
Make It Stand: Balancing Shapes for 3D Fabrication

Romain Prévost1 Emily Whiting1 Sylvain Lefebvre2 Olga Sorkine-Hornung1

1ETH Zurich 2INRIA

(a) (b) (c) (d)

Figure 1: Our algorithm iterates between carving and deformation to reach the final, balanced result. (a) The original horse model does
not stand on its hind legs and requires using the tail as a third support. (b) Our approach deforms the horse to make it stand on a single hind
leg. (c,d) The user scaled up the head of the T-Rex. Our optimizer succeeds in finding the delicate balance of a massive head and body on a
tiny base of support. It deforms and carves the model (yellow region visible by transparency) to precisely position the center of mass.

Abstract

Imbalance suggests a feeling of dynamism and movement in static
objects. It is therefore not surprising that many 3D models stand in
impossibly balanced configurations. As long as the models remain
in a computer this is of no consequence: the laws of physics do not
apply. However, fabrication through 3D printing breaks the illu-
sion: printed models topple instead of standing as initially intended.
We propose to assist users in producing novel, properly balanced
designs by interactively deforming an existing model. We formu-
late balance optimization as an energy minimization, improving sta-
bility by modifying the volume of the object, while preserving its
surface details. This takes place during interactive editing: the user
cooperates with our optimizer towards the end result. We demon-
strate our method on a variety of models. With our technique, users
can produce fabricated objects that stand in one or more surprising
poses without requiring glue or heavy pedestals.

CR Categories: I.3.7 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems; Physically based modeling

Keywords: Static equilibrium, structural stability, 3D printing,
optimization, interactive shape modeling

Links: DL PDF WEB VIDEO

1 Introduction

Balance is a delicate compromise between shape, weight and pose.
It is therefore difficult to visually assess whether a given object
is properly balanced and will stand in a stable, up-right posi-
tion. Artists, designers and architects use this to their advantage
to produce surprising and elegant designs that seem to defy gravity
[Smithson 1968; von Meiss 1990; Kedziora 2011]. A well-known
design principle to this effect, asymmetric balance [Lauer and Pen-
tak 2011], consists in achieving balance by contrasting sizes and
weights on either side of a composition. When considering physi-
cal objects, this process is not only concerned with aesthetics, but
also with structural soundness: the weights of each part must ex-
actly compensate each other, balancing the design in its intended,
stable pose.

With the advent of 3D printing technologies, it becomes very simple
to produce physical realizations of 3D models. Unfortunately, they
most often fail to stand, making it mandatory to glue the printed
objects onto a heavy pedestal. The delicate process of balancing,
already difficult with physical objects, is very challenging when
manipulating geometry in a 3D modeler. There is usually no indi-
cation of gravity, support or weight. Volumes are only represented
by their boundaries, making it tedious to exploit degrees of free-
dom such as carving the inside of an object to change its weight
distribution.

In this paper, we propose to assist users in modifying existing 3D
models to create novel, balanced designs. Using our approach, the
user interactively edits a shape and cooperates with our optimizer
towards the final result. The optimizer constantly improves the de-
sign to ensure that, after printing, it will stand on its intended basis
with the chosen orientation. This is especially well suited for the
modeling of surprising asymmetric balance configurations, such as
the printed horse model in Figure 1.

The input to our algorithm is a surface mesh representing a solid ob-
ject, a number of desired contact points and the desired orientation
(i.e., gravity direction). We exploit two main degrees of freedom
when modifying the model: our algorithm carves and deforms the
object to improve its equilibrium. We seek to minimize deviations
from the intended shape, and therefore the algorithm searches for
a compromise between removing matter from the interior and de-

http://doi.acm.org/10.1145/2461912.2461957
http://portal.acm.org/ft_gateway.cfm?id=2461957&type=pdf
http://igl.ethz.ch/projects/make-it-stand/
http://igl.ethz.ch/projects/make-it-stand/make-it-stand.mp4

forming the surface. We explore two modes of balancing: (i) stand-
ing on a flat surface, and (ii) orientation of suspended objects. In
both cases the user specifies as input the base of support or the at-
tachment points. Our method enables to simultaneously optimize
for several desired modes, e.g. several standing orientations.

Contributions. Our approach redistributes weight by jointly op-
timizing for the interior and the surface shape of an object. We ap-
proximate the interior volume with a voxel grid, each voxel being
tagged as full or empty. We propose a simple yet effective algorithm
to quickly carve voxels to improve stability given the current shape.
We express shape deformation as a least-squares optimization, pre-
serving shape details while moving the center of gravity closer to its
stable configuration. Our optimizer automatically performs blended
translations, rotations and scalings of the shape’s volume to improve
the design. An important aspect of our formulation is the proper
derivation of the change in center of mass due to the redistribution
of weight.

We demonstrate our approach on a variety of examples, most of
which we printed as physical objects. As can be seen throughout
the paper and the accompanying video, our results provide surpris-
ing yet stable configurations. These models all stand on their own
without glue or magnets.

2 Related work

The process of turning a virtual model into a physical object is not
straightforward, and several design constraints have to be followed.
This led researchers to propose methods automatically checking
whether an object can be fabricated, as well as approaches to as-
sist the user throughout the fabrication process. Telea and Jalba
[2011] study the printability of an object by considering a voxel
discretization of its volume. The system detects potential issues
such as too thin features, bridges and tunnels. 3D printers can only
print relatively small objects; Luo et al. [2012] propose an algo-
rithm that automatically cuts a model into smaller, printable parts
that can be later assembled. Beyond 3D printing, alternative tools
for rapid prototyping have been introduced, such as hand-guided
2D cutting tools [Rivers et al. 2012b] and sculpting with visualiza-
tion guidance [Rivers et al. 2012a]. While we focus on automated
3D printers, our stability optimization is applicable to alternative
fabrication materials and technologies.

Rather than post-processing models, a number of recent papers fur-
ther assist the user in modeling shapes that would be physically
sound once fabricated. In SketchChair [Saul et al. 2011], the user
sketches a profile which is automatically extruded into a chair that
can be fabricated from assembled laser-cut wood panels. The user
is presented with a real-time simulation of the physics of the chair,
so that she can visualize any equilibrium or stability issues with
the final model. Umetani et al. [2012] extend the principle of
SketchChair and propose an interface automatically suggesting to
the user how to modify her current design so that it would meet
specific fabrication requirements, such as stability and durability.
The system follows the gradient of the objective function to reach
valid regions of the configuration space.

The stress–relief algorithm [Stava et al. 2012] automatically mod-
ifies a shape to reinforce its physical realization. The approach
considers fragile areas of the model and performs three types of
corrections: thickening tube-like sections of the mesh, hollowing
parts to reduce strain on fragile parts, and adding struts to support
remaining excessive weight. These improvements are considered
in sequence. The algorithm does not optimize for stability: It is
assumed that a balanced model is provided. It however rejects any
change to the model that would compromise its balance. There-

fore, a model with a delicate balance is likely to pose a challenge.
In contrast, our method iterates between carving and deformation
to reach equilibrium constraints. We exclude the use of struts or
heavy pedestals to keep the shape as close as possible to the orig-
inal intent of the modeler. Note that we neglect internal stresses
and joint mechanics, assuming a solid rigid material of sufficient
strength, but the approach of Stava et al. could be combined with
ours to improve part robustness. Fabrication of articulated models
such as posable characters [Bächer et al. 2012; Calì et al. 2012] or
mechanical toys [Zhu et al. 2012] must handle structural constraints
related to friction: with too much resistance the parts will not move,
but insufficient friction will cause joints to fail under self-weight
when setting poses. We deal with a different aspect of the stability
problem to prevent global toppling of the printed model.

While not targeted at fabrication, several approaches propose to op-
timize the pose or the shape of models under mechanical objec-
tives. Static stability of character models was investigated in Mesh-
Puppetry [Shi et al. 2007]. This approach targets plausible rather
than feasible poses; in particular, the center of mass is approxi-
mated by a sum of masses located at the barycenter of the skeleton
bones. The underlying formulation of the method is quite differ-
ent from ours, since Mesh-Puppetry optimizes for joint angles and
skinning weights, while we optimize for the inner and outer surface
through deformation and carving. Derouet-Jourdan et al. [2010] op-
timize the parameters of user-drawn curves so that once simulated
under gravity, their shape matches the user sketch. In architectural
geometry, stability optimization has been studied for the design of
self-supporting structures. Whiting et al. [2009; 2012] and Vouga
et al. [2012] optimize structures composed of rigid blocks under
the constraint of compression-only static equilibrium. These meth-
ods consider stability of an assemblage of parts consisting of sim-
ple solids; in contrast, we deform meshes of arbitrary complexity
and additionally carve interior voids. More generally, the field of
shape optimization also considers the problem of modifying shapes
to enforce a number of mechanical properties [Allaire 2001]. These
approaches however rely on computationally expensive iterative fi-
nite element simulations which do not afford for interactive feed-
back [Stava et al. 2012].

3 Method overview

Given an input surface representing a solid model, our goal is to de-
form the volume such that the center of mass will reach a feasible
target. We manipulate the volume in two ways: we carve the model
interior to create inner voids, and we deform the original surface.
As mentioned, we support two balancing modes: shapes that are
meant to stand on a flat surface, and the resting position of shapes
suspended by a string. In both cases the problem amounts to modi-
fying the volume so as to reach a target center of mass. Our method
also supports multiple targets, as described later.

Standing mode. Feasible standing positions for a model are as-
sessed by the location of the center of mass c in relation to the in-
tended base of support. The base of support is defined by the convex
hull of all the points of the mesh touching the ground, which we re-
fer to as the support polygon. This is determined by the set of the
lowest mesh vertices with respect to the gravity direction. Option-
ally we flatten faces surrounding the support, within a threshold, in
order to enlarge support polygons which are too small to result in a
stable configuration.

To maintain static equilibrium, the center of mass of an object must
project along the gravity direction into the support polygon. How-
ever, while positioning the centroid at the boundary of the support
polygon is sufficient for feasibility, we further optimize the stabil-
ity by setting the ideal center of mass c? to project within a “safe

suspension modestanding mode
support polygon

Figure 2: (Left) The support polygon for standing models (orange)
is chosen as the set of the lowest vertices relative to the gravity
direction. The horizontal component of the target center of mass c?,
for which we optimize, is the projection of c onto the “safe region”
(green) of the support polygon, defined by the toppling angle γ. We
assume that the height of c? is equal to that of c when we define the
safe region. (Right) For suspended models the target center of mass
is the selected suspension point.

region” of the base. We ensure the model will not trivially topple
when pushed by small external forces by adding a stability offset
from the support boundaries, determined by a target toppling an-
gle γ (Figure 2).

In this work, we assume that the support polygon is chosen by the
user and remains fixed throughout optimization. Therefore, all sur-
face points touching the ground will remain at their chosen location.

Suspension mode. In this mode the object is meant to be sus-
pended by a string. The user is free to choose the suspension point
anywhere on the surface, as well as the desired orientation of the ob-
ject. To achieve equilibrium the center of mass has to project along
gravity onto the suspension point. We therefore select the suspen-
sion point as the target center of mass c?. The user is responsible
for selecting a valid configuration where the cord does not intersect
the mesh and the equilibrium, once reached, remains stable.

3.1 Problem formulation

The input to our method is a triangle meshM representing the outer
surface of the model. Our approach generates two output meshes,
MO and MI , defining the outer and inner surfaces of the result:
MO is a deformed version of the original mesh while MI is the
inner surface representing the boundaries of interior voids.

Given an unstable model, we look to carve the interior volume for
an optimal mass distribution, and simultaneously allow deformation
of the original surface. More precisely, given a target center of mass
c?, we solve the following optimization problem:

argmin
MI ,MO

(1− µ)ECoM (MI ,MO) + µEM(MO), (1)

whereEM(MO) is the shape-preserving term, namely, it measures
the deviation of the outer shapeMO from the input shapeM (de-
tailed in Section 5); ECoM measures the projected distance to the
target center of mass:

ECoM (MI ,MO) =
1

2

∥∥∥(c(MI ,MO)− c?)
⊥g
∥∥∥2

. (2)

Vector g is the gravity direction (‖g‖ = 1) and ⊥g denotes the
perpendicular projection onto the support plane along the gravity
vector. The weight µ is used to balance between the two objectives;
we describe how it is set in Section 5.3.

Center of mass. The center of mass c(MI ,MO) is fully deter-
mined by the geometry of the two surfaces, MI and MO , under
the assumption of uniform density. Let Ω be the domain trapped be-
tweenMI andMO such that ∂Ω =MI ∪MO; assume uniform
mass density ρ. The mass m and the center of mass c are defined
by volume integrals:

m(MI ,MO) =
�

Ω
ρ dr, c(MI ,MO) = 1

m(MI ,MO)

�
Ω
ρr dr .

Using the divergence theorem, these integrals can be expressed as
2D surface integrals over ∂Ω (see Appendix for details); the center
of mass is a rational function of the inner and outer mesh vertices:

m =
ρ

6

∑
f∈F

((vj − vi)× (vk − vi)) · (vi + vj + vk) , (3)

c =
ρ

24m

∑
f∈F

((vj − vi)× (vk − vi)) ? g(vi,vj ,vk), (4)

where F is the combined set of faces of MI and MO (note that
face orientation is important: the normals ofMO should point out-
wards and those of MI should point inwards), f = (i, j, k) is a
triangle, v are the vertex positions, and ? is the component-wise
product. The vector-valued function g is:

g(vi,vj ,vk) = vi?vi+vi?vj+vj?vj+vj?vk+vk?vk+vk?vi.

This formulation allows us to compute the gradient of the center of
mass analytically, which will be used in the optimization.

Multiple bases. In the case of multiple bases, the objective be-
comes a sum of the projected center of mass distances to the targets:

(1− µ)
∑
k

1

2

∥∥∥(c(MI ,MO)− c?k)⊥gk

∥∥∥2

+ µEM(MO). (5)

Note that for each base k the projection is along the corresponding
gravity vector gk. Any number of bases are possible, but the ex-
istence of a solution is conditioned by a non-empty intersection of
the extruded support polygons.

Given the above formulation, we introduce a number of approxima-
tions to make the problem tractable. Namely, we use a voxelization
to represent the inner volume, and introduce handles to control de-
formation in a well-behaved subspace.

Mass carving. We compute a voxel grid V as a discretized rep-
resentation of the volume insideM. Voxels are a natural represen-
tation for solid objects, they are less prone to difficulties such as
tracking a surface and avoiding self-intersections, which is critical
in this case, as we are constrained by the outer hull and in its close
proximity. Our approach assigns a binary fill value αi to each voxel
(1 means full and 0 means empty); the whole set of these values is
denoted by α. By carving, we obtain a discretized inner surface
defined by the boundaries of the filled regions (Figure 4). Section 4
describes the carving phase in detail.

Shape deformation. Instead of using all the degrees of freedom
of the mesh (i.e. vertices) we manipulate deformation handles. We
expect small changes impacting large portions of the model to be
the most useful to optimize for stability, and therefore reduce the
unnecessarily large number of DOFs. We use the simple linear
blend skinning (LBS) deformation model with bounded biharmonic
weights [Jacobson et al. 2011] for parameterizing the deformation
of the solid shape, where users place a small number of handles
within the shape’s volume. The degrees of freedom then become
the affine transformations at the handles (which are interpolated to

the rest of the shape by LBS); we denote them by H. To mea-
sure the quality of the deformation, we use the deformation energy
from Laplacian editing [Sorkine et al. 2004] as the shape-preserving
surface energy term EM. Section 5 describes the deformation ap-
proach in detail.

Our formulation. Given the above representations, our final en-
ergy formulation in terms of the voxel variables and deformation
handles is:

argmin
α,H

(1− µ)
1

2

∥∥∥(c (MI(α,H),MO(H))− c?)
⊥g
∥∥∥2

+

+ µEM (MO(H)) . (6)

Note that α determines the carving of the inner volume and hence
the geometry of the inner surfaceMI , andH determines the defor-
mation of both the outer surfaceMO and the voxel grid (andMI).

3.2 Stability optimization

Our objective (6) has a complex form: it mixes discrete (binary)
variables α for the voxel fills with continuous variables H for the
transformations of the handles. We therefore approach the stability
optimization with an iterative process that alternates between inner
volume and object geometry optimization. In the first phase, we
aim to find the optimal mass distribution inside the object, assum-
ing a fixed surface meshMO . In the second phase, we aim to de-
form the object to improve stability while preserving features. This
can be seen as a block coordinate descent method (see e.g. [Ortega
and Rheinboldt 1970]): we alternate between fixingH and optimiz-
ing (6) by varying α, and vice versa, aiming to decrease the energy
in each step. In this alternating optimization, the choice of empty
voxels α is recomputed at every iteration. There is therefore no
limitation for carved voxels to remain empty, and vice versa.

Shape
Deformation

Inner
Balancing

balanced
model

input
model

fixed
variable

variable
fixed

Figure 3: Our stability optimization alternates between two
phases: inner carving and shape deformation. The output is two
meshes representing the deformed outer surfaceMO and the inner
surface (the boundary of interior voids)MI , respectively.

4 Inner carving

During the carving stage we fix deformation parameters H, such
that the outer surface geometry MO is constant, and we change
the balance of the object by carving the inside of the shape, i.e., by
varying α. The volume discretization (voxel grid) is computed once
at the beginning; later the grid deforms together with the surface
during the deformation stage (but the lattice connectivity is kept
fixed, i.e., we do not remesh the volume). The resulting distortion
is taken into account when computing the center of mass.

Since H is fixed at this stage, the optimization (6) simplifies to the
first term:

ECoM (α) =
∥∥∥(c(α)− c?)⊥g

∥∥∥2

. (7)

Here we simplified the notation: c(α) = c(MI(α),MO).

First, we set α0 such that all the voxels are filled. Throughout the
carving process we never empty the voxels located within a distance

outer surface

inner surface

Figure 4: Cross-section displaying inner and outer surfaces. The
outer boundary is the smooth surface meshMO . The inner bound-
ary (neighboring empty voxels) is the inner surfaceMI .

di
ri

0

di < 0

Figure 5: Optimized voxel fill for a given surface mesh. (Left)
The original center of mass (black) is moved closer to the target by
carving the inside. Removing voxels to the left (di < 0) of the plane
cannot further improve stability, while removing voxels on the right
(di > 0) potentially improves ECoM . (Right) A model carved by
our algorithm. The yellow volume inside the model is empty.

tmin fromMO to ensure a minimal thickness to the outer hull. tmin

is set by the user according to the physical material properties.

We use the following fast heuristic to approximate the optimal voxel
carving. Given the current center of mass c0 := c(α0), imagine
cutting a plane through (c?)⊥g that is perpendicular to (c0−c?)⊥g

(Figure 5). The filled voxels located in the half-space plane that
does not contain c0 are left unchanged: carving these would only
result in c0 moving further away from the target. However, carv-
ing the voxels located in the other half-space potentially brings c0

closer to c∗ and may decrease ECoM .

Hence, we sort the voxels in decreasing order of their signed dis-
tance to the cutting plane:

di = (ri − c?) · (c0 − c?)⊥g, (8)

where ri is the centroid of voxel i. Voxels with negative distance are
ignored. We carve the voxels with positive di one by one, and keep
track of the value of the energy ECoM . When all the voxels in the
queue are processed, we pick the carve pattern α that corresponded
to the lowest energy value. Note that we do not stop as soon as
the energy is not decreasing anymore: Removals of voxels located
on the positive side of the plane but across the center of mass may
compensate each other, while removing each voxel independently
may temporarily increase ECoM . Also note that carving voxels in
this order ensures that we do not create “floating” components.

Our heuristic fixes the center of mass for the definition of the cut-
ting plane. While a better solution may be found by removing sin-
gle voxels and recomputing the center of mass, the plane constraint
greatly benefits performance. Note that we always evaluate and
record the true energy ECoM when removing a voxel; computing

the center of mass c(α) can be efficiently done thanks to the incre-
mental nature of the process. As evident from Equation 4, when
removing the new voxel we just need to update the previous value
by subtracting the integrals of thoseMI ’s faces that disappear and
add the integrals of the new faces; this is conveniently achieved by
subtracting the integrals over all the (oriented) faces of the carved-
out voxel.

The balancing process above can be iterated by recomputing the
new center of mass and the cutting plane, and sorting once more
the voxels that remained filled. At each iteration we either decrease
the energy or detect that too few voxels were removed and stop.
Figure 5 shows a balancing result.

Multiple bases. If several targets are specified (Equation 5), we
define a plane for each one, and hence have multiple distances di;
we use their sum (only the positive dis participate) as the sorting
value and proceed as described above.

At the end of the carving stage, we have the updated inner surface
MI as a mesh bordering between the empty and the filled voxels.
The vertices of this mesh are vertices of the voxel grid and they will
be deformed by transforming the handles in the deformation stage.

5 Shape deformation

If carving is sufficient for feasibility, our algorithm will stop af-
ter the first iteration without any deformation to the outer surface.
However, the most interesting and delicate models require defor-
mation to achieve balance.

During this stage, α and the connectivities of theMI ,MO meshes
are fixed. We deform both the outer surfaceMO and the inner vol-
ume, outlined byMI , to improve the balance and further decrease
the energy in (6). We use the linear blend skinning (LBS) defor-
mation model, whose parameters are affine transformations H at a
number of manipulation handles, placed by the user in the begin-
ning of the session. Specifically, if v is a vertex ofMO orMI or
the inner volume grid V , its deformed position is defined by

v =

N∑
j=1

wj(ṽ)Hj(ṽ), (9)

where ṽ is the initial, rest pose position of v. We assume there are
N handles, the weight function of handle j is wj : V → [0, 1], and
Hj is the affine transformation assigned to handle j. The weight
functions are precomputed in on the initial voxel grid V; the initial
surfaceM is contained in V , so that the values of the wjs are in-
terpolated ontoM’s vertices from the surrounding voxel vertices.
We use bounded biharmonic weights [Jacobson et al. 2011], which
are shown to be smooth and produce intuitive deformations. The
weights sum up to 1 at each vertex and they interpolate the handles,
namely, wj = 1 at handle j and all other weights wk (k 6= j) are
equal 0 there.

Overall, parameterizing the deformation as in Equation 9 serves two
purposes: it confines our optimization to a well-behaved shape sub-
space, and it drastically reduces the number of degrees of freedom.
Note that the LBS formula is very fast and embarrassingly parallel
to compute.

Handle placement. The number of handles N needed is typi-
cally small (between 2 and 6) and easy to select through standard
UI tools. For each handle, the user selects a screen-space point in
the mesh interior, and the depth position is set to the center of the
model’s volume there (Figure 6). Our optimization is not sensitive
to noise in the initial handle positions since the overall deformation
is low frequency (see Figure 10).

It is important that the chosen support remains fixed. In addition to
the user-selected deformation handles, we define all the voxels in
the base (or multiple bases) of support as an additional handle and
keep the associated affine transformationHbase fixed.

Figure 6: Handle placement. (Left) Locations of user-selected han-
dles are indicated by spheres. Only a small number of handles are
required. Handles are automatically placed in the center of the
volume. (Right) Mesh deformation by manipulating a handle; the
weight function of the handle is visualized. Handles may translate,
scale and rotate. Here, the user scaled up the head of the T-Rex

We restrict the affine transformations Hj to translation, uniform
scaling and rotation, thereby eliminating shears which tend to dis-
tort the shape. Furthermore, rotations can be interactively set by
the user, but we do not optimize for them due to the nonlinear pa-
rameterization of rotations in 3D. We optimize for the translation
and scaling parameters, so that in (9), v is a linear function of H.
Thus for each handle j, H has four scalar parameters (one scalar
for uniform scale and three for translation); overallH is a vector of
size 4N . Denoting the column vector with allMO’s vertex coor-
dinates stacked together by VO , and likewise VI for MI ’s vertex
coordinates, we can rewrite the LBS formula (9) in matrix form as

VO = MOH, VI = MIH, (10)

where the matrices MO,MI are fixed and comprised of some com-
binations of the initial positions ṽ and the skinning weights wj .
For additional details on how to construct these matrices, see e.g.
[Jacobson et al. 2012].

5.1 Deformation energy

Equipped with our deformation model, we now come to minimize
our energy (6) by varyingH. To simplify notation when α is fixed,
we have

min
H

(1−µ)ECoM (MI(H),MO(H))+µEM(MO(H)) (11)

The second term EM allows us to control the shape preservation
with respect to the initial model M. We use the Laplacian Edit-
ing energy [Sorkine et al. 2004], which quantifies the deformation
of the outer surface using differential coordinates and implicit rota-
tions. The energy is quadratic in the mesh vertex positions and can
be written as

EM(MO) =
λ

2
V TOMLapVO, (12)

where the scale factor λ compensates for the difference in dimen-
sionality betweenECoM andEM, andMLap is a sparse symmetric
positive semidefinite matrix whose entries only depend on the ini-
tial meshM. The purpose of λ is to normalize the weight µ across
meshes, but this is not critical since µ adapts during optimization
(see Section 5.3). We currently set λ manually, once per mesh.
For details on how to construct MLap please refer to [Sorkine et al.

2004]. An important fact is that EM is invariant to translation and
global uniform scaling of the geometry VO; it is also invariant to
moderate rotation, within the bounds possible for linear variational
deformation [Botsch and Sorkine 2008]. Hence this quadratic en-
ergy provides a reasonable tradeoff between efficient minimization
and shape preservation properties.

By combining (10) and (12), we get the deformation energy term

EM(MO(H)) =
λ

2
HT

(
MT
OMLapMO

)
H. (13)

5.2 Gradient descent

The energy in (11) is a rational expression in H due to the ECoM
term, hence its optimization is nonlinear. The subspace reduction
in (9) leads to a small number of unknowns 4N , with a small dense
matrix in (13) as a result. We thus employ gradient descent with
analytically computed gradients. While a more sophisticated opti-
mization method (e.g. Newton) is possible, it may hinder interac-
tivity; with gradient descent, we perform few iterations while the
user is interactively manipulating the mesh, to maintain a reason-
able framerate, and can iterate further towards convergence once
the user lets go of the UI.

We can compute the gradient of the energy w.r.t. the handle trans-
formation parametersH using simple derivation rules:

∂E

∂H = (1− µ)
∂ECoM
∂H + µ

∂EM
∂H . (14)

The center of mass is a function of the inner and outer surface vertex
positions: c = c(VI(H), VO(H)); we omit the argument for the
sake of brevity and just write c. Then the partial derivatives for
each energy term are given by:

∂ECoM
∂H

(2)
=

(
(c− c?)⊥g

)T ∂c

∂H

=
(

(c− c?)⊥g
)T (∂c

∂VI

∂VI
∂H +

∂c

∂VO

∂VO
∂H

)
∂VI
∂H

(10)
= MI

∂VO
∂H

(10)
= MO

∂EM
∂H

(13)
= λHT

(
MT
OMLapMO

)
Please refer to the Appendix for details on computing the center of
mass gradients ∂c/∂VI , ∂c/∂VO . Note that if several targets are
specified (as in Equation 5), this only affects the ECoM term, and
we simply sum up the gradients of each gravity direction. The step
size in the gradient descent is dynamically set so as to not increase
the energy. This is further described Section 5.3.

Once the gradient descent converges, we obtain the new outer and
inner surfaces, and we also deform the voxel grid using the opti-
mized parametersH, according to the LBS formula (9). This gives
us the modified voxel positions, with which we can restart the carv-
ing process (Section 4).

5.3 Convergence and balance improvement

We have experimented with varying the target (c?)⊥g and the
weighting parameter µ (Equation 11) in order to help the method
find a better balanced solution. In particular, the target can be re-
computed after each carving and deformation iteration as the pro-
jection of the current (rather than the starting) center of mass onto

Figure 7: (Left) Original model. (Middle) The user wishes to bal-
ance the model in an upside-down pose. She selects a number of
handles for the optimizer. (Right) The carved, deformed model is
balanced and stands on its head after printing.

Figure 8: Armadillo model with different starting poses. (Left)
Unstable input. (Middle) Balanced result. (Right) Printed model.

the support polygon; this helps the method to find a balanced posi-
tion quicker, since the distance between c⊥g and the support poly-
gon generally decreases.

We heuristically adapt the step size and µ during optimization. The
step size is initialized with a default value (1.0). At each step of
the gradient descent we check whether the energy decreased by at
least 1%. If not, we step back and decrease the step size by a fixed
ratio (0.8). If the step size reaches a pre-defined minimum (0.4)
before stability is achieved, we consider that the shape preserva-
tion term prevents further optimization and decrease µ by a fixed
amount (0.05). The step size is reset to its initial value. If µ reaches
zero before stability is achieved, we consider that the configuration
cannot be further improved and stop.

Throughout this process, advanced users may at any time take con-
trol over µ: Its influence is rather intuitive and allows a better bal-
ance at the cost of more deformation.

6 Results

Our approach offers precise balance of models after 3D printing.
The user may specify balance by the model orientation, and in the
case of suspended models, also by the attachment point. We applied
our algorithm to a variety of objects including character models,
sculptures and toys, and fabricated a number of the final results.

Figure 9: Curved base. While many stable orientations are possi-
ble for the rocking horse, we can choose a specific orientation as the
stable resting pose of the model. Here we achieve two completely
different orientations by carving different parts of the model.

Incorporating the exact center of mass in our formulation is par-
ticularly important for precarious examples, such as the horse and
T-Rex in Figure 1. The weight of the body must be balanced on a
proportionally tiny base of support, where there is little tolerance
for error. Figure 7 also shows the combined use of carving and de-
formation to achieve an unexpected headstand pose. In Figure 8
the balanced result alters the angle of the supporting leg. Despite
an overall shift in the position of the upper body, the surface fea-
tures remain visually unchanged from the original. Figure 8 is a
case where deformation is particularly necessary: The volume of
the hull is comparable to the inner volume since only voxels in the
chest could be removed without surpassing thickness limits. Carv-
ing alone could not achieve balance of the final model. In contrast,
in Figure 9 the optimizer mostly relies on carving to modify the rest
pose of a children’s rocking horse.

Interaction is an important part of discovering designs with unusual
balance. Our chosen deformation scheme allows the user to easily
change the configuration of a model, so that the algorithm coop-
erates with the user to find the best compromise. An example is
the T-Rex (Figure 1) where the user scaled up the head. The corre-
sponding handle is locked and the optimizer exploits the other de-
grees of freedom to recover balance. Further examples are shown in
the accompanying video. It should be noted that while the user can

Figure 10: Handles do not have to be precisely positioned. The
left image reveals the handles chosen by the user. We produce two
other sets of handles by adding Gaussian noise to their initial posi-
tions in all directions. We optimize all three for stability (deforma-
tion+carving) and, for each mesh vertex, we compute the average
distance between its positions in the three results. On average we
displace the handles by 6.7% of the longest mesh dimension. The
average distance between vertices in the results is 0.33%, an order
of magnitude less.

Figure 11: Gargoyle hanging from one of its claws. (Top-Left)
Input that would rotate away from the intended orientation. (Top-
Right) Optimized result: the new center of mass aligns with the
suspension point along the gravity direction. (Bottom) The printed,
optimized model.

Figure 12: Christmas tree ornament hanging asymmetrically as a
result of inner voids.

easily re-position handles for exploring new designs, the handle po-
sitions do not need to be very precisely selected for the optimization
(see Figure 10).

In addition to standing models, our approach applies to suspended
designs. The user may specify the angle at which the model hangs
as well as the point of attachment. Figures 11 and 12 depict models
hanging at unintuitive angles through a combination of inner carv-
ing and deformation.

Our approach generalizes to multiple bases as previously discussed.
Figure 13 shows a result for a teddy bear model that balances in two
configurations.

3D printing. We fabricated prototypes using a high-resolution
Objet 3D printer [http://objet.com/]. Models were printed with rigid
VeroTM material. In order to create hollow models, it was necessary
to create cuts in the geometry and print in multiple assemblable

Figure 13: (Top) This Teddy bear has been edited and optimized to
stand in two different positions. (Bottom) The printed object stands
in both configurations. We intentionally printed in transparent ma-
terial to reveal the uneven distribution of weight inside.

pieces. This provides access to the interior so that support material
may be removed. Note that support material is necessary only in the
printing bed, not in finished form. Since only a single cut was re-
quired for all the models, we divided them into two halves manually
using standard software tools. The cut locations have been chosen
to facilitate clean-up of the empty parts after printing. The cuts
could be better hidden, for instance following insights from mesh
parameterization [Sheffer and Hart 2002]. Other printing technolo-
gies could make this step unnecessary, for example, with Z-Corp
powder-based printers cuts are unnecessary; instead, a hole is re-
quired for the powder to exit the enclosed voids.

3D printers cannot print walls thinner than a given threshold. We
set the minimal hull thickness tmin above this value, with a security
margin. Our algorithm does not guarantee that deforming voxels
will preserve tmin, however it was the case on all our printed mod-
els. If needed, the carving algorithm can be modified to force all
deformed voxels within a tmin distance of the hull to be included.

Validation. Figure 14 shows the effect of optimizing the same
model while selectively disabling terms in our problem formulation
(6) and the optimization process. Disabling carving (c) introduces
significant scaling to achieve the necessary weight reduction of the
top spheres. Disabling the shape-preserving Laplacian energy (d)
introduces significant distortion in the bottom sphere where trans-
lation can now freely occur. The difference between our result (b)
and (d) shows the importance of scaling: It affords for significant
changes in weight distribution while preserving local details. Dis-

Model # tri. # vox. time/iter. # iter. stands

Rocking toy 5k 28k 35 ms 43 0
3-spheres 12k 83k 88 ms 128 80
Armadillo (top) 86k 22k 87 ms 277 120
T-Rex 95k 38k 84 ms 148 94
Horse 172k 27k 114 ms 206 51

Table 1: Optimization performance. For each model we specify
both the number of iterations to convergence (into the safe region),
and the iteration at which the model stands (inside the support poly-
gon). Note that reported times are for the optimization only, we do
not include rendering time.

a) unstable input b) our result c) no carving d) no Laplacian e) no Laplacian,
 no carving

Figure 14: Results obtained when selectively disabling the Lapla-
cian deformation energy term EM and the carving step in our for-
mulation. Please refer to the text for details.

Figure 15: (Left) Sculpture where significant support structure was
required to make it stand. (Right) Our 3-sphere model mimics the
unintuitive balance and stands without hidden supports.

abling both carving and Laplacian (e) leads to an unacceptable dis-
tortion of the initial model.

We recorded the performance for a number of models including
time per iteration and total iterations to convergence. Results are
reported in Table 1.

Limitations and future work. A poor choice of handles will
likely result in aesthetically unpleasing solutions. Such bad choices
would be handles all close to the base, or too few handles, not al-
lowing for enough degrees of freedom (see Figure 16, right). It is
possible in extreme cases for user deformations to lead to collisions
between different model parts, as shown Figure 16, left. An area of
future work could involve prevention of self-intersections for both
the inner and outer surface meshes. Although we do not explic-
itly prevent them, in practice we did not observe this to happen
even for large deformations. An extension could be to combine our
deformation step with interference-aware modeling [Harmon et al.
2011].

Our focus has been on printing single material models. It would be
possible to generalize our method to several materials. Varying den-

Figure 16: Limitations. (Left) Depending on the starting
pose, large deformations may be necessary, which could result
in self-intersections, e.g. the Armadillo’s foot intersects his leg.
(Right) When the degrees of freedom are too limited, unpleasing
deformations may result. Here a single handle was placed in the
head, causing the deformation to concentrate in the neck region.

Figure 17: Printed models standing together.

sities in the mass distribution would further reduce the deformation
of the surfaces. Due to limitations in current printing technologies
we keep this for future work.

7 Conclusion

We have demonstrated how to ensure stability of printed models so
that they may be physically realized. Our approach combines stabil-
ity objectives with shape preservation measures in order to respect
the user’s original design, whilst making it feasible without the need
for aids such as an oversized base or the addition of stilts. We intro-
duced a novel algorithm that leverages the use of interior voids to
manipulate mass distribution without affecting the exterior appear-
ance of the model. We alternate between interior carving and shape
deformation to arrive at a final stable result. We have demonstrated
effectiveness with numerous results including character models and
everyday objects, many requiring particularly delicate balance con-
ditions to stand in equilibrium. Further, we extended our technique
to objects that stand on multiple bases.

Acknowledgments

We thank Daniele Panozzo and Philippe Block for insightful discus-
sions; Ladislav Kavan for providing source code for bounded bihar-
monic weights; Amit Bermano, Bernd Bickel and Markus Buehler
for their help with producing the 3D models; and Gioacchino
Noris, Ronnie Gänsli and Steven Poulakos for their help in paint-
ing and photographing the printed 3D models. We thank Alec
Jacobson and Ladislav Kavan for the Dancing Armadillo mod-
els. Other models are from www.turbosquid.com: T-Rex (by
csirkeFrs), Gargoyle (by csirkeFrs), Mr Humpty (by ArtbySmitty);
and http://archive3d.net/: Horse (by Gian Lorenzo) and
Christmas ornament (by Labrouste Henri). The Teddy Bear model
is provided courtesy of the AIM@SHAPE Shape Repository. This
work was supported in part by an SNF award 200021_137879, ERC
grant ShapeForge (StG-2012-307877), ERC grant iModel (StG-
2012-306877) and a gift from Adobe Research. Emily Whiting is
supported by the ETH Zurich Postdoctoral Fellowship.

References

ALLAIRE, G. 2001. Shape optimization by the homogenization
method, vol. 146 of Applied Mathematical Sciences. Springer.

BÄCHER, M., BICKEL, B., JAMES, D. L., AND PFISTER, H.
2012. Fabricating articulated characters from skinned meshes.
ACM Trans. Graph. 31, 4.

BOTSCH, M., AND SORKINE, O. 2008. On linear variational sur-
face deformation methods. IEEE Trans. Vis. Comput. Graph. 14,
1, 213–230.

CALÌ, J., CALIAN, D. A., AMATI, C., KLEINBERGER, R.,
STEED, A., KAUTZ, J., AND WEYRICH, T. 2012. 3D-printing
of non-assembly, articulated models. ACM Trans. Graph. 31, 6,
130:1–130:8.

DEROUET-JOURDAN, A., BERTAILS-DESCOUBES, F., AND
THOLLOT, J. 2010. Stable inverse dynamic curves. ACM Trans.
Graph., 137:1–137:10.

HARMON, D., PANOZZO, D., SORKINE, O., AND ZORIN, D.
2011. Interference aware geometric modeling. ACM Trans.
Graph. 30, 6, 137:1–137:10.

JACOBSON, A., BARAN, I., POPOVIĆ, J., AND SORKINE, O.
2011. Bounded biharmonic weights for real-time deformation.
ACM Trans. Graph. 30, 4, 78:1–78:8.

JACOBSON, A., BARAN, I., KAVAN, L., POPOVIĆ, J., AND
SORKINE, O. 2012. Fast automatic skinning transformations.
ACM Trans. Graph. 30, 4, 77:1–77:10.

KEDZIORA, J., 2011. Balancing sculptures. Display at the Kinetica
Art Fair.

LAUER, D. A., AND PENTAK, S. 2011. Design Basics. Wadsworth
Publishing.

LUO, L., BARAN, I., RUSINKIEWICZ, S., AND MATUSIK, W.
2012. Chopper: Partitioning models into 3D-printable parts.
ACM Trans. Graph. 31, 6.

ORTEGA, J., AND RHEINBOLDT, W. 1970. Iterative solution of
nonlinear equations in several variables. Academic Press.

RIVERS, A., ADAMS, A., AND DURAND, F. 2012. Sculpting by
numbers. ACM Trans. Graph. 31, 6, 157:1–157:7.

RIVERS, A., MOYER, I. E., AND DURAND, F. 2012. Position-
correcting tools for 2D digital fabrication. ACM Trans. Graph.
31, 4, 88:1–88:7.

SAUL, G., LAU, M., MITANI, J., AND IGARASHI, T. 2011.
Sketchchair: an all-in-one chair design system for end users. In
Proc. 5th Intl. Conf. Tangible, Embedded, and Embodied Inter-
action, 73–80.

SCHNEIDER, P. J., AND EBERLY, D. H. 2002. Geometric Tools
for Computer Graphics. Morgan Kaufmann Publishers.

SHEFFER, A., AND HART, J. C. 2002. Seamster: inconspicuous
low-distortion texture seam layout. In Proc. Visualization, IEEE
Computer Society, 291–298.

SHI, X., ZHOU, K., TONG, Y., DESBRUN, M., BAO, H., AND
GUO, B. 2007. Mesh puppetry: cascading optimization of mesh
deformation with inverse kinematics. ACM Trans. Graph. 26, 3.

www.turbosquid.com
http://archive3d.net/

SMITHSON, R., 1968. Gyrostasis. Permanent collection of the
Hirshhorn Museum.

SORKINE, O., LIPMAN, Y., COHEN-OR, D., ALEXA, M.,
RÖSSL, C., AND SEIDEL, H.-P. 2004. Laplacian surface edit-
ing. In Proc. Symposium on Geometry Processing, 179–188.

STAVA, O., VANEK, J., BENES, B., CARR, N. A., AND MECH, R.
2012. Stress relief: improving structural strength of 3D printable
objects. ACM Trans. Graph. 31, 4, 48.

TELEA, A., AND JALBA, A. 2011. Voxel-based assessment of
printability of 3D shapes. In Proc. ISMM, 393–404.

UMETANI, N., IGARASHI, T., AND MITRA, N. J. 2012. Guided
exploration of physically valid shapes for furniture design. ACM
Trans. Graph. 31, 4.

VON MEISS, P. 1990. Elements of architecture: from form to place.
Routledge.

VOUGA, E., HÖBINGER, M., WALLNER, J., AND POTTMANN, H.
2012. Design of self-supporting surfaces. ACM Trans. Graph.
31, 4, 87:1–87:11.

WHITING, E., OCHSENDORF, J., AND DURAND, F. 2009. Proce-
dural modeling of structurally-sound masonry buildings. ACM
Trans. Graph. 28, 5, 112:1–112:9.

WHITING, E., SHIN, H., WANG, R., OCHSENDORF, J., AND DU-
RAND, F. 2012. Structural optimization of 3D masonry build-
ings. ACM Trans. Graph. 31, 6, 159:1–159:11.

ZHU, L., XU, W., SNYDER, J., LIU, Y., WANG, G., AND GUO,
B. 2012. Motion-guided mechanical toy modeling. ACM Trans.
Graph. 31, 6, 127:1–127:10.

Appendix

Mass and center of mass. The intermediate step for computing
the exact center of mass ((3), (4)) is the transformation of 3D vol-
ume integrals into 2D surface integrals over the boundary thanks to
the divergence theorem. In our case, the integration domain is the
volume between the inner surfaceMI and the mesh surfaceMO ,
such that we end up with integrals over those two surfaces. After
discretization over the mesh triangles [Schneider and Eberly 2002]:

m =
ρ

3

∑
F

nF ·
�
F

[x y z]T dS

c =
ρ

2m

∑
F

nF ?

�
F

[
x2 y2 z2]T dS

where ? is the component-wise product of two vectors, nF is the
normal of the triangle and we sum over all the triangles. dS is the
area element on a triangle.

Mass and center of mass gradients. Following from the final
formulations in (3) and (4), the gradient of mass w.r.t. vertex posi-
tion is obtained by summing up the contributions of the derivatives
of all its incident faces:

∂m

∂vp
=
ρ

6

∑
Np

∂ ([(vj − vi)× (vk − vi)] · [vi + vj + vk])

∂vp

where Np are the faces incident on vp, with vertex indices i, j, k.
The gradient of the center of mass w.r.t. vertex position is:

∂c

∂vp
=

1

m

(
∂(mc)

∂vp
− ∂m

∂vp
c

)

∂(mc)

∂vp
=

ρ

24

∑
Np

∂ ([(vj − vi)× (vk − vi)] ? [g(vi,vj ,vk)])

∂vp

We use the following relations:

∂ [vi + vj + vk]

∂vp
= I,

∂ [g(vi,vj ,vk)]

∂vp
= diag (vi + vj + vk)

∂m/∂VO, ∂m/∂VI and ∂c/∂VO, ∂c/∂VI are obtained by stack-
ing the above derivatives w.r.t vertices together in a matrix form.

