf |e(r) = (r − Re(α1,f ef)) · · · (r − Re(αn,f ef)) , (9)
Pg|e(r) = (r − Re(α1,g eg)) · · · (r − Re(αn,g eg)) .

Lemma 4.1. There is a curl-free matching of vectors between the
vector sets in f and g if and only if Pf |e is equivalent to Pg|e.

Proof. Two polynomials are equivalent if and only if they have
matching roots, which means that there is an induced matching of
vectors with the same dot product with the edge-vector e, and thus
the set is curl-free by definition (Eq. (1)).

Intuitively, the “distance” between these two polynomials, repre-
sented as the distance between their respective coefficient vectors
(cf |e,0, cf |e,1, ...) and (cg|e,0, cg|e,1, ...), is measuring the edge
curl while being independent of the matching:

PolyCurle =
∑
k

(
cf |e,k − cg|e,k

)2
. (10)

We call this quantity PolyCurl: if it is zero, then there must be at
least one zero-curl matching for all the vectors in the two adjacent
n-PolyVectors. Note that the real-valued PolyCurl does not use
the LC-connection to transport vectors; each polynomial Pf |e is
constructed using the edge e represented in the reference system
of f , and similarly for Pg|e.

Frame fields. Since our main application is parameterization for
the purpose of quadrangulation, we now restrict the rest of the paper
to special 4-PolyVector fields called frame fields. Note, however,
that all of the following concepts can be readily extended to general
n-PolyVectors.

Frame fields are 4-PolyVector fields comprising two symmetric
line fields, each with its own scale, and they are ideal for repre-
senting gradients of a global parameterization (Section 3.2). For
each face f ∈ F , a frame field consists of an unordered vector set
{αf , βf ,−αf ,−βf} , αf , βf ∈ C. Therefore, the polynomial rep-
resenting an element of a frame field is P (z) = (z2−α2

f)(z2−β2
f)

and the corresponding 4-PolyVector is
(
0,−(α2

f + β2
f), 0, α2

fβ
2
f

)
.

αg

βg

−βg

−αg

αf

βf

−αf

−βf

αf

−αgβg

αg −βg

αf

βf

−αf

−βf

αg

βg

−βg

−αg

αf

βf

−αf

−βf

−βg

−αg
βg

αg

αf

βf

−αf

−βf

Figure 6: For frame fields, only four possible matchings per edge
are order-preserving. The curl quotients for these four cases are
related by equality or reciprocal negation.

For frame fields, the non-vanishing coefficients of the monic curl
polynomial for face f (Eq. (9)) correspond to the free and the second-
degree coefficients (note that the curl polynomial is in fact quartic):

cf |e,0 = Re(αfef)2Re(βfef)2, (11)

cf |e,2 = −
(
Re(αfef)2 + Re(βfef)2

)
.

When cf |e,0 = cg|e,0 and cf |e,2 = cg|e,2, the frame field on faces
f, g is curl-free. Hence we denote the distance (cf |e,0 − cg|e,0)2 +

(cf |e,2 − cg|e,2)2 as the PolyCurl of the frame field.

The disadvantage of trying to minimize the PolyCurl to compute
curl-free fields is paradoxically caused by its advantage: the for-
mulation is indifferent to the ordering of the vectors, and thus can
easily produce a curl-free field whose curl-matching is not order-
preserving, a property that we require for inversion-free parameteri-
zations. In the following, we formulate an additional measure called
PolyQuotient that, when minimized, prevents matchings that are
not order-preserving, and thus guarantees that there are no inverted
triangles in the corresponding parametrization.

4.2 Order-preserving matchings

Consider a curl-free frame field on two adjacent faces f, g ∈ F , i.e.,
{αf , βf ,−αf ,−βf} and {αg, βg,−αg,−βg}, with geometrically-
ordered roots (e.g., counterclockwise-ordered). We next wish to
restrict our matchings to preserve the ordering between the vectors
(Section 3.3). If we assume that the roots are ordered geometrically,
then a matching that preserves this order is either the matchingαf →
αg, βf → βg and the rest respectively, or any cyclic shifting of this
matching (e.g., αf → βg, βf → −αg), giving four viable order-
preserving matchings (see Figure 6). We would like to determine an
invariant of this kind of matching that distinguishes them from the
rest. Consider the following curl quotients, defined on a consecutive
pair of ordered vectors in face f :

qf |e(αf , βf) =
Re(αf ef)

Re(βf ef)
, qf |e(βf ,−αf) =

Re(−βf ef)

Re(αf ef)
, ...

(12)
These four numbers are pairwise related by an equality, e.g.,
qf |e(−βf ,−αf) = qf |e(βf , αf), or a reciprocal negation, e.g.,
qf |e(−βf , αf) = −1/qf |e(αf , βf). Thus, we can compactly
choose qf |e(αf , βf) to represent them all. For the sake of clarity,
we omit the vectors from the notation: qf |e = qf |e(αf , βf).

Since we assume to have vanishing PolyCurl, we immediately get
the following:

Lemma 4.2. The curl-free matching is order-preserving if and only
if either qf |e = qg|e or qf |e = −1/qg|e.

Proof. If the PolyCurl matching is order-preserving, the proof is triv-
ial: αf matched to αg produces qf |e = qg|e, the next shift produces
qf |e = −1/qg|e, and so on (see Figure 6). We prove the reverse
direction (equal curl quotient leads to order-preserving matching)
by contradiction: for every non-order-preserving matching, such as
αf to αg and βf to −βg , we must have that either qf |e = −qg|e or
qf |e = 1/qg|e. This can be checked by a simple enumeration of all
“bad” matchings.

We can thus formulate our condition: a PolyVector field is curl-free
and the curl-free matching is order-preserving if and only if the
PolyCurl is zero, and the following two quotient curl polynomials
are equivalent:

Qf |e(r) =
(
r − qf |e

) (
r + 1/qf |e

)
, (13)

Qg|e(r) =
(
r − qg|e

) (
r + 1/qg|e

)
.

The non-vanishing coefficients of the monic quotient curl polynomial
for face f , Qf |e, are qf |e + 1/qf |e and −1; similarly for face g.
Thus, in the PolyVector spirit, we measure the difference between
the non-constant coefficients and denote it as PolyQuotient:

PolyQuotiente = (qf |e + 1/qf |e)− (qg|e + 1/qg|e). (14)

Avoiding the division-by-zero. There is an inherent problem in
the definition of qf |e, since the denominator may be zero. However,
we never use qf |e as a variable, and instead incorporate it in the
optimization of the PolyQuotient by eliminating common denomina-
tors between equation sides (see Section 5 for further details). The
formulation is naturally still valid after such an elimination.

Note again that using PolyQuotient does not encode a specific match-
ing between sets; rather, it restricts the matching to the four admissi-
ble order-preserving possibilities, and in that it does not compromise
the degrees of freedom required by our continuous optimization.

Geometrically-ordered roots. The PolyQuotient constrains the
combinatorial order of matched roots. Minimizing the PolyQuotient,
however, is not sufficient to ensure that an order-preserving, curl-
free matching will be selected. If the geometric order of the four
vectors inside each face is not preserved (see inset), the PolyQuotient

αg

βg

−αg

−βg

αf

βf−αf

−βf

might be zero, and the matching
could be unordered. Thus, in or-
der to preserve local injectivity,
we must additionally make sure
that the roots are geometrically
ordered within each face. This
can be conveniently expressed in

complex notation as an inequality per face that enforces a convex
angle between αf and βf , thus guaranteeing a counter-clockwise
order of all roots:

Im(βf αf) > 0. (15)

5 Optimization

Using the definitions in the previous sections, we formulate a non-
linear optimization problem that accepts a smooth frame field (and
optional directional constraints) as input and outputs a frame field
that is as similar as possible to the input, but where both PolyCurl
and PolyQuotient are eliminated. The optimized field is thus inte-
grable and induces an inversion-free parameterization. Smoothness
of the field and alignment to user-provided constraints are also taken
into account in the optimization.

[Diamanti et al. 2014] our method

Figure 7: Our algorithm can be used as a controllable projec-
tion from any non-integrable field onto the space of integrable
fields, which are exactly aligned to parameterizations. Starting
from any non-integrable field that interpolates sparse constraints
(e.g.[Diamanti et al. 2014]), we can produce new fields that are
reasonably similar but also integrable. The input constraints are
highlighted in red.

Variables. We encode the frame field with two representative vec-
tors {αf , βf} for each face f ∈ F . These vectors are expressed as
complex numbers in the local coordinate system of the plane that
contains f . This coordinate system can be arbitrarily chosen; we use
the first edge of the face as the real axis. The variable vector per face
is zf = [Re(αf), Im(αf),Re(βf), Im(βf)]>, and the complete
variable vector z ∈ R4|F| for the mesh is the vertical concatenation
of these vectors for all faces.

Energy. Our objective function is a sum of five squared residuals;
the first three measure smoothness, PolyCurl and PolyQuotient, re-
spectively; the fourth term ensures that the geometric order of the
vectors in each face is preserved, and the fifth term minimizes devia-
tion from user-provided alignment constraints, while also acting as
a regularization term to improve the numerical stability.

E(z) =
∑
{f,g}∼e

S(zf , zg) + P(zf , zg) +Q(zf , zg)

+ B(z) + C(z). (16)

Each term is weighted with fixed weights w∗ that we discuss below.

Smoothness. The monic frame field polynomial is quartic with
two non-zero complex coefficients, denoted for a given face f as
Cf,0, Cf,2 ∈ C. The relation between roots and coefficients is:

Cf,0(zf) = (αf)2(βf)2

Cf,2(zf) = −
[
(αf)2 + (βf)2

]
. (17)

The smoothness is measured with the Dirichlet energy of the poly-
nomial coefficients [Diamanti et al. 2014] on each edge (f, g); as-
suming normalized edge vectors, this reduces to:

S(zf , zg) = ws

∣∣Cf,0(zf)(tfg)4 − Cg,0(zg)
∣∣2 +

ws

∣∣Cf,2(zf)(tfg)2 − Cg,2(zg)
∣∣2 , (18)

where the constant transport term tfg = ef (eg
−1) is precomputed

for each edge.

PolyCurl. The PolyCurl term is similar to the smoothness term,
as it measures the difference of polynomial coefficients. Assuming
normalized edges, the per-edge PolyCurl term (Eq. (10)) reduces to:

P(zf , zg) = w2
p

(
cf |e,0(zf)− cg|e,0(zg)

)2
+

wp

(
cf |e,2(zf)− cg|e,2(zg)

)2
. (19)

Note that the two coefficients are scaled differently in the above sum.
This is to counteract the relative differences in their magnitudes, re-
sulting from the different monomial degree these coefficients belong
to.

PolyQuotient. The PolyQuotient term follows from a straightfor-
ward manipulation of the PolyQuotient polynomial (Eq. (13)), which
yields:

q̂1(zf , zg) = q̂2(zf , zg), (20)

where

q̂1(zf , zg) =
(
Re(αf e)

2 + Re(βf e)
2)Re(αg e) Re(βg e),

q̂2(zf , zg) =
(
Re(αg e)

2 + Re(βg e)
2)Re(αf e) Re(βf e).

Similarly to the previous terms, this energy term is defined for each
edge e ∼ (f, g) as follows:

Q(zf , zg) = wq (q̂1(zf , zg)− q̂2(zf , zg))2 . (21)

Note that we eliminate the division by zero in the PolyQuotient
original expression by multiplying with the common denominator.

Geometric order. The geometric order term ensures that the vec-
tors in each face cannot change their order during the optimization
(Eq. (15)). We observe that this term is necessary only in a small
subset of faces, since the vector order tends to be preserved by our
optimization. We thus model it as a cubic-spline barrier ([Schüller
et al. 2013]) that only affects the total energy whenever the left-hand
side of Eq. (15) is close to zero, and vanishes otherwise. We define
the barrier as follows:

φs(x) =

∞ if x ≤ 0;
1

b(x)
− 1 if 0 < x < s;

0 if x ≥ s.

where

bs(x) =
x3

s3
− 3x2

s2
+

3x

s
,

Figure 8: We demonstrate the robustness of our algorithm to dif-
ferent meshing (middle) and to geometric noise (bottom). In the
examples above, all fields have Poisson integration error less than
0.005, and the parameterizations contain no inverted triangles.

Figure 9: We prescribe non-orthogonal frame field constraints (first column) which result in a skewed parameterization that is perfectly aligned
with them (second column). Using this field as the initial guess, we drop the set of constraints not aligned to the strokes (in gray in the inset
image), leaving only the partial constraints in blue. Our algorithm assigns the u coordinate to the horizontal sketch and the v coordinate to the
other one, obtaining a smoother solution (third column). Multiple intersecting sets of partial constraints are also supported (fourth column).

and s is a parameter controlling the point at which the barrier term
starts having an effect on the energy. The geometric order term,
summed up over all faces, becomes:

B(z) =
∑
f∈F

wb [φs (Im(βfαf))]2 . (22)

User constraints and regularization. Alignment of the frame
field to user-provided directional constraints is modeled by a
quadratic closeness term on the constrained faces. In addition, we
model a dampening term that regularizes the solution in the same
manner, favoring frame fields that are close to the initial guess when-
ever multiple solutions have a similar energy value. We combine
both terms as follows:

C(z) =

{ ∑
f∈F wcn‖zf − zcnf ‖2, f is constrained;∑
f∈F wr‖zf − zprevf ‖2, f is free.

(23)

Note that this formulation naturally supports partial directional con-
straints. By constraining only the first root in a face, we leave the
other free to minimize our energy. In the context of parameterization,
this means that the given constraints fix a direction that corresponds
to either the u or the v coordinate of the parameterization. We re-
mind that this does not mean that we limit this direction to globally
become either u or v, since the matching between faces is still free
(up to order preservation).

Note. Users commonly use constraints to indicate the directions that
the isolines of the parameterization should follow. The u (resp. v)
isoline is perpendicular to the gradient of the u (resp. v) coordinate
function; this means that our desired curl-free field should always
be rotated by π/2 with respect to the constraints in order for those
constraints to actually guide the direction of the isolines. We thus
rotate the constraints before providing them to the solver and, in
all our figures, we always show the output field rotated by π/2; if
the original (non-rotated) field is curl-free, then its rotation will be
exactly aligned to the parameterization.

Optimization. Our energy function E(z) =
∑
Ei(z)

2 is a sum
of squared residuals, each of which is evaluated either on an edge or
on a face. We minimize E using Gauss-Newton iterations, which
have the advantage of not requiring an explicit Hessian. This algo-
rithm starts with an initial guess z(0) and proceeds from step k to
k + 1 by the iterations

z(k+1) = z(k) − γ(k)δ(k).

The direction δ(k) is given by the solution to the following linear
system;

J
(
z(k)

)>
J
(
z(k)

)
δ(k) = J

(
z(k)

)>
E(z(k)),

where E(z(k)) is the vector of all the concatenated least-squares
terms Ei(z

(k)) in the energy and J
(
z(k)

)
is the Jacobian matrix,

both evaluated at the current solution z(k). The i, j-th element of
J
(
z(k)

)
contains the gradient of the energy term Ei with respect

to the j-th variable in z, i.e., J
(
z(k)

)
ij

= ∂Ei(z
(k))/∂zj . The

formulas for the calculation of all gradients of our functions can be
found in the additional material.

The step size γ(k) is iteratively set via backtracking line search: we
start with an initial value of 1 and iteratively halve it and compute an
updated solution until the energy becomes smaller than the starting
point of the line search; once such a solution is found, we double the
value of γ and keep it for the next iteration.

To compute the initial guess z(0), we use the interpolation method
proposed in [Diamanti et al. 2014]. The initial solution is hence
a smooth PolyVector field that conforms to the user constraints,
computed by solving a linear system in the PolyVector coefficients.

Parameters and smoothness dampening. The parameters of
our algorithm were fixed in all our experiments tows = 1, wp = 10,
wq = 10, wb = 0.001, s = 0.5, wr = 1e − 3, wcn = 10. If no
user constraints are provided, our algorithm finds an integrable
frame field close to the initial guess. For these experiments we use
wr = 1. The values for these parameters were set after some rough
experimentation to ensure that the relative magnitudes of the energy
components are in the correct range, e.g., the curl terms should
dominate over smoothness, which in turn should be significantly
higher than the regularization term. The barrier term should be kept
just high enough to prevent element inversion but not affect the
overall energy too much. As long as these guidelines are respected,
we obtain similar results regardless of the exact parameter values
(i.e., for variations around half an order of magnitude).

The smoothness term is useful to regularize the results toward
smoothness and hence fewer singularities, but it might prevent Poly-
Curl and PolyQuotient to reach the numerical zero. We thus decrease
it by half every 5 iterations.

Figure 10: Top row, left to right: the smooth vector field that is used as the starting point for our optimization, the resulting integrable field
and the corresponding parameterization. Bottom row: we add 50% noise to the starting point (left); our algorithm still converges to a perfectly
integrable field (middle), inserting approximately 200 additional singularities.

Implementation details. We stop the iterations when no inver-
sions are present in the parameterization and the average residual of
the Poisson step is lower than 1e− 3 (this value is normalized over
the lengths of the reconstructed field). In our implementation, we
use PARDISO [Kuzmin et al. 2013] to solve the large, yet sparse,
linear system in every Gauss-Newton iteration.

6 Results

We implemented our algorithm in C++, and we run our experiments
on a workstation with a 2.7 GHz 12-Core Intel Xeon E5 and 64 GB
of memory.

Projecting to the space of integrable fields. Fields designed to
align to sparse constraints (e.g., the directions prescribed in Figure
7) can arbitrarily deviate from the resulting parameterization due
to the Poisson step. Our algorithm can controllably project such
fields onto the space of integrable fields, producing integrable fields
that are reasonably close to the input fields while ensuring that no
unexpected deviations will occur in the parameterization. The input
field in Figure 7 was generated with [Diamanti et al. 2014], using
a principal direction and a direction at 45 degrees angle to it as
constraints, since [Diamanti et al. 2014] supports arbitrary frame
fields. Note that any other method can be used for the input field
(e.g. [Bommes et al. 2009], [Knöppel et al. 2013]).

Partial constraints. Our method supports partial prescription of
constraints, i.e., it is possible to fix only one of the two directions of
the field. This requires no modifications to our energy and, since the
matchings are free to change in our optimization, it will automati-
cally constrain the direction that is ideal for minimizing the energy,
which favors smooth fields. Note that multiple strokes are possible,
and they can intersect each other. In our implementation, each stroke
is converted into a curl-free vector field on the faces which intersect
the stroke by using the Helmholtz decomposition.

Robustness to the initial guess. Our optimization needs a start-
ing point; in all our examples we use the smooth field interpolated
using [Diamanti et al. 2014]. We test the robustness of our method
by adding noise to our initial solution; the algorithm still produces a
perfectly integrable field even in extreme cases (Figure 10).

Robustness to input mesh quality. Our method is robust to
mesh resolution and triangle quality. In Figure 8, we compute an
integrable frame field aligned with the curvature constraints high-
lighted with red crosses. The same experiment is executed with a
decimated mesh (middle), obtaining a very similar result. Finally,

we perturb the mesh with high geometric noise (bottom), and even
in this case our algorithm succeeds in finding a smooth integrable
frame field, introducing 160 extra singularities.

Angle preservation. The geometric order term (Eq. (22)) is
closely related to the angle between the representative directions
α and β; by setting the parameter s to a value close to 1, we fa-
vor solutions where α and β are as orthogonal as possible (Figure
11). This is particularly useful if the parameterization is used for
quadrangulation purposes.

0 50 100
0

200

400

600

800

1000

1200

0 50 100
0

200

400

600

800

Figure 11: In both examples, we use the same field constraints, but
a different value of s. On the left (s = 0.1) the optimization is free
to add angle distortion to minimize the curl of the field. On the right
(s = 0.9) the angles are closer to π/2, at the price of introducing
more singularities. Both fields are integrable.

Integer rounding. The parameterization induced by an integrable
field requires additional processing before it can be used for quad-
rangulation: our optimization ensures that it is seamless, but the
additive factors on the cuts might not be integers (see Section 3). To
round them, we apply the parameterization algorithm proposed in
[Bommes et al. 2009] to our fields. This step introduces a Poisson
error (and in some cases element inversions) that decreases as we
increase the resolution of the output mesh (see Figure 12).

Benchmark and timings. We use the benchmark of [Myles et al.
2014] to evaluate the robustness and performance of our algorithm.
We stop our iterations as soon as the field induces a parameterization
with no inverted faces after the Poisson step (since this was the main
objective of the benchmark). Our algorithm succeeds in all the 116
meshes in the database, a few of which are shown in Figure 13. The
mesh size varies from 480 to 150k faces, and our algorithm takes
from 0.8 to 40 minutes per model, with an average of 1 minute per
model (more than 99% of the meshes require less than four minutes).
We provide the full statistics in the supplemental material. Addi-

0 500 1000
0

0.005

0.01

0.015

0.02

0.025
uv-error after rounding

0 500 1000
0.015

0.02

0.025

0.03

0.035

0.04

0.045
uv-error after rounding

Figure 12: We apply the rounding scheme of [Bommes et al. 2009] to
remesh surfaces into quadrilateral meshes whose edges are aligned
with our fields. The graphs show the normalized difference of the
per-corner (u, v) coordinates before and after the integer rounding.
The x axis shows the number of quads per unit-length vector, which
directly correlates to the quad grid resolution.

tionally, we also run our iterations until the average of the Poisson
error is lower than 0.005, which, according to our experiments, is a
reasonable threshold to avoid any visible misalignment between the
field and the parameterization. Our method succeeds on all models,
which we attach in the supplemental material, together with our
fields, parameterizations and their screenshots. Our numerical algo-
rithm behaved well in the examples shown, reducing the objective
function and its gradient by at least 8 orders of magnitude (from 1e4
to 1e− 4).

7 Conclusion

Our algorithm is a first attempt to design integrable PolyVector
fields that trivially induce field-aligned, inversion-free, global pa-
rameterizations. We apply our theory and algorithm to the design
of quadrangulations, where the user-given directional constraints
directly control the edge alignment. In addition to integrability, our
formulation supports a novel way to adhere to partial directional
constraints, without having to choose the specific isoline a priori.

While our optimization does not rely on integer variables, it is still
nonlinear and non-convex, and we cannot formally prove its conver-
gence or guarantee that the result will in fact induce a completely
inversion-free parameterization. However, we empirically find our
algorithm to be very robust: using default parameters, we obtain
integrable fields on hundreds of models without experiencing any
convergence issues.

When applied to creating quadrangulations, our fields cannot be
immediately used: the boundaries of our parameterizations still need
to be rounded to guarantee seamless transitions on the cuts. Tackling
this problem without resorting to integer variables is an interesting
topic for future theoretical research. In practice, we observe that the
rounding has a minor effect when applied to our integrable fields,
especially if the output mesh has a high resolution. Finally, it would
also be interesting to integrate additional quality criteria, such as an
angle bound or anisotropy bound, or to devise additional constraints,
such as vector conjugacy for planar-quad meshing.

We note that our definition of inversion-free parametrization opti-
mizes for a positive Jacobian in each face; it is a necessary, but not
sufficient condition for true local injectivity [Weber and Zorin 2014],
since the boundary can intersect itself in theory. Nevertheless, we
conjecture that this not possible with our framework, since such a

situation is probably the result of integer-valued singularities. We
do not witness this case in practice, and leave the formal proof for
future work.

Our paper focuses on frame fields for the purpose of quadrangulation.
Nevertheless, our theory and algorithms readily extend to general
N -PolyVectors. We are currently investigating other problems that
can benefit from the design of integrable N -PolyVector fields, such
as hexagonal remeshing, physically-based simulation and surface
deformation.

input field our field parameterization from our field

Figure 13: Sample results from the benchmark. From left to right:
reference field, output of our method and parameterization. All three
results contain no flips in the parameterization.

8 Acknowledgements

We thank Marco Tarini for providing the software for the visualiza-
tion of the vector fields, and Christian Schüller for discussions on
optimization with barriers. This work was supported in part by the
ERC Starting Grant iModel (StG-2012-306877), the Lise-Meitner
grant M1618-N25 and grant P23735-N13 of the Austrian Science
Fund (FWF).

References

ALLIEZ, P., COHEN-STEINER, D., DEVILLERS, O., LÉVY, B.,
AND DESBRUN, M. 2003. Anisotropic polygonal remeshing.
ACM Trans. Graph. 22, 3, 485–493.

AZENCOT, O., BEN-CHEN, M., CHAZAL, F., AND OVSJANIKOV,
M. 2013. An operator approach to tangent vector field processing.
Comput. Graph. Forum 32, 5, 73–82.

BOMMES, D., ZIMMER, H., AND KOBBELT, L. 2009. Mixed-
integer quadrangulation. ACM Trans. Graph. 28, 3, 77:1–77:10.

BOMMES, D., CAMPEN, M., EBKE, H.-C., ALLIEZ, P., AND
KOBBELT, L. 2013. Integer-grid maps for reliable quad meshing.
ACM Trans. Graph. 32, 4, 98:1–98:12.

BOMMES, D., LÉVY, B., PIETRONI, N., PUPPO, E., SILVA, C.,
TARINI, M., AND ZORIN, D. 2013. Quad-mesh generation and
processing: A survey. Computer Graphics Forum 32, 6, 51–76.

BOTSCH, M., KOBBELT, L., PAULY, M., ALLIEZ, P., AND LÉVY,
B. 2010. Polygon Mesh Processing. AK Peters.

CAMPEN, M., AND KOBBELT, L. 2014. Dual strip weaving:
Interactive design of quad layouts using elastica strips. ACM
Trans. Graph. 33, 6, 183:1–183:10.

CRANE, K., DESBRUN, M., AND SCHRÖDER, P. 2010. Trivial
connections on discrete surfaces. Comput. Graph. Forum 29, 5.

DIAMANTI, O., VAXMAN, A., PANOZZO, D., AND SORKINE-
HORNUNG, O. 2014. Designing N -PolyVector fields with com-
plex polynomials. Computer Graphics Forum 33, 5, 1–11.

DONG, S., BREMER, P.-T., GARLAND, M., PASCUCCI, V., AND
HART, J. C. 2006. Spectral surface quadrangulation. ACM Trans.
Graph. 25, 3 (July), 1057–1066.

EBKE, H.-C., BOMMES, D., CAMPEN, M., AND KOBBELT, L.
2013. QEx: Robust quad mesh extraction. ACM Trans. Graph.
32, 6, 168:1–168:10.

EBKE, H.-C., CAMPEN, M., BOMMES, D., AND KOBBELT, L.
2014. Level-of-detail quad meshing. ACM Trans. Graph. 33, 6,
184:1–184:11.

FISHER, M., SCHRÖDER, P., DESBRUN, M., AND HOPPE, H.
2007. Design of tangent vector fields. ACM Trans. Graph. 26, 3.

HERTZMANN, A., AND ZORIN, D. 2000. Illustrating smooth
surfaces. In Proc. ACM SIGGRAPH, 517–526.

KÄLBERER, F., NIESER, M., AND POLTHIER, K. 2007. Quad-
Cover – surface parameterization using branched coverings. Com-
puter Graphics Forum 26, 3, 375–384.

KNÖPPEL, F., CRANE, K., PINKALL, U., AND SCHRÖDER, P.
2013. Globally optimal direction fields. ACM Trans. Graph. 32,
4.

KUZMIN, A., LUISIER, M., AND SCHENK, O. 2013. Fast meth-
ods for computing selected elements of the Green’s function in
massively parallel nanoelectronic device simulations. In Proc.
Euro-Par, 533–544.

LEFEBVRE, S., AND HOPPE, H. 2006. Appearance-space texture
synthesis. ACM Trans. Graph. 25, 3, 541–548.

LI, Y., BAO, F., ZHANG, E., KOBAYASHI, Y., AND WONKA, P.
2011. Geometry synthesis on surfaces using field-guided shape
grammars. IEEE Trans. Vis. Comput. Graph. 17, 2, 231–243.

LING, R., HUANG, J., JÜTTLER, B., SUN, F., BAO, H., AND
WANG, W. 2014. Spectral quadrangulation with feature curve
alignment and element size control. ACM Trans. Graph. 34, 1.

LIPMAN, Y. 2012. Bounded distortion mapping spaces for triangular
meshes. ACM Trans. Graph. 31, 4, 108:1–108:13.

LIU, Y., XU, W., WANG, J., ZHU, L., GUO, B., CHEN, F., AND
WANG, G. 2011. General planar quadrilateral mesh design using
conjugate direction field. ACM Trans. Graph. 30, 6.

MARINOV, M., AND KOBBELT, L. 2004. Direct anisotropic quad-
dominant remeshing. In Proc. Pacific Graphics, 207–216.

MYLES, A., AND ZORIN, D. 2012. Global parametrization by
incremental flattening. ACM Trans. Graph. 31, 4.

MYLES, A., AND ZORIN, D. 2013. Controlled-distortion con-
strained global parametrization. ACM Trans. Graph. 32, 4.

MYLES, A., PIETRONI, N., AND ZORIN, D. 2014. Robust field-
aligned global parametrization. ACM Trans. Graph. 33, 4.

PALACIOS, J., AND ZHANG, E. 2007. Rotational symmetry field
design on surfaces. ACM Trans. Graph. 26, 3.

PANOZZO, D., LIPMAN, Y., PUPPO, E., AND ZORIN, D. 2012.
Fields on symmetric surfaces. ACM Trans. Graph. 31, 4.

PANOZZO, D., PUPPO, E., TARINI, M., AND SORKINE-
HORNUNG, O. 2014. Frame fields: Anisotropic and non-
orthogonal cross fields. ACM Trans. Graph. 33, 4, 134:1–134:11.

POLTHIER, K., AND PREUSS, E. 2003. Identifying vector field sin-
gularities using a discrete Hodge decomposition. In Visualization
and Mathematics III, 113–134.

RAY, N., LI, W. C., LÉVY, B., SHEFFER, A., AND ALLIEZ, P.
2006. Periodic global parameterization. ACM Trans. Graph. 25,
4, 1460–1485.

RAY, N., VALLET, B., LI, W. C., AND LÉVY, B. 2008. N-
symmetry direction field design. ACM Trans. Graph. 27, 2.

RAY, N., VALLET, B., ALONSO, L., AND LÉVY, B. 2009.
Geometry-aware direction field processing. ACM Trans. Graph.
29, 1, 1:1–1:11.

SCHÜLLER, C., KAVAN, L., PANOZZO, D., AND SORKINE-
HORNUNG, O. 2013. Locally injective mappings. Computer
Graphics Forum 32, 5, 125–135.

TAKAYAMA, K., PANOZZO, D., SORKINE-HORNUNG, A., AND
SORKINE-HORNUNG, O. 2013. Sketch-based generation and
editing of quad meshes. ACM Trans. Graph. 32, 4, 97:1–97:8.

WEBER, O., AND ZORIN, D. 2014. Locally injective parametriza-
tion with arbitrary fixed boundaries. ACM Trans. Graph. 33, 4
(July), 75:1–75:12.

ZHANG, E., MISCHAIKOW, K., AND TURK, G. 2006. Vector field
design on surfaces. ACM Trans. Graph. 25, 4, 1294–1326.

ZHANG, M., HUANG, J., LIU, X., AND BAO, H. 2010. A wave-
based anisotropic quadrangulation method. ACM Trans. Graph.
29, 4, 118:1–118:8.

