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Precise object segmentation in image data is a fundamental problem with
various applications, including 3D object reconstruction. We present an
efficient algorithm to automatically segment a static foreground object from
highly cluttered background in light fields. A key insight and contribution
of our paper is that a significant increase of the available input data can
enable the design of novel, highly efficient approaches. In particular, the
central idea of our method is to exploit high spatio-angular sampling on
the order of thousands of input frames, e.g. captured as a hand-held video,
such that new structures are revealed due to the increased coherence in
the data. We first show how purely local gradient information contained in
slices of such a dense light field can be combined with information about
the camera trajectory to make efficient estimates of the foreground and
background. These estimates are then propagated to textureless regions
using edge-aware filtering in the epipolar volume. Finally, we enforce global
consistency in a gathering step to derive a precise object segmentation both
in 2D and 3D space, which captures fine geometric details even in very
cluttered scenes. The design of each of these steps is motivated by efficiency
and scalability, allowing us to handle large, real-world video datasets on a
standard desktop computer. We demonstrate how the results of our method
can be used for considerably improving the speed and quality of image-based
3D reconstruction algorithms, and we compare our results to state-of-the-art
segmentation and multi-view stereo methods.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling—Physically based modeling

General Terms: Image and Video Processing, Modeling
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1. INTRODUCTION

Automatically segmenting a foreground object from the background
in image data is a long-standing and important problem in com-
puter graphics and vision. One common application is the use of
segmentation in the context of image-based modeling, e.g., com-
puting geometry proxies, such as visual hulls, for image-based ren-
dering, or limiting the search space and increasing reconstruction
quality in multi-view stereo techniques. However, producing such
segmentations can be cumbersome and time-consuming; typically,
green-screens or other known backgrounds are used to facilitate the
process, and manual correction is often required. In the case of clut-
tered scenes with no a priori knowledge about the background or the
camera motion, segmenting images into fore- and background layers
becomes very challenging. In this paper, we show how densely cap-
tured video sequences of static objects can be efficiently segmented
via a joint 2D-3D procedure that requires only a simple yet effective
assumption about the depth distribution of the scene as input, and is
otherwise fully automatic.

Segmentation of a video sequence can be formulated as separating
the pixels that belong to the foreground object from the pixels that
belong to the background. Given a static foreground object, the
2D segmentation problem can be lifted into 3D, where it can be
interpreted as the estimation of a 3D occupancy volume. Recently, a
number of methods for computing a joint 2D-3D segmentation have
been proposed (discussed in Section 2), which borrow ideas from
correspondence-based 3D scene reconstruction techniques and com-
bine them with color-based segmentation methods. However, when
the input images are taken from rather sparsely sampled viewpoints,
which is the case for most existing joint segmentation and 3D recon-
struction techniques, the lack of coherence between the images due
to (self-) occlusions and abrupt changes in parallax make it difficult
to reason about complex, detailed object shapes. To compensate for
ambiguities in the required estimation of image correspondences
and color models, these methods generally have to resort to complex
global optimization procedures, which are difficult to scale to higher
image- and 3D-resolution.

In contrast, smooth parallax changes between successive images
make distinguishing between foreground and background simpler,
in particular for complex and detailed objects, since the differences
in motion parallax at different depths become apparent (just like
moving one’s head side to side yields a clear depth ordering). Video
capture devices are now commonplace, and acquiring appropriate,
dense data has become trivial with standard consumer tools. How-
ever, most joint segmentation and reconstruction techniques are not
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Fig. 1: Example results of our method captured with a rotating (left) and a hand-held (right) camera. Slices of densely sampled light fields
reveal continuous structures that arise as a result of motion parallax (blue and red rectangles). Our method leverages the coherency in this
data to accurately segment the foreground object in both 2D (blue image mask) and 3D (mesh), which can be used to aid 3D reconstruction
algorithms (colored point clouds).

designed to handle these large volumes of data (on the order of
thousands of frames), and as a result cannot take advantage of the
extra information available. Another fundamental issue with dense
light field data arise when using triangulation-based methods for
computing correspondences. Small baselines between image pairs
lead to low-quality occupancy and shape estimates in 2D as well
as 3D. As a result, most existing approaches apply some form of
view selection to remove images with small baselines in order to
improve accuracy (e.g., [Furukawa et al. 2010]). However, this leads
to loss of valuable information about the scene and reintroduces the
same correspondence ambiguities mentioned earlier. In contrast, we
propose a computationally efficient and scalable method where all
steps in our pipeline are designed in such a way that they can take
advantage of the inherent coherency in dense datasets. As a result,
our method can segment thin and complex foreground geometry
even with uncontrolled, cluttered backgrounds.

As input, we take densely sampled continuous image sequences,
(e.g., video) that observe an object from different angles. Our algo-
rithm is comprised of the following efficient building blocks: first,
we create a light field volume by stacking the input images on top
of each other. This representation clearly reveals the motion paral-
lax of even single pixels in 2D slices of the volume (see Figure 1),
similar to epipolar-plane images produced by certain linear camera
motions [Criminisi et al. 2005]. We compute gradients in the light
field volume and estimate the likelihood of image edges belong-
ing to the foreground using local gradient filters. Since this step
creates reliable estimates only on strong image edges, we use the
coherence in the light field and propagate this information to the
rest of the image volume using edge-aware filtering. In a final step,
the per-image segmentation estimates are aggregated into a single,
consistent 3D volume using a Bayesian framework. The result of
our complete algorithm is a 3D object probability volume, which
can be thresholded to obtain the object segmentation in 3D space. At
this point, consistent per-image segmentations can then be extracted
by projecting this volume back onto the images.

We show that our approach efficiently and automatically produces
precise segmentation results for complex, detailed object shapes
in cluttered environments, and these segmentations can be used to
improve the quality of existing 3D reconstruction methods. Our
method works robustly with different capture scenarios: we demon-
strate results on data captured with an uncalibrated circular camera
motion, a linear stage, and various hand-held video sequences.

2. RELATED WORK

In the following, we discuss previous works from different areas
that are most related to our proposed approach.

Image and video segmentation. Object segmentation from images
and videos usually works by learning color models from user input
or motion cues. Techniques based on graph-cuts [Boykov and Jolly
2001; Rother et al. 2004] compute single-image segmentations using
discrete graph-based optimization; they require input constraints
(e.g., scribbles or bounding boxes) that indicate some amount of
foreground or background pixels. Learning-based methods exploit
similarities between images for co-segmentation [Joulin et al. 2010]
or multi-class image segmentation [Krähenbühl and Koltun 2012],
but they require training and are not designed to efficiently handle
densely sampled input.

For more densely sampled input data, such as video, recent interac-
tive methods use graph-based algorithms on the entire video domain
to find the foreground/background boundary [Li et al. 2005; Wang
et al. 2005; Grundmann et al. 2010]. While these methods work
well in general video-editing applications, they are less suited for
creating a consistent segmentation in the presence of complex oc-
clusions and disocclusions. Other methods compute a dense optical
flow field to propagate user constraints between different frames in
order to segment videos in a temporally coherent manner [Chuang
et al. 2002; Lang et al. 2012]. Our method also works on images
taken from densely sampled trajectories around the object, but it is
able to compute segmentations without the user input required by
those methods. Recent unsupervised approaches for video segmen-
tation make use of the motion cues in the video volume [Apostoloff
and Fitzgibbon 2006; Lezama et al. 2011], but they cannot work
with static scenes. These approaches are also prone to cutting away
pieces of objects, rendering them impractical for our scenario.

Visual hulls. The intersection of multiple 2D segmentations of dif-
ferent views of an object in 3D space is known as the visual hull of
the object [Martin and Aggarwal 1983; Szeliski 1993; Laurentini
1994]. Many techniques have been proposed to robustly compute
such hulls, ranging from methods working in 2D image space [Ma-
tusik et al. 2000] to 3D voxel-based representations [Snow et al.
2000], with applications to, e.g., image-based rendering using the
visual hull as a geometry proxy. More recent work has focused on
increasing robustness, e.g., using probabilistic approaches to de-
crease the influence of errors in silhouette extraction and image cali-
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bration [Grauman et al. 2003; Franco and Boyer 2005; Tabb 2013].
All the above methods assume that an existing, often manually gen-
erated, precise segmentation of the object in the input images, or
that it can be robustly extracted using background subtraction or
other color priors. In contrast, we automatically compute a precise
object segmentation in cluttered scenes, without prior knowledge
about the background or scene structure.

Joint 2D-3D segmentation. Our method is most closely related to
2D-3D co-segmentation methods, which make use of camera cali-
brations in conjunction with color information for segmenting an
object in 3D space. Such techniques usually employ color models,
depth hypotheses and probabilistic measures in order to segment the
3D object and its projection in the 2D images. Yezzi et al. [2001],
for example, use a variational framework to compute segmentations,
which works mostly for objects without texture. Several methods
use graph-cuts in voxel space [Campbell et al. 2010] and image
space [Campbell et al. 2011] to segment an object in multiple views
by assuming that all principle camera axes intersect the foreground
object, from which a color model can be learned. As the num-
ber of images grows, the computation time of graph-cuts become
intractable. Computing depth maps beforehand to help with the seg-
mentation has also been studied [Kowdle et al. 2012], but computing
depth maps for thousands of images is inefficient. The most similar
works to ours are by Kolev et al. [2006], who compute a 3D surface
probabilistically in a voxel grid using color models, and by Lee
et al. [2011], who make similar computations in image space by
leveraging epipolar geometry. However, these methods also have a
very high computational complexity due to their iterative nature, and
report several minutes for 8 images of 640× 480 pixels [Lee et al.
2011], or 20 to 30 minutes on 20 images of the same size using a
1283 voxel grid [Kolev et al. 2006]. Our method works by extracting
simple depth relationships instead of explicit depth computations,
and efficiently leverages datasets consisting of thousands of images.

Other methods try to solve the segmentation and 3D reconstruc-
tion problems in a joint framework. Goldlücke and Magnor [2003]
compute segmentation and depth labeling together in a single opti-
mization, solved by graph-cuts. Another method that makes use of
graph-cuts [Guillemaut and Hilton 2011] minimizes an energy func-
tional that includes color models for foreground and background
layers, the 3D shape of the foreground object and some smooth-
ness priors on the object shape. However, these methods assume
knowledge about the background, such as an image of the static
background or a keyframe for each camera, where each background
layer is labeled by a user. Häne et al. [2013] use appearance-based
cues together with 3D surface orientation priors to segment objects
belonging to different classes while reconstructing their shape, but
require rigorous training to learn such priors for different object
classes. In our work, we do not assume any knowledge about the
appearance of the background and do not require training phases,
yet can still effectively process the given data.

Sparse data interpolation. One component of our algorithm is
based on the propagation of local object estimates in high-gradient
areas to less textured regions, which can be formulated as a sparse
data interpolation or regularization problem. Optimization-based
approaches can make globally optimal decisions [An and Pellacini
2008], but they are computationally expensive for large datasets.
When image structure is known, joint-filtering methods have been
used for propagating sparse information in many applications [Eise-
mann and Durand 2004; Petschnigg et al. 2004; Kopf et al. 2007]
thanks to their computational efficiency and quality of results. Still,
efficient bilateral filtering implementations do not scale well with

increased dimensionality. Instead, we use a separable joint-geodesic
filter [Gastal and Oliveira 2011], which scales linearly with dimen-
sionality. A complete review of this topic is out of the scope of
this paper; we refer the reader to [Paris et al. 2007] for a detailed
overview.

Light fields. Fundamental concepts of dense light field capture and
rendering have been introduced in the seminal works of Levoy et
al. [1996] and Gortler et al. [1996], and have since then been ex-
tended to unstructured setups [Buehler et al. 2001; Davis et al. 2012].
A number of works have investigated approaches to exploit light
field data, such as recovering shape from silhouettes [Kutulakos
1997], view interpolation [Berent and Dragotti 2007] and, in particu-
lar, the analysis of 2D light field slices for 3D object reconstruction
[Bolles et al. 1987; Criminisi et al. 2005; Wanner and Goldluecke
2012; Kim et al. 2013; Wanner et al. 2013; Yu et al. 2013]. These
works show that the increased coherence in image data with high
spatio-angular sampling enables robust depth estimates from local
information. Chen et al. [2014] recently showed that the use of image
statistics can improve depth estimation near occlusion boundaries.
Our work is inspired by these methods and shows how the coherence
in light field data can be further exploited to provide a novel solution
to automatic joint 2D-3D object segmentation. Moreover, Feldmann
et al. [2003a; 2003b] proposed techniques for circular light fields
that make use of cylindrical plane sweeping. However, these meth-
ods require specific capture scenarios (i.e., perfect circular motion)
and cannot be generalized to hand-held video data.

Applications. 3D object segmentation has applications in various ar-
eas of computer graphics. A straightforward application is to use the
resulting 3D shape as a geometry proxy for image-based rendering
and image understanding [Szeliski 1993; Laurentini 1994; Buehler
et al. 2001; Eisemann et al. 2008]. In particular, for rendering appli-
cations, a faithful representation of fine silhouette detail is essential.
Similarly, numerous image-based 3D reconstruction algorithms ben-
efit from or even require object segmentation as a preprocess. Some
methods use image segmentations as a starting solution for itera-
tive surface refinement, where a visual hull is first computed by
intersecting given image segmentations, and is then carved and opti-
mized using photoconsistency measures and silhouette or contour
constraints [Isidoro and Sclaroff 2003; Sinha and Pollefeys 2005;
Vogiatzis et al. 2005; Starck et al. 2006; Furukawa and Ponce 2009].
Works that do not explicitly require segmentations [Furukawa and
Ponce 2010] also argue that visual hulls increase the quality of re-
sults when used as a starting solution. Such segmentations are also
useful in estimating and constraining surface patches to lie inside a
3D bounding volume to increase their reliability [Bowen et al. 2007].
Constraining stereo matching to segmented image parts and/or to
the interior of visual hulls [Bradley et al. 2008; Oswald and Cremers
2013] has been shown to improve accuracy of the reconstructed
objects and speed up the techniques. Methods for reconstructing
meshes from oriented point clouds [Shan et al. 2014] can also ben-
efit from segmentations in 3D, where the empty space is used to
constrain the final mesh.

With our algorithm, precise, detailed segmentations can be gener-
ated automatically for challenging object shapes, which can then
be effectively used to increase the accuracy or performance of such
methods, for example when merging individual depth maps or pro-
viding an initial geometry and visibility proxy. We show how the
results of two state-of-the-art stereo techniques [Hirschmüller 2006;
Kim et al. 2013] can be improved using our 2D-3D segmentations,
and we compare to additional state-of-the-art 3D reconstruction
approaches.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.
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Input Gradient Analysis Propagation Gathering Object Segmentation

Fig. 2: Components of our local-to-global strategy, showing images in top row and x-i slices in bottom row. From left to right: Input data, local
gradient estimates Si(p) weighted by confidence measures Ci(p) (foreground (Si) as blue, background (1− Si) as red, and confidences (Ci)
determine the transparency; see Section 3.1), edge-aware light field filtering (Section 3.2), global gathering (Section 3.3), and the estimated
object segmentation in 3D from a slightly different viewpoint. The images were desaturated for improved segmentation visualization. Note
how consistency increases at each step of the pipeline.

3. METHOD

Our goal is to segment the foreground object in 2D and 3D from a
light field that is represented by a set of images (I1, . . . , In) (where
n is in the order of thousands) with known calibration for each
image Ii in the form of a projection matrix Pi. We assume that
the images were taken by a camera on a continuous, but otherwise
arbitrary trajectory with respect to the captured scene. From the input
images, we construct a 3D light field volume L, where L(x, y, i)
refers to the pixel p = (x, y) in image Ii.

Key to our method is the dense spatio-angular sampling of video,
which results in smoothly varying parallax between successive
frames. The continuous changes intuitively encode the motion paral-
lax (i.e., relative depth) of scene points as differently shaped curves
or “traces” in the light field L. These curves live on a 2D manifold in
L, which is described by the epipolar geometry between the images.
Our input data is comprised of thousands of input images, therefore
computational efficiency and tractability are among the key driving
factors behind the following algorithm steps.

Our method follows a local-to-global strategy. We first compute
a sparse segmentation estimate based on local gradient informa-
tion (Section 3.1). This segmentation is propagated to the light field
volume using edge-aware filtering on L, yielding Si : Ii → [0, 1]
for each image Ii (Section 3.2). The function Si describes, for each
pixel of Ii, the likelihood of observing the foreground object.

We then gather the individual segmentations using a Bayesian formu-
lation into an object likelihood function H defined over a discretiza-
tion V of the 3D volume containing the object. Each voxel v ∈ V is
assigned an accumulated likelihood value for being part of the fore-
ground object, aggregated from all the values {Si(p) : p = Pi v}
(Section 3.3). This final global gathering step further enhances the
per-image segmentations by removing noisy estimates that do not
have the support of multiple views, and by enforcing geometric
constraints, such that when the values of H are projected back onto
the images, the resulting segmentations Si are globally consistent
throughout the light field. This process is illustrated in Figure 2.

Fig. 3: Top: two frames from the PLANT dataset with close-ups around the
blue scanline. Bottom: The corresponding x-i slice; the parts corresponding
to the images are highlighted in matching colors. Note how the direction in
the slice varies according to the position of the object in 3D space relative to
the camera.

3.1 Gradient-based analysis of motion parallax

The fundamental observation to our technique is that scene points
follow smooth trajectories inside a light field L with high spatio-
angular sampling, which differ substantially for points at different
depth values. Even though these trajectories can take any shape
depending on the actual camera path, they remain easily distinguish-
able in their shapes, even in case of hand-held capture scenarios.
For illustration purposes, consider the example of a nearly circular
camera path: an object located in the center leaves spiral trails in the
light field L, whereas background objects’ trails move from one end
to the other along an almost linear curve (see a 2D x-i slice of a light
field L in Figure 3). These clearly visible structures contained in the
light fields essentially correspond to 3D trajectories that arise from
motion parallax. Pixels that correspond to the background have a
specific distribution of trajectory directions that is detectably differ-
ent from pixels in the foreground. We leverage this fact to compute
the foreground object likelihood for each pixel separately.
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For each pixel p = (x, y) ∈ Ii, we consider the direction γp corre-
sponding to its trajectory inside L. We model the distribution of the
foreground trajectory directions by a Gaussian Np

f = N(γp
f , σ

p
f ),

and background directions by Np
b = N(γp

b , σ
p
b ) around each pixel

p ∈ Ii. We note that the expected trajectory direction is a function
of 2D pixel position, depth, and camera motion (see close-ups in
Figure 3). For instance, pixel trajectories follow helical motions as a
function of their depths for circular camera motions [Feldmann et al.
2003a], whereas they form lines of different slope for linear light
fields, and more irregular paths for shaky hand-captured video. Our
approach does not require the specific set of trajectories be known a
priori, but computes them on-demand from camera calibrations.

To compute directions γp
b and γp

f , we need the expected trajectories
for p inside L. As computing them exactly is a chicken-and-egg
problem (the depth determines the trajectory), we instead roughly
estimate the directions using two simple proxy geometries, placed at
approximate locations of the foreground object and the background.
In our experiments, we found that planar proxies were sufficient to
robustly model the trajectory directions. We place two planes into
the scene representing the foreground and the background objects.
The distance R from the camera to the foreground object is set
approximately by the user by marking the center of the 3D object.
The background distance is then chosen to be 3R. We can then
project p onto these planes and back onto image Ii+1. The expected
coordinates in Ii+1 are denoted by pf = (xf , yf ) if p belongs
to foreground and pb = (xb, yb) if p belongs to the background.
Note that any other geometric proxy can be used for this estimation;
we chose planes due to their simplicity and applicability in various
capture scenarios. We found in our experiments that our method is
robust to the placement of these geometric proxies: for example,
changing the distance of the background proxy between 2R and 4R
did not affect the result quality.

Now that the expected coordinates for the foreground and back-
ground proxies are determined, we can estimate the trajectory di-
rections between frames using epipolar geometry. We know that
pf and pb lie on the epipolar line e in Ii+1, which maps p to Ii+1.
We also know that the actual scene point at p will appear on e in
Ii+1 as well. Hence, we can sample the color values in Ii+1 along
e to generate the light field cut spi+1, which is guaranteed to contain
the actual mapping of p. Given that the camera motion is small
enough, the scene points on spi+1 will appear on a line with the
same direction around p in Ii, so we generate a cut on Ii along
the direction of e through p, resulting in spi . Stacking spi and spi+1

horizontally, denoted as sp, reveals the trajectory of p as a motion
trail. Specifically, the trajectory direction γp is orthogonal to the
color gradient direction in sp. The expected foreground direction
γp
f can be computed as the direction of the line connecting the

coordinates of p and pf on sp. The same method is used for γp
b .

Since we only need local information to compute the directions,
we only generate the cuts spi and spi+1 where necessary, i.e., spi is
generated around p using a 7-pixel window, and spi+1 around p′,
which is a point between pf and pb, with the same size window
(see Figure 4). In practice, we compute the position of p′ using a
separating proxy between the foreground object and the background,
such as a cylinder or a plane. We project p to this proxy and back to
Ii+1, resulting in p′. Note that this computation is a generalization
of checking slopes in linear light fields.

In our experiments, we set the background variance to be fairly
narrow and the foreground variance relatively large:

σp
b = (γp

f − γ
p
b )/10, σp

f = 3σp
b , (1)

Fig. 4: Top: Two frames from the AFRICA dataset. The orange dots are p
and p′, the green line is the epipolar line e corresponding to p, and the
cyan line is a line through p with the same direction as e. Bottom: Light
field cuts spi and spi+1 sampled around p and p′. The expected foreground
direction γpf is shown in blue, and the background direction γpb in red. The
actual gradient direction γp (magenta) is closer to the foreground direction,
resulting in a foreground estimate.

because the foreground trajectories have stronger variations in par-
allax and therefore in trajectory direction. The likelihood Si(p) of
the pixel p to belong to the foreground can then be estimated using
Bayes’ theorem:

Si(p) =
Np

f (γ
p)

Np
f (γ

p) + Np
b (γ

p)
. (2)

Due to the absence of prior knowledge about the scene geometry,
we set the corresponding priors to 0.5.

In order to get robust estimates of motion parallax, we used a win-
dow of 5 frames for doing the gradient analysis. Since the gradient
computations are done independently for each pixel, this step can
be easily parallelized on the CPU or the GPU.

In the special case of regular camera motion, when the relative
motion between two consecutive frames remains the same (i.e.,
linear or circular light fields), γp

f and γp
b do not depend on i but

only on x and y. In such cases, we precompute and reuse these
values, resulting in noticable speed-ups.

Confidence measures. The described foreground/background esti-
mation method is only reliable in high-gradient regions and gives
noisy estimates in smooth, homogeneous parts of the light field.
Additionally, lines that exist in the input images can produce am-
biguities when computing trajectory directions if they are oriented
parallel to the motion of the camera, since the resulting trajectory
directions in the slices are similar regardless of depth (such as hor-
izontal image edges in horizontal linear light fields). Also, when
the trajectories of two separate scene points cross at the same pixel,
a reliable gradient direction cannot be estimated. We propose the
following measures to detect such cases and attach a confidence
value Ci(p) to every Si(p) value based on these ambiguities:

(1) The first term is based on image gradient magnitude and gives
higher confidence values to high-gradient regions:

Cg
i (p) = ‖∇Ii(p)‖. (3)

(2) The second term detects image lines oriented with the camera
motion that can create “false trajectories”. We define a non-
confident area for such image edges, i.e., image gradient direc-
tions perpendicular to the camera motion γm, using a Gaussian
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6 • K. Yücer et al.

weighting Nm = N(γm, σm). The gradient direction in image
Ii is denoted by γp

i :

Cm
i (p) = 1−Nm(γp

i ). (4)

For our experiments, we use σm = 5 degrees.
(3) The final term detects when two edges moving at different

speeds w.r.t. the camera cross each other, which may happen
at corner features in the input images. To compensate for this
ambiguity, we reduce the confidence of all corner regions:

Cr
i (p) =

{
1/Ri(p), Ri(p) > 1
1, Ri(p) ≤ 1

(5)

where Ri(p) is the measure of corner response, as defined by a
Harris corner detector.

The final confidence measure is computed by multiplying the indi-
vidual components:

Ci = Cg
i · Cm

i · Cr
i . (6)

These measures can be combined using other techniques such as
Gaussian models, but we chose the multiplication operation, since
it is more conservative and decreases false positives and negatives
substantially. See the gradient analysis in Figure 2 for local gradi-
ent estimates weighted by confidence values. Note that only high
gradient regions have high confidences and are visible due to Eq. (3).

3.2 Confidence weighted image-based propagation

We have now an estimate of foreground probability and associated
confidences computed with purely local information. As reliable
estimates can be made only for pixels with high gradient magnitude
and clear foreground or background motion characteristics, low-
confidence estimates greatly outnumber reliable ones, leaving only
a sparse set of pixels with dependable information (see Figure 2)
that must be propagated to the rest of the light field volume.

To efficiently solve this problem, we again exploit the inherent
coherency of the light field, and assume that nearby pixels with
similar colors should have similar foreground estimates. To that
end, we use a confidence-weighted joint-edge-aware filtering, using
the light field volume as the joint-domain. Specifically, we use
an approximation of a joint-geodesic filter [Gastal and Oliveira
2011], which is efficient over large kernel sizes, scales linearly with
increased dimensionality, and performs well when colors are similar
in nearby foreground and background regions. This filter works as
follows: Rather than doing the filtering in the image domain by
changing the filter weights according to color values, the 2D image
is first transformed into a domain where it can be filtered by fixed
width Gaussians, and then it is transformed back to the original
domain. After the transformation, nearby pixels with similar colors
have similar coordinates, whereas pixels on opposite sides of an
edge are far away, such that the results exhibit edge-awareness.

For the filtering operation, we extend the geodesic filter by a third
dimension. In the original work [Gastal and Oliveira 2011], N
1D filtering operations are performed, thereby alternating between
the x and y dimensions. Since our domain is a 3D light field, we
iterate between x, y and i dimensions, such that information can be
propagated inside and between images.

We first consider Si and Ci as slices of the volumes S and C, where
S(x, y, i) = Si(x, y) and C(x, y, i) = Ci(x, y), such that each

value in S and C has a corresponding pixel in L, around which
the foreground probability and its confidence are computed. Since
there is a one-to-one mapping between the three 3D volumes, we
can filter S using the image edges from L and confidences from
C. To incorporate the confidences C into the filtering process, we
adopt the approach from [Lang et al. 2012]: We first multiplyC with
S element-wise (denoted as �), and then filter the result using the
geodesic filter and the edges from L, producing (C�S)′. This gives
higher weight to more confident regions during the filtering process.
The results are then normalized using C ′, which is generated by
filtering C. The final result is calculated as:

S ′′ =
(C � S)′

C ′
. (7)

For the filtering operations, we used the geodesic filter with the
following spatial and range standard deviations (sigmas): 10 and 0.1
for the x and y dimensions, and 5 and 0.1 for the i dimension. For a
more detailed discussion on how this step is carried out, we refer the
reader to the original papers. Now, S ′′ contains estimates that are
propagated over the whole light field domain and are locally consis-
tent inside the light field among a subset of images (see Figure 2).
For simplicity of notation, from now on we refer to S ′′ as S.

3.3 Global gathering of the image-based estimates

The edge-preserving filtering step results in the segmentations Si

that vary smoothly inside S and are locally consistent. However,
as seen in Figure 2, they can still be noisy due to missing image
edges in L and incorrect initial estimates. Moreover, the filtering
step works solely in image space and does not include geometric
information, making the different Si’s geometrically inconsistent.
In this global gathering step, we combine the per-image segmenta-
tion estimates in 3D space using the camera calibrations, such that
locally consistent segmentations are aggregated to obtain a globally
consistent probabilistic 3D object segmentation H . Then, these re-
sults can be reprojected back into the input image to obtain accurate
2D object segmentations. The gathering step constitutes the last
stage of our local-to-global framework and ensures that the Si’s
become globally consistent.

We discretize the 3D space using a fine voxel grid V . For each
v ∈ V , we compute H(v), the probability of belonging to the set
of foreground elements F given the per-image segmentations Si.
For that, we project every voxel v back onto all images, collect the
segmentation estimates Si, and combine them using a probabilistic
framework.

Usually, in 3D segmentation or visual hull computations, the per-
image segmentations are multiplied. However, this is biased towards
favoring background, since lower values tend to pull the result
to 0 [Kolev et al. 2006]. So, we accumulate this information using a
geometric mean:

H(v) =

(
n∏

i=1

P (v ∈ F|Si(p))

)1/n

. (8)

For each image Ii, we find P (v ∈ F|Si(p)), i.e., the probability
of v being part of the foreground F given the segmentation value
Si(p) at the pixel it projects to, using Bayes’ rule:

P (v ∈ F|Si(p)) =
P (Si(p)|v ∈ F) · P (v ∈ F)

P (Si(p))
. (9)
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Fig. 5: From left to right: two segmentation examples superimposed against desaturated input images with two light field slices, two views of
the meshed object segmentations generated using marching cubes, and a point cloud rendering. Please refer to the accompanying video and
supplemental material for further visualizations of our results.

Fig. 6: Our capture setups: hand-held capture (left) and a circular boom that
rotates around a fixed object (right).

The term P (Si(p)|v ∈ F) is modeled as follows. The segmentation
value Si(p) has two possible sources: the actual projection of v,
which can only get the values 0 and 1, or erroneous segmentation
estimates with values in-between. Hence, we model it using a normal
distribution N(1, σv) with mean 1, which is the expected value.
Since Si(p) ∈ [0, 1], we truncate the normal distribution to the
domain [0, 1]:

P (Si(p)|v ∈ F) =
N(1, σv)

c
, (10)

where c is the normalization constant. By similar arguments, the
background probability is defined using a normal distribution with
mean 0:

P (Si(p)|v ∈ B) =
N(0, σv)

c
. (11)

In all our experiments, we used σv = 0.1. The denominator of (9)
can then be computed simply as

P (Si(p)) = P (Si(p)|v ∈ F) · P (v ∈ F) +
+ P (Si(p)|v ∈ B) · P (v ∈ B).

(12)

Similar to before, as we do not assume any priors about the scene,
we use a value of 0.5 for the unknown probabilities P (v ∈ F)
and P (v ∈ B). With this, we have all the ingredients required to
compute the probabilistic object segmentation in Eq. (8).

In our pipeline, we ask the user to define a bounding box around the
foreground object with the help of SfM points. The resolution of
the grid is chosen relative to image resolution: We set the voxel size
such that when the central voxel is projected onto an image, it does
not occupy more than 1.25 pixels. This way, we make sure that the
average footprint of a voxel stays comparable to the image resolution.
In our examples, the grid resolutions ranged from 400× 800× 400
in the ORCHID dataset to 1000×800×1500 in the DRAGON dataset.
This last step of the pipeline operates independently on each voxel
v ∈ V without any global regularization requirement, such that this
step can also be easily parallelized and computed highly efficiently.

4. EXPERIMENTS AND RESULTS

Our datasets and results will be made publicly available with the
paper to facilitate future research.

Acquisition and timing. All datasets were acquired using a Canon
5D Mark III. The hand-held datasets were captured by walking
slowly around the objects of interest. For more automated acquisi-
tion, we built a setup with the camera mounted on a boom rotating
around the object (see Figure 6). This setup is useful in cases where
the captured objects cannot be placed on a turntable because they
are immobile or heavy, or because they are not rigid (e.g. plants, like
the orchid in Figure 1). For all datasets, camera calibrations were
computed as a preprocessing step, assuming no prior knowledge
of the setup, using standard structure-from-motion techniques [Wu
2013].
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Fig. 7: Reconstruction from hand-held capture. With a sufficiently dense sampling of view points, our method is able to compute segmentations
even from hand-held captured video without any modification to the pipeline. For each dataset, we show two segmented input frames, slices of
the light fields, two viewpoints of the 3D object segmentation and a point-cloud rendering. Refer to the accompanying video for the inputs.

For each circular dataset, we captured about 3000 to 4500 video
frames at 2-mega-pixel resolution, covering a single circle around
the object with about 10 images per degree. This amounts to ca.
21 GB of image data. For the hand-held datasets, we captured be-
tween 3000 to 4000 video frames at 1-mega-pixel resolution with
60 fps for denser image capture. All results where computed on a
desktop with 3.2 GHz Intel Quad-Core and 32 GB RAM.

For a 1 mega-pixel dataset with 3000 frames, the initial segmentation
(Section 3.1) took approximately 30 minutes, and the propagation
(Section 3.2) took 10 minutes, both of which depend linearly on the
image resolution and the number of images. For datasets captured
with the circular boom, a speedup of ×4 can be achieved for the
initial segmentation step (60 minutes down to 15 minutes using
3000 2-mega-pixel images) by assuming constant motion between
successive frames and precomputing the epipolar directions. For

all datasets, the global gathering step (Section 3.3) took 20 to 40
minutes; the time depends linearly on the resolution of the voxel
grid. Since the filtering step already propagates the fine scale fore-
ground/background information inside the light field and creates
locally consistent per-image segmentations, we use a quarter of the
input images for the gathering step without sacrificing quality. The
total running time of the algorithm is typically 60 to 100 minutes.
As there is no global optimization, all computationally expensive
steps of the method can be trivially parallelized on the CPU. We
expect that with a proper GPU implementation, these running times
can be further reduced.

Segmentation results. Figure 5 shows some of our results captured
with the rotating boom; we display several final image segmentations
for validation. In addition, we show triangle meshes by thresholding
the probabilistic 3D segmentations H at a value of τ = 0.85 and
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Fig. 8: Top: Our procedure applied to a linear light field from the
USCD/MERL light field repository to segment the foreground object. Bot-
tom: One x-i slice of the light field demonstrating the motions of pixels.

using marching cubes to mesh the isosurface. We note that in general,
meshing of point clouds and volumetric data is an open problem, and
we do not propose a solution here. Additional datasets can be seen
in Figures 1 and 2. In some applications, binary image segmentation
masks are required. For the segmentation masks shown here, we use
the same threshold τ and project the 3D resulting segmentation back
to the images. Please see the accompanying video and supplemental
material for animated 3D renderings and our resulting models.

We assume that the camera trajectory is continuous, but otherwise
unrestricted. This allows us to work with hand-held videos, since
our process is robust to the unstructured nature of such light fields
as long as the sampling is sufficiently dense. Since our algorithm
works directly on epipolar manifolds for computing the gradients,
shaky camera motion is not problematic, as long as the camera poses
can be correctly estimated using SfM techniques.

Five examples with a hand-held camera are shown in Figure 7
with their corresponding segmentation results, and the results on
another hand-held dataset are shown in Figure 1 (right). THINPLANT
is a particularly challenging example with fine details, where the
foreground object and the background clutter have very similar
colors. Moreover, the object slightly moves between frames due to
wind. Still, our algorithm manages to construct a reasonable 2D-3D
segmentation.

For 3D object captures, circular light fields are especially useful,
as they provide a 360◦ view of objects, such that all sides can be
equally carved. However, our method can also generate probabilistic
segmentations for other camera trajectories. In the case of linear light
fields, scene elements map to lines with different slopes according
to their depth values. In such cases, two specific directions can be
selected to represent the foreground and the background objects,
which can then be used in Eq. (2). As presented in Figure 8, this
approach achieves precise segmentations for linear light fields.

Thanks to the dense angular sampling, small-scale features can be
resolved, which are challenging for traditional multi-view segmenta-
tion methods. In Figure 9, we show a comparison of our technique
with our implementation of the work by Campbell et al. [2011] on
two datasets. Since their method does not scale well to larger num-
bers of images, we used, as advised by the authors, 100 equidistantly
sampled images to run the algorithm. In addition, the algorithm re-
quired manual initialization by selecting some superpixels for the
foreground and background, since their assumption that all camera
axes intersect on the object does not hold on our datasets. As can
be seen, [Campbell et al. 2011] has problems in thin object regions
since it works with superpixels. Moreover, since it uses explicit color
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Fig. 9: Results of Campbell et al. [2011] on two datasets. Note the missing
features on the foreground and false positives the background, especially
around thin object regions.

models for modeling the foreground and background, foreground
objects consisting of significantly different colors, and scenes where
foreground and background colors are similar become problematic.

We also performed a quantatitive analysis of our method, using a
synthetically rendered sequence with ground truth segmentations.
We asked a trained artist to generate the DRAGON scene and render
rendered 3600 images using MAYA, where we rotated a camera
around the object in a circle. Then, we used our algorithm to compute
the 2D/3D co-segmentations (see Figure 10). In order to measure
the quality of our results, we adopted the intersection-over-union
similarity metric, common for image segmentation evaluations [Li
et al. 2013], and used it to compare our 2D segmentations against
the ground truth. It can be seen that our method results in very high
similarity values to the ground truth even in case of this very chal-
lenging dataset, see Figure 11. The same figure shows that the work
by Campbell et al. [2011] has a considerably higher reconstruction
error, since it cannot make use of the extra images and loses detail
due to superpixel-based computations.

Sampling density. The gradient-based analysis and propagation
both leverage the dense sampling of the light field volume. The spe-
cific density requirements are a function of the texture of the scene in
the captured images. Essentially, for our method to work, the motion
parallax of an image feature should be smaller than the frequency of
the texture around that feature. With insufficient sampling density,
the smooth trajectories in light field slices disappear due to aliasing
and are replaced by discontinuities and additional structures arising
from scene texture (see Figure 12). However, as the sampling rate in-
creases, the structure of the trajectories becomes more apparent. We
observe that in real-world datasets, we usually achieve the required
coherency in the light field at about 10 images per degree around
the object of interest, a rate that is achievable using a standard video
camera. If the objects are closer to the camera, the relative speed
of the scene points also become faster, resulting in stronger motion
parallax and requiring slower camera motion to avoid aliasing. In
our experiments, we went as close as 80 centimeters to the object,
and saw that the above sampling density was sufficient to observe
the fine details. For closer capture scenarios, the sampling rate can
be increased for similar quality results.

For a quantitative evaluation of the sampling rate, we ran our algo-
rithm with the DRAGON data set by changing the sampling density,
resulting in different number of images. The resulting error values
are shown in Figure 11. Note that we get diminishing returns after
3600 images.
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Fig. 10: Our results on the rendered DRAGON dataset with many fine details. Note the reconstruction quality around thin features.
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Fig. 11: The change of the similarity measure intersection-over-union of our
results when compared to the ground truth segmentations (in blue). Note that
the similarity to the ground truth improves as the number of images goes up.
The same similarity measure on the same dataset is shown for [Campbell
et al. 2011] in red. The measure is considerably lower and improvements
become marginal after 100 images. Due to scalability issues, we ran the
method of Campbell et al. with a maximum of 300 images. Our method
needed the same amount of time to compute segmentations for 3600 images
as [Campbell et al. 2011] required for 100 images. We used a log scale for
the x-axis for a clearer visualization of the trends of both curves.

Applications. As discussed in Section 2, there are various applica-
tions for 3D object segmentations. Here we focus on applications
related to improving the result quality and efficiency of methods
for image-based 3D reconstruction. We extend the depth-from-light-
fields (DFLF) approach [Kim et al. 2013] in two ways. First, we
modify the consistency check, such that only pixels lying inside the
segmentation masks are tested for depth estimation, which greatly
reduces the search space and considerably speeds up the algorithm
for 3D object reconstruction. Second, the reconstructed points are
only accepted if they are contained within the 3D segmentation, and
are otherwise rejected. Using these two extra steps in the DFLF algo-
rithm reduces reconstruction errors and greatly improves efficiency.
In our experiments, we observed that our modified DFLF algorithm
took 15% of the computation time of the original method: e.g., the
runing time for computing the final point cloud on the full ORCHID
dataset decreased from 190 minutes to 30 minutes on the GPU. A
comparison of point clouds generated with the original DFLF and
our modified method is shown in Figure 13. The outliers in the DFLF
results stem from the fact that background points are not captured
with sufficient parallax variation due to the rotating camera motion,
leading to inaccurate depth estimates. Our modification successfully
removes all these artifacts. The cleaned point clouds can be used as
input to meshing techniques such as Poisson surface reconstruction
[Kazhdan and Hoppe 2013], as shown in Figure 14.

4000 images 1000 images 500 images

Fig. 12: Reconstruction experiment with different sampling rates, i.e., num-
bers of input images. Top: input image and close-up. Middle: a crop from the
same x− i slice with decreasing sampling rates. Note how angular aliasing
starts to occur. Bottom: corresponding 3D segmentations.

Our segmentations can also be easily incorporated into any off-the-
shelf stereo software. In Figure 15, we show how the quality of
the depth maps generated by semi-global matching [Hirschmüller
2006] can be improved with the help of our 3D object segmentations.
The floating outliers are caused by wrong correspondence estimates
around silhouettes, which can become substantial when merging
depth maps from different viewing directions around the object.
Our approach is able to produce results with fewer outliers, while
preserving all details in the objects.

We also compare our method to four additional, publicly available
image-based reconstruction methods [Goesele et al. 2007; Zhang
et al. 2009; Furukawa and Ponce 2010; Furukawa et al. 2010]. All
four methods are state-of-the-art and known for producing excellent-
quality results. However, like most existing MVS approaches, these
methods are designed to process smaller volumes of image data,
typically between 50 to a few hundreds of images (according to per-
sonal communication with some of their authors). Our comparison
indicates that the amount of reconstructed object detail cannot be
easily increased by simply raising the number of input images with
existing techniques.

In Figure 16, we compare our method to a publicly available,
patch-based MVS method, both without optimal view selection
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Fig. 13: Left: point clouds generated with DFLF [2013]. Right: Point clouds
computed using our enhanced DFLF method that leverages the 2D-3D
segmentations.

Fig. 14: Left: Oriented point cloud for the STATUE. Right: Results of Pois-
son surface reconstruction. Note the preserved fine details and accurate
silhouettes.

(PMVS [Furukawa and Ponce 2010]) and with view selection
(CMVS [Furukawa et al. 2010]). Both methods output oriented
point clouds, which we mesh using Poisson surface reconstruc-
tion [Kazhdan and Hoppe 2013]. Our meshes are generated as be-
fore by running marching cubes on H . Patch-based approaches may
struggle with capturing fine details, such as the ropes in the SHIP
dataset, and tend to grow object boundaries due to the employed
patch-based color consistency computation. The CMVS approach
improves upon the quality of the PMVS reconstructions thanks to
the optimized view selection, and therefore demonstrates that small
camera baselines can indeed be problematic for existing multi-view
stereo approaches. In our results, the thin rigging in the SHIP is
reconstructed quite well, even though these structures occupy only
a few pixels. Similar effects can be observed in the straws and ropes
on the SCARECROW.

In Figure 17, we compare our method against two other techniques
that first compute per-image depth maps and either merge them in
3D space (MVE [Goesele et al. 2007]) or make them consistent over
multiple views (ACTS [Zhang et al. 2009]). MVE uses patch-based
image comparisons to generate oriented point clouds, which are
meshed with the built-in floating scale surface reconstruction tech-
nique [Fuhrmann and Goesele 2014]. ACTS computes per-image
depth maps and makes them consistent over multiple views via
bundle adjustment. As ACTS only produces point clouds without

[Hirschmüller 2006] Outlier removal
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Fig. 15: Point clouds generated with the method of [Hirschmüller 2006]
without constraints (left) and with our segmentation constraints (right).

orientation information, we do not generate any meshes for this
data. Instead, we show two views of the generated point clouds by
projecting the depth maps into 3D space. Since there is no global
consistency check between the depth maps, noise can accumulate
when multiple views are used together. Problems around object
boundaries due to patch based comparisons are observed for both
methods, where the background is reconstructed as part of the fore-
ground object, leading to excessive debris around the reconstructed
objects. The results by MVE also show that producing meshes from
oriented point clouds for objects with thin features can lead to ad-
ditional noise. Note that most of these outliers could be removed
using our segmentations to improve the reconstruction quality.

The ORCHID dataset has further challenges, such as the specular re-
flections on the plant pot (see bottom light field slice in Figure 1) that
may present considerable difficulty for most multi-view reconstruc-
tion techniques, which generally assume Lambertian reflectance
properties. In our results, the pot is faithfully segmented. Moreover,
these techniques do not scale well with increased number of images
due to their high computational time complexities. For the THIN-
PLANT dataset with 4000 frames at 1280×720 resolution, MVE
requires 72 hours. This running time decreased to 90 minutes when
200 frames were used instead. ACTS, on the other hand, required
110 minutes on the GPU (or 700 minutes on the CPU) to compute
the depth maps for 200 frames. Our algorithm generated the 3D seg-
mentations in 100 minutes using all 4000 frames, which translates
to about 1.5 seconds per frame.

5. DISCUSSION

We presented an automatic method that generates precise 2D and
3D object segmentations from light fields. Our method efficiently
exploits coherence in densely sampled data and works effectively
with thousands of input images.

Our method requires the camera motion between two frames to
be slow for robustly estimating segmentation values, as shown in
Figure 12. However, in hand-held capture scenarios, the camera
can move too fast between two frames, causing wrong estimates.
Moreover, if the camera is almost stationary between two frames,
the initial estimates become unreliable. In our work, we identified
stationary frames using the SfM information and removed them
from the final gathering step.
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Fig. 16: Comparison of our method to CMVS [Furukawa et al. 2010] and PMVS [Furukawa and Ponce 2010]. For each algorithm, we show
the geerated meshes and point clouds from similar viewpoints. Please see Section 4 for a detailed discussion
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Fig. 17: Comparison of our method to MVE [Goesele et al. 2007] and ACTS [Zhang et al. 2009]. For each algorithm, we show the generated
point clouds from similar view points. The point clouds of MVE are meshed with floating scale surface reconstruction [Fuhrmann and Goesele
2014] as part of their pipeline. Since ACTS does not generate meshes, we show the point clouds from two different viewpoints. Please see
Section 4 for a detailed discussion

Like for most other methods for generating 3D shapes from images,
the quality of our approach depends on the accuracy of the camera
calibrations. Due to the multiplicative property of the gathering
step, a small number of minority views can remove otherwise well-
supported regions. In the PLANT dataset, we see errors in calibration
that cause some voxels at the tips of the top leaves to be lost.

We can additionally observe a number of failure cases in Figure 18.
In this example, a ground plane is visible, violating our depth-
based segmentation assumption. Furthermore, the foreground object
moves substantially during capture, the image is saturated (texture-
less) in brighter regions, the foreground and background have similar
color and texture, and the hand-held capture covers only 180◦ around

the object. These factors cause a number of erroneous estimates and
missing regions, which can be seen in the resulting segmentations.
Nonetheless, the trunk is still clearly visible, and the resulting point
cloud of our modified DFLF method shows reasonable structure.

Our trajectory-based parallax segmentation generates high-
confidence results in edge regions. If a foreground object is placed
on a smooth background, we have to propagate confident estimates
to the rest of the volume, which can cause bleeding of the foreground
information into the background. If holes in the foreground object
are small, and no background edges are visible through them, the
method cannot carve these regions away. Such cases can be seen in
the TORCH and AFRICA datasets. In practice, however, these cases
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are well addressed by existing color-based segmentation methods,
and combining the two approaches is an interesting future work.

Our method can effectively filter noisy point clouds. However, due
to the amount of fine structures in the reconstructed objects, it is still
very challenging to mesh such point clouds. As long as the amount
of fine structures is relatively low, a good triangle mesh can be
extracted using Poisson surface reconstruction [Kazhdan and Hoppe
2013], as in Figure 14. As the amount of fine structures increases,
such as for the ropes of the SHIP dataset, current meshing algorithms
fail to incorporate this information. Meshing point clouds for objects
with intricate details is an interesting future research direction.

As observed in recent works [Criminisi et al. 2005; Wanner and
Goldluecke 2012; Kim et al. 2013], dense data capture has enabled
entirely novel strategies for image-based reconstruction. In this work,
we have extended this line of thought by presenting a novel approach
for computing object segmentations in 2D and 3D with applications
in 3D scene reconstruction. When faced with big visual data, existing
approaches can suffer from scalability issues and cannot effectively
make use of the full information available. However, the coherency
and redundancy inside such data offers new opportunities, and at
the same time requires rethinking existing approaches from a new
vantage point. We hope that recent work on dense data will open up
various research avenues to take advantage of the ever increasing
volume of visual data being generated and stored.
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