
Assembling Self-Supporting Structures

Mario Deuss1 Daniele Panozzo2 Emily Whiting2,3 Yang Liu4 Philippe Block2

Olga Sorkine-Hornung2 Mark Pauly1
1 EPF Lausanne 2 ETH Zurich 3 Dartmouth College 4 Microsoft Research

Figure 1: We propose a construction method for self-supporting structures that uses chains, instead of a dense formwork, to support the blocks
during the intermediate construction stages. Our algorithm finds a work-minimizing sequence that guides the construction of the structure,
indicating which chains are necessary to guarantee stability at each step. From left to right: a self-supporting structure, an intermediate
construction stage with dense formwork, an intermediate construction stage with our method and the assembled model.

Abstract

Self-supporting structures are prominent in historical and contem-
porary architecture due to advantageous structural properties and
efficient use of material. Computer graphics research has recently
contributed new design tools that allow creating and interactively
exploring self-supporting freeform designs. However, the physical
construction of such freeform structures remains challenging, even
on small scales. Current construction processes require extensive
formwork during assembly, which quickly leads to prohibitively
high construction costs for realizations on a building scale. This
greatly limits the practical impact of the existing freeform design
tools. We propose to replace the commonly used dense formwork
with a sparse set of temporary chains. Our method enables gradual
construction of the masonry model in stable sections and drastically
reduces the material requirements and construction costs. We an-
alyze the input using a variational method to find stable sections,
and devise a computationally tractable divide-and-conquer strategy
for the combinatorial problem of finding an optimal construction se-
quence. We validate our method on 3D printed models, demonstrate
an application to the restoration of historical models, and create
designs of recreational, collaborative self-supporting puzzles.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and object
representations;

Keywords: masonry models, static equilibrium analysis, self-
supporting surfaces, optimization, sparsity, assembly order

Links: DL PDF WEB

1 Introduction

The majority of man-made objects are composed of multiple inter-
locking parts, kept together by glue, bolts or other connections. The
division into components is often necessary to achieve a certain
purpose (computers, cars) or to make the fabrication of large models
feasible or cheaper (buildings, furniture, roads, railways, large 3D
printed models, etc.).

In this work, we focus on the construction of self-supporting struc-
tures that are composed of bricks or stone blocks without any mortar
to bind them together. Most of the world’s architectural heritage
consist of self-supporting masonry structures that require no support-
ing framework, since the entire structure is in a static equilibrium
configuration.

The design of modern, freeform self-supporting structures has re-
cently received a lot of interest in computer graphics [Vouga et al.
2012; Liu et al. 2013; de Goes et al. 2013; Panozzo et al. 2013], but
their physical construction has only been addressed for small-scale
models. The method proposed in [Panozzo et al. 2013] relies on
dense formwork (Figure 1) to support all the blocks until the entire
construction is completed; after the last piece is put in place, the
structure is in equilibrium and the formwork can be carefully re-
moved. This method is difficult to apply to large scale structures,
because a dense formwork able to sustain the weight of large stone
blocks is too expensive and not practical, especially considering that
the formwork has to be dismantled after all the blocks are in place.
Also, removing the formwork demands technically complex and
expensive solutions: the formwork has to be lowered evenly to avoid
failures due to redistribution of forces. Due to the lack of an econom-
ically feasible construction strategy, freeform masonry structures are
currently rarely built, despite their advantageous structural proper-
ties and unique aesthetics. Additionally, the majority of the cost is
associated with the foundations necessary to support the formwork.

We propose a different approach, replacing the dense formwork
with a sparse set of chains that are connected to fixed anchor points.
While chains have been used for construction before, our method
specifically aims at finding a work-minimizing assembly sequence,
requiring as few chains to be rehung as possible. Our solution
leverages the internal force distribution of the partially assembled
structure and only provides the minimally required additional sup-
ports to keep the structure in static equilibrium at all stages of the
assembly. The use of chains has been pioneered in modern construc-

http://doi.acm.org/10.1145/2661229.2661266
http://portal.acm.org/ft_gateway.cfm?id=2661266&type=pdf
http://lgg.epfl.ch/selfassembly

Figure 2: The Arch-Lock system [Drew 2013] is used to construct
a simple arch (left), and a barrel vault (right). [Copyright pho-
tographs: Lock-Block Ltd. 2013]

tion by [Drew 2013], who successfully built simple self-supporting
structures using one or more chains per block (Figure 2). Historical
methods applied rope supports in arch construction [Fitchen 1961].
Our work extends this idea to general freeform self-supporting struc-
tures. We show that designs created with the methods of [Vouga
et al. 2012; Liu et al. 2013; de Goes et al. 2013; Panozzo et al. 2013]
can all be handled by our algorithm.

The core problem that we address is finding a sequence of block
insertions that minimizes a specific cost function defined on the
number of chains required during assembly. This search problem is
hard, because the space of assembly sequences is exponential in the
number of blocks and anchor points. The situation is exacerbated by
the fact that even verifying the force equilibrium of a single construc-
tion state is already computationally involved (see Section 3). As
illustrated in Figure 3, naive solutions lead to an impractically high
number of chains and are often not able to complete the structure
since it is impossible to find valid configurations of chains that keep
the structure in equilibrium for each state (Figures 3, 13, 14, and
15 are the only ones that can be constructed using a trivial z-filling
sequence according to the equilibrium model we use). In feasible
sequences, the z-ordering approximately doubles the number of
times a chain needs to be rehung compared to our solution, which is
significant for real construction.

To make this combinatorial optimization problem computationally
tractable, we introduce a divide-and-conquer strategy that first de-
composes the design model into stable sections. This decomposition
is computed using an optimization approach that applies sparsity-
inducing norms to minimize the number of non-zero forces acting
between blocks. Given the decomposition, we apply a greedy opti-
mization to find the assembly sequence of the individual sections.
While this strategy is not guaranteed to find the globally optimal
solution, it greatly reduces the amount of work and chains compared
to non-optimized construction sequences.

While our focus is on the fabrication of self-supporting surfaces, our
contributions can be applied to other domains, such as restoration of
existing structures and design of self-supporting puzzles. These can
be printed with a consumer 3D printer and assembled by multiple
players using fingers instead of chains.

The contributions of this paper are as follows:

1. We propose an alternative way of constructing masonry struc-
tures that requires a negligible amount of formwork compared to
traditional techniques.

2. We present an optimization algorithm to analyze the equilibrium
of a structure exposing its arches and implying a segmentation
into stable sections. We propose an algorithm that leverages
sparsity to minimize the number of chains that are necessary to
avoid failures in the intermediate construction stages.

3. We validate our algorithm on physical examples of a small-scale
3D printed model and a self-supporting puzzle.

16 chains, 20 blocks

38 chains, 60 blocks

10 chains, 20 blocks

14 chains, 60 blocks

trivial ours

Figure 3: Two intermediate construction stages of our optimized
sequence (right) and a trivial z-ordering (left). Our sequence needs
considerably less work (0.62 instead of 1.13 chain changes per
state in average), while computing it takes 3.5 times longer than
determining the sparse set of chains for the trivial sequence.

2 Related work

Masonry building fabrication. Historically, construction prac-
tices for masonry buildings involved elaborate timber-frame struc-
tures guiding the vaulted forms and further sub-structures for inter-
mediate points of support [Fitchen 1961; Fallacara 2012]. In the
construction of modern freeform shells, traditional methods are still
in use, with wood panels cut according to section curves [Wendland
2009]. Formwork can be reduced in thin tile vault construction
[Ramage et al. 2010; Davis et al. 2012], however, these methods
rely on significant tensile strength of mortar in comparison to the
light weight of the tiles. We address the more general case of heavy
masonry blocks where mortar strength must be neglected, and con-
sequently, intermediate stages of construction require dense support
structures.

While less common, in medieval vault structures, tensioned ropes
were sometimes used to hold arch blocks in place [Fitchen 1961].
Tensioned elements have also been used as an alternative to form-
work in the contemporary building industry. For example, the Arch-
Lock system [Drew 2013] uses chains in the construction of Roman
arch bridges, tunnels and vaults. This chain-based system was an
inspiration for our work, however our method greatly expands on
the complexity and generality of chain supports, such that it can be
applied to freeform shell construction.

Self-supporting structures. Optimization of masonry structures
is an active area of research in the computer graphics community.
The shape of architectural models can be automatically adjusted
to guarantee structural stability [Whiting et al. 2009; Whiting et al.
2012]. Our approach uses the same model of statics for verifying
structural stability, as formalized by Livesley [1992]. Much effort
has been devoted to designing valid self-supporting shapes [Vouga
et al. 2012; Liu et al. 2013; de Goes et al. 2013; Panozzo et al. 2013],
yet the issue of how to construct such forms from the ground up has
been largely ignored. Cable elements were integrated in masonry
design in [Whiting et al. 2012] but with predetermined connectivity.

Optimizing construction sequences. Constructability has been
investigated in the context of 3D puzzles [Lo et al. 2009; Xin et al.
2011; Song et al. 2012], 3D assembly instructions [Agrawala et al.

Max.

Min.

Figure 4: Our algorithm converts an input masonry model in a work-minimizing construction sequence. From left to right: Forces resulting
from our global equilibrium analysis, arch-blocks as extracted from flood-fill, four different states of the construction sequence. In all our
figures, the blocks and chains are color-coded as follows: blue for support, light yellow for free blocks, gold for the newly added block and
chains, dashed lines for chains that can be removed, and black lines for other active chains. We also color-code the candidate blocks considered
by our sequence optimization using the minimum of Equation (5) relative to the other candidates in the color-bar on the right. Candidate
blocks leading to an invalid state are shown in black.

2003], and design with planar interlocking pieces [Hildebrand et al.
2012; Schwartzburg and Pauly 2013; Cignoni et al. 2014]. These
methods address geometric constraints that ensure no piece is ob-
structed by the existing structure during assembly. Some aspects of
stability have also been studied in these works, such as the rigidity
of joints as a function of slit placement. In contrast, we approach
the constructability problem with a focus on equilibrium constraints
and optimizations to simplify the assembly process.

3D printing. Support structures are an essential component of the
3D printing process, needed to stabilize a model at all stages of fabri-
cation [Wang et al. 2013]. While 3D printers use an additive method,
building models layer by layer, our approach takes advantage of
freedom in the construction sequence; blocks can be placed in arbi-
trary sequences, constrained only by connectivity. Several methods
have been developed to determine areas of high stress in the final
printed model [Stava et al. 2012; Umetani and Schmidt 2013]. Strut
and truss structures have been proposed as a solution to reducing
internal stress and preventing breakage of the print material [Stava
et al. 2012; Wang et al. 2013]. Our chain-based method is intended
for temporary support that can be easily added and removed.

A large body of work exists in optimizing for physical phenomena
in fabrication-oriented design. For example, prescribed deformation
behavior [Bickel et al. 2010] and kinematic constraints [Coros et al.
2013] have been studied in the context of character design. A sparse
set of strings is used in [Skouras et al. 2013] to animate actuated
models. We apply fabrication technology for creating physical
prototypes, but our goal is rather directed at the assembly, while
physical validity of the final shape is assumed at input. New printing
technologies supporting large scale 3D printing [Hansmeyer and
Dillenburger 2014] could directly be applied to fabricate freeform
blocks for masonry structures.

Rationalization. Surface rationalization [Singh and Schaefer
2010; Fu et al. 2010; Eigensatz et al. 2010] and decomposition in
freeform sweeps [Barton et al. 2014] can be used to create architec-
tural tessellations that reduce construction costs. These approaches
could potentially be used to optimize blocks tessellation, and thus
benefit directly from our method that can generate construction
sequences for masonry structures composed of arbitrarily shaped
blocks.

3 Method

Figure 4 provides an overview of our algorithm to generate a work-
minimizing construction sequence for a given self-supporting struc-
ture. After introducing some terminology (Section 3.1), we discuss
how we verify static equilibrium in a collection of blocks and chains
(Section 3.2). This method is an important component of our two-
stage optimization algorithm. The first stage analyzes the equilib-
rium of the surface to find a set of stable regions (Section 3.3). Based

on this decomposition, we generate a construction sequence using a
greedy algorithm that initially constructs the arches separating the
regions, and then fills the stable regions one by one (Section 3.4).
We evaluate our algorithm in different scales and applications (see
Section 4 for more details).

3.1 Preliminaries

We model a masonry structure as a set of rigid blocks that are
represented by closed manifold triangle meshes. The construction
site is specified as a collection of supports and anchor points (see
Figure 5). Each block can be in contact with other blocks or any of
the supports. We call the contact surfaces between blocks interfaces.
A block can also be attached to an anchor using a chain, represented
as an inextensible straight line segment connecting the block and the
anchor. Each block has a hook that provides an attachment point for
the chains. Multiple chains can be attached to the same hook. In our
examples, the block’s hook is placed at the intersection of the top
face and the ray emanating from the center of gravity parallel to the
direction of the normal of the top face. An intermediate construction
state is a spatial arrangement of blocks and chains. We say that a
state is valid if and only if it is in static equilibrium (Section 3.2).

Our algorithm converts an unordered collection of blocks into an or-
dered construction sequence, composed of valid construction states,
each adding one single block to the structure. Of the many con-
struction sequences that exist for a given set of blocks and anchor
positions, we strive to find one that minimizes the amount of work
required in the construction.

We define the work required to assemble a structure as the total

anchors

chains

supports

Figure 5: Construction site mockup.

f i+2
f i+1

f i+3
fn

i

fc
j

anchor j
f i

fu
i

fv
i

Figure 6: Model of chain forces and contact forces at interfaces
between blocks.

number of chains added and removed during the construction. This
definition is motivated by practical construction concerns: adding
or removing a chain is an expensive operation that requires a con-
siderable amount of time and energy, and thus directly relates to the
construction cost.

3.2 Construction state validity

An important component of our system is an algorithm to check
whether an intermediate construction state is valid, i.e. , the blocks
are in static equilibrium. Traditional physical simulation methods
are known to be unreliable in a masonry setting due to the extreme
stiffness of the system [DeJong 2009]. We thus rely on the alternative
model proposed in [Whiting et al. 2009], which we review in the
following paragraphs. In this method, a state is valid if there exists a
force distribution that satisfies a set of constraints. In general, those
constraints admit more than one single distribution and do not fully
determine the actual forces acting. We leverage this indeterminacy
by picking sparse force distributions to reveal a sparse valid subset
of chains on one hand, and an approximately valid subset of blocks
on the other hand.

We decompose each force f i acting on an interface between two
blocks into its axial component f in, perpendicular to the face, and
two orthogonal in-plane friction components, f iu and f iv (Figure
6). We model one force vector per vertex of the contact-polygon
between the two blocks. We encode the magnitude of the force
introduced by the chain connecting a block B to an anchor a with
a scalar value fB,ac and its orientation by a unit vector dB,a. Note
that we are interested in static equilibrium, so dB,a is fixed and only
depends on the input geometry.

Static equilibrium. Static equilibrium conditions require that net
force and net torque acting on each block cancel out. In our model,
we assume to have a small set of blocks anchored to the ground and
a set of additional forces fc acting on the blocks due to chain actions.
Combining equilibrium constraints for each block yields a linear
system of equations [Livesley 1992]. For each block B, the force
distribution must satisfy the following equilibrium conditions:

∑
i∈V (B)

f i +
∑

a∈C(B)
fB,ac dB,a∑

i∈V (B)
AB,if i +

∑
a∈C(B)

AB,ac fB,ac dB,a

 =

−gB
0

 (1)

The top row corresponds to force equilibrium, where gB is a vector
containing the gravity caused by block weight, V (B) is the set of all
force indices acting on the interfaces of block B, and C(B) is the
set of all chains acting on block B. The bottom row corresponds to
torque equilibrium where matrix AB,i contains coefficients for the
torque contribution of force f i, and coefficient matrix AB,ac accounts
for the torque contribution of the chain force fB,ac (see the Appendix
in [Whiting et al. 2009]).

Compression and tension constraint. According to the limit
analysis of masonry, the material can be assumed to have zero tensile
strength. This condition is expressed as a non-negativity constraint

on the axial components of the forces:

f in ≥ 0. (2)

Similarly, all chains can only introduce tensile forces:

f jc ≤ 0. (3)

Friction constraints. A friction constraint is applied at all block
interfaces. For each triplet of forces {f in, f iu, f iv}, the two in-plane
forces are constrained within the friction cone of the normal force fn.
We linearize the friction constraints with a pyramid approximation:

|f iu|, |f iv| ≤ α√
2
f in , ∀ i ∈ interface vertices (4)

where α is the coefficient of static friction. More details are given in
Appendix C.

3.3 Global equilibrium analysis

Historical self-supporting structures are highly regular and explicitly
composed of primary arches that were constructed before the rest
of the structure and used as support while building the other parts.
Following this construction strategy, the expensive support material
is used only for a small fraction of the structure, which then acts as
a support for the other parts.

The lack of regularity and symmetry in freeform designs makes the
manual identification of arches challenging, even for experts. Fur-
thermore, freeform designs often do not contain any exact arches, i.e.
, they do not have any subset of blocks that is in static equilibrium
without any external support. However, any masonry structure con-
tains one or more of what we term quasi-arches: subsets of blocks
that require only a small number of chains to stand. Finding quasi-
arches is even harder than finding arches, since it is a global problem
that requires an understanding of how forces distribute in the en-
tire structure. We propose a segmentation algorithm that analyzes
the distribution of forces in a masonry structure and automatically
extracts quasi-arches.

Combinatorial problem. Finding quasi-arches is equivalent to
finding a maximal, non-trivial subset of blocks that can be removed
from a masonry structure without collapsing the remaining part.
Determining which blocks can be removed is a hard and ill-posed
combinatorial problem, since we want to avoid the trivial solution
which contains no blocks. A brute-force approach is infeasible,
since testing for the validity of all possible construction sequences
has exponential complexity. In the following section, we describe
our proposed approach that makes the discovery of quasi-arches
a tractable problem.

Continuous relaxation. Equations (1), (2), (3) and (4) define
a convex constraint set containing all the possible internal force
distributions for which the structure is in static equilibrium. By
using a variational method, we can explore this constrained space
using a sparsity inducing functional to find valid distributions that
tend to concentrate the internal force on a small subset of interfaces
and thus indicate potential quasi-arches in the model.

To convert the combinatorial problem into a computationally
tractable continuous problem, we model only the side effects of
removing a block. Each removal implies that the forces on its in-
terfaces should be zero. We continuously relax this condition using
a block-sparsity approach that searches for an equilibrium solution
that can be explained with the majority of the forces concentrated on
a small subset of the interfaces. Note that the trivial solution does
not satisfy the equilibrium constraints (1), since they prohibit all
interfaces and chains of a block to be zero.

(a) a force solution (b) forces with sparsity objective

Figure 7: Global analysis on a synthetic example. Force vectors
(red lines) indicate the magnitude of forces between blocks.

Figure 8: The parameter λ controls the tradeoff between stable
regions and introduced chains. Chain forces are shown as blue lines.
From left to right, λ = 0.15, 0.12, 0.06.

To induce sparsity on the interface forces, we first introduce a new
scalar variable sI for each interface I that bounds the magnitude
of the resultant of the forces acting on it. We minimize the number
of non-zero sI and fc solving a Lp-relaxation (Appendix A) of
the following optimization problem with an iterative reweighting
scheme (Appendix B) :

min
fufvfnfc

(1− λ)
∑
B

∑
a

I0(fB,ac) + λ
∑
I

I0(sI) (5)

s.t. (1), (2), (3), (4), (6)

sI ≥
(∑
i∈I

‖f i‖2
)1/2

(7)

where I0(x) = 1 for x = 0, I0(x) = 0 otherwise. We use λ =
0.06 in all our experiments. The functional contains two sparsity-
enforcing terms: the first minimizes the number of introduced chains,
while the second minimizes the number of used interfaces, see Figure
7. The minimization of the auxiliary variables sI together with the
bound from below imply equality for Equation (7). At a minimum,
sI therefore is equal to right-hand side, which is the resultant of
the forces per interfaces. Note that the equilibrium constraints are
guaranteed to be satisfied after the minimization since they are
enforced as hard constraints. The tradeoff between the number of
stable regions and chains used is controlled by a single parameter
λ ∈ [0, 1] (Figure 8). For each input model, we normalize the
variables by choosing the material density such that the average
length of the blocks’ gravity forces is one. Our constraints are
scale-independent with respect to density.

Quasi-arch extraction. Despite the sparsification, the weight of
each block must still be redirected through the assembly down to
the boundary or up along the chains to satisfy equilibrium equations.
This naturally leads to a concentration of forces along linear sub-
sets of blocks, even if the minimization is not explicitly trying to
concentrate the force distribution in connected components.

We extract the quasi-arches from the force distribution using a flood-
fill approach restricted to grow across interfaces whose maximum

t=4 t=11

Figure 9: Extracting quasi-arches. This figure shows the quasi-
arches extracted with two thresholds on the maximal normal compo-
nent of interface forces.

of the normal component of its forces is above an user-defined
threshold t (Figure 9). A quasi-arch is a connected component found
by the flood-fill procedure that connects two supported blocks. The
following steps extract connected arches and erode dense regions
after the flood-fill: We reject a quasi-arch if it contains less than two
support blocks, or if the bounding box diagonal of the centroids of
support blocks is more than 10 times smaller than that of the whole
model including anchor points. We then remove singly-connected
blocks which are not supported. After minimizing Equation (5),
the extraction can be computed in real-time, allowing the user to
manually choose a value for t based on visual feedback.

Remark. The masonry crack prediction of Fraternali [2010] bears
some similarity with our quasi-arch extraction: The method applies
an iterative scheme to jointly find a discrete stress surface and a
compressive stress distribution explaining its equilibrium via a thrust
network approach, then predicts cracks in regions of zero or uniaxial
compressive stress. In contrast, our quasi-arch extraction explicitly
optimizes for sparse forces over all valid equilibrium solutions.

3.4 Construction sequence

We want to find a work-minimizing sequence to assemble each part
of the structure using the global equilibrium analysis. To reduce the
complexity of this combinatorial problem, we use a greedy approach
that inserts a block at a time, taking local decisions. The work
required for a certain step depends on the previous and successive
states and it is thus impossible to minimize locally. Observing that
the maximal work is bounded from above by the number of chains
used, we opt for a strategy that directly minimizes the chains used,
indirectly minimizing the work.

The detected quasi-arches are constructed first by restricting the
greedy approach to only consider the blocks of the quasi-arches.
After this stage, each remaining stable region is constructed using
the same strategy, one at a time, starting with the region containing
the most blocks. If the greedy approach fails to find a valid next
block to insert, the next region is added to the candidate blocks. This
heuristic drastically reduces the search space and consequently the
computation time (5 times faster on Figure 3) and can reduce the
work of the resulting sequence.

Next block insertion. Our algorithm attempts to independently
insert each block that is connected to a support part or to any other
block. For every inserted block, we solve the minimization problem
in Equations (5) and (6), with λ = 0. If no equilibrium state can be
found, we discard the configuration. We apply this procedure for all
candidate blocks and select the valid configuration with the lowest
cost. The cost is given by the Lp-relaxation of Equation (5), see
Appendix A. Directly using Equation (5) would potentially assign
the same cost to many candidates. In Figure 10, we show the cost
for inserting each of the candidate blocks in a specific intermediate
configuration.

Figure 10: At each construction step we test the work cost for insert-
ing an additional block and we select the one with minimal energy.
We highlight in black that blocks for which the optimization failed to
find a force distribution that satisfies the equilibrium constraints.

Optimization and chain pruning. To simplify the construction
process, we only allow a chain to be introduced on newly inserted
blocks, that is, whenever a chain is removed from a block, we do not
allow our optimization to insert it again. In addition to simplifying
construction, this heuristic also reduces the problem size. Note
that we disable chain pruning for the comparisons with the trivial
z-ordered sequences, since the pruning might prevent the z-ordering
strategy to find a valid sequence.

Trivial filling strategy failure. We demonstrate on many exam-
ples that our approach is efficient and greatly reduces the work
required to assemble the sequence. We show in Figure 3 a compari-
son between our approach and a height-ordered filling approach: our
method requires around 50% less additions and removals of chains.

3.5 Practical constraints

In practice, the anchors cannot support arbitrary forces; the chains
will break if the tension is extreme. We therefore add constraints to
our algorithm that account for bounds on chain forces. In addition,
we introduce geometric and frictional safety factors to account for
unavoidable fabrication inaccuracies as described below.

Anchor bound. We conservatively bound the maximal force act-
ing on an anchor a by adding a linear inequality constraint on the
sum of the involved forces:∑

B

fB,ac > −fmax (8)

The condition is linear because we only sum the magnitude of the
forces (all negative, see Equation 3), which are exactly the variables
that we use in the optimization to represent the chain forces. Note
that the bound is strict and our linearization is a conservative estimate
that does not take into account possible force cancellations. We show
an example of a construction state with and without bounds on the
anchors in Figure 11.

Chain bound. Restricting the chain forces is a simple box con-
straint on the corresponding variables fB,ac , which directly repre-
sents its magnitude:

fB,ac < fmaxc (9)

Manufacturing tolerances and safety factors. To account for
manufacturing imprecisions and to incorporate a safety factor in the
construction we introduce a geometric tolerance, to prevent torque
failure, and a friction tolerance to prevent sliding failures. The
former is achieved by uniformly downscaling the interface around
the average of its vertices [Heyman 1995], effectively reducing the
space of stable equilibrium configurations and forcing our algorithm

Figure 11: Adding a bound on the maximal force that an anchor
can support generates a sequence that distributes the chain forces
more evenly by adding additional chains. Left: Unbounded solution
using 3 chains with max. fc = 7.1 and max. anchor bound 7.1. Note
the max. chain is the only one connected to the max. anchor. Right:
Solution with 8 chains bounded by 3.5 and anchors bounded by 5.
For details please refer to Equations (8) and (9).

to introduce more chains. The second tolerance is on the friction
parameter, which directly reduces the feasible space by attenuating
the magnitude of the friction forces. For all our experiments, we used
a 10% geometric tolerance and we conservatively set the friction
coefficient α to 0.6, which is approximately 10% lower than the
value we experimentally measured on our 3D printed model.

Intersecting chains. To prevent chains from intersecting blocks
during the construction sequence, we optimize only over the chains
that do not intersect with any of the blocks. This set of chains is
determined in a preprocessing step.

4 Results

We tested our algorithm on self-supporting surfaces designed with
[Rippmann et al. 2012] (Figures 12, 14), [Panozzo et al. 2013] (Fig-
ures 1, 9), [Vouga et al. 2012] (Figures 4, 13, 11), [Liu et al. 2013]
(Figure 10) and [de Goes et al. 2013] (Figure 3).We provide full
construction sequences for all our results as short movie clips in
the supplementary material. All our experiments were performed
on a quad-core Intel i7 processor using the multi-threaded conic
solver in the MOSEK optimization library [Mosek 2014]. Statis-
tics on the datasets and computation times are provided in Table 1.
The optimization requires from a few minutes to a couple of hours,
depending on the number of blocks. The computation time of the
global analysis, in our largest models below 15 seconds, is negligi-
ble w.r.t. the sequence optimization. This comes without surprise,
since we only solve a slightly bigger conic problem once, while the
sequence needs many of them.

Large scale simulations. We test our algorithm on a complex
self-supporting model designed using RhinoVault [Rippmann et al.
2012] (Figure 12) and tessellated with a manually-designed stag-
gered pattern.

To stress test our approach, we create construction sequences for two
models tessellated with quads in Figure 4 and 13. These cases are
particularly challenging because the lack of interlocking between
the blocks makes these structures prone to friction failures.

Self-supporting puzzle. To demonstrate the flexibility of our
algorithm, we designed the small self-supporting model in Figure
14 using RhinoVault [Rippmann et al. 2012]. We used our algorithm
to find a construction sequence with an upper bound of three blocks
supported by chains at any given time. The conditions have been
enforced by rejecting all the construction states where more than
three blocks were connected to anchors. The construction sequence
is the solution to the puzzle, which allows to build it with four
hands: three to simulate the chain forces and one to insert the pieces.
Our algorithm opens interesting possibilities to design complex 3D

Figure 12: A large concert hall designed with RhinoVault is constructed using a sequence generated by our algorithm. The entire structure is
made of hexagonal blocks placed using an interleaved layout typical of masonry constructions.

Figure 13: A freeform self-supporting structure designed with [Vouga et al. 2012]. We tessellated the surface with quadrilateral elements,
which have no interlocking and are thus prone to sliding failures, requiring a considerable number of supporting chains to be stable in all
intermediate stages.

self-supporting collaborative puzzles, which we plan to explore in
future works.

Validation via small-scale models. Since masonry is a problem
of stability rather than stresses [Heyman 1995], scaled block mod-
els can actually be used as structural models [Zessin et al. 2010;
Van Mele et al. 2012]. We validate our algorithm by 3D printing the
blocks of a masonry structure designed with [Panozzo et al. 2013]
and using metal hooks and sewing string to model the chains. We
used our algorithm to generate the construction sequence and then
physically constructed the model following all steps (Figure 15). We
provide in the additional material the full sequence of photographs
for each construction step, validating our simulation results. During
the construction, we observed that the chains predicted by our algo-
rithm are always in tension, suggesting that the equilibrium model
we use accurately predicts the forces acting on the structure and does
not introduce redundant chains.

Restoration of historical buildings. Restoring an existing ma-
sonry building is a difficult task, since it is not possible to remove
and replace blocks without risking a structural failure. Our method

Model #B #C #A t Avg. #C Avg. ∆C Time

Figure 1 61 194 4 8 1.4 1.8 2
Figure 3 237 612 4 3.1 9.5 1.2 20
Figure 4 580 1652 4 4.6 4.9 1.2 249
Figure 8 203 1194 6 5 5.7 1.2 15
Figure 10 416 1127 4 0.9 9.4 1.1 95
Figure 11 128 306 4 0.6 2.0 0.5 9
Figure 12 588 2030 4 4.6 10.1 0.8 243
Figure 13 280 666 4 2.7 2.5 0.9 41
Figure 14 12 42 4 1 1.8 2.0 0.2

Table 1: Table with statistics for our results. From left to right:
number of blocks, number of chains in the optimization, number of
anchors, threshold parameter for the quasi-arch extraction, aver-
age number of used chains, average number of chain changes and
computation time in minutes.

Figure 14: Our algorithm can be used to design challenging physi-
cal puzzles.

can be used to tackle this difficult problem, as shown in Figure 16.
We optimize for a new equilibrium solution that does not contain
the blocks we want to replace. The optimization redistributes the
internal forces, and decides which chains should be inserted to guar-
antee the stability of the structure. After the chains are inserted,
the blocks can be safely removed and restored. Note that intrusive
techniques may be required such as drilling holes in the stones or
gluing lightweight hooks/anchors.

Figure 15: We validate our algorithm by constructing a masonry
structure using our optimized work-minimizing construction se-
quence.

Figure 16: Our algorithm finds a sparse set of chains that guarantee
stability even after the removal of a subset of the blocks. This can be
applied to restoration of masonry structures.

Evaluation of the safety factors. We designed an experiment to
evaluate the accuracy of our safety factors and the equilibrium model
we use. The global analysis step finds a quasi-arch in the middle of
the structure only if we do not introduce a safety factor (Figure 17).
Adding a friction and safety factor of 1% is sufficient to make the
quasi-arch unstable and forcing our algorithm to introduce a chain.
We reproduced this case with our 3D printed model, and verified that
the arch is indeed extremely close to be in equilibrium, but cannot
stand safely without a chain due to a torque failure.

5 Limitations and concluding remarks

We presented a method to assemble self-supporting structures using
a sparse set of chains instead of a dense formwork. Our algorithm
can process models generated with any of the existing design meth-
ods and can incorporate practical construction constraints in the
optimization. We assume the construction site, and the masonry
structure are given as input, and we focus on optimizing a valid
construction sequence: An interesting venue for future work is a
relaxation of this problem, where the algorithm is allowed to alter
the anchor and hook placements. This would greatly increase the
solution space and can further reduce the construction cost, but is
extremely challenging since moving hooks and anchors has a global
effect on all the construction states. Additionally, surface shape
and/or tessellation could also be optimized.

Our greedy sequence optimization may fail when none of the can-
didate blocks can be inserted. We handled this case by manually
perturbing the anchor positions to seek a possible solution. In par-
ticular, we moved the anchors to reduce the intersections between
candidate chains and blocks, expanding the solution space. Relo-
cating or adding anchor points automatically will be an interesting
venue for future work. Alternatively, a backtracking strategy could
be employed to further explore the space of valid sequences.

Explicitly maximizing temporal smoothness on the (in)active chains
could theoretically help our method to reduce work. This maxi-
mization is hard to implement in our framework since the chain
force magnitudes can vary substantially between states, while the
corresponding chain stays active. A simple smoothness term on
the magnitudes could therefore lead to denser solutions, producing
sequences needing more work.

The static equilibrium analysis we use is based on the lower bound
theorem [Heyman 1995] which assumes hinging failure between
blocks. While sliding failure is not accounted for, we guarantee
existence of a feasible static equilibrium solution which satisfies the
friction cone constraint. Further, we use a conservative coefficient
of friction. Stability of masonry structures under sliding is an active
area of research. Hinging is predominantly considered the limiting
constraint in masonry analysis, particularly for arched and domed
structures [Livesley 1992].

More research will be required to address the additional constraints
of large-scale constructions sites, but we did validate our algorithm
on a small scale, 3D printed models. We demonstrated that our
algorithm can be used to design interesting physical puzzles, using
hands instead of chains.

In our 3D printed models, we currently use small registration spheres
(hemispheres added to the interface, respectively carved out from
the interface in contact) to ensure that the construction is precise.
They are not necessary but they greatly simplify construction since
exact block alignment is difficult at a small scale. However, we
found that small errors in chain length and fabrication technology

(a) stable with single chain (b) collapse with chain released

Figure 17: This quasi-arch needs a chain to be stable. When the
chain is loosened, the arch collapses due to a torque failure.

(i.e. imbuing with glue powder-printed 3D blocks) can quickly sum
up in an error of a few millimeters, making the construction difficult.
We believe that a better locking mechanism between the blocks
could be introduced to ameliorate this problem, or a computer vision
system could be developed to help the exact placement of each block.
Errors with fabrication tolerance would be negligible at full scale.
The chain stretching is proportional to the load and dependent on
the cables’ properties (cross-sectional area and axial stiffness), and
can be computed precisely. In a real scenario, the cables should be
adjusted after each construction step to compensate for the changing
load. In our 3D printed models, we assumed chains do not stretch
and adjusted the chain length manually when first introduced.

The quasi-arches have an unexplored advantage: They might allow
using full, curvilinear formwork (from below) to fix only the quasi-
arches, decoupling the equilibrium of each stable region. The stable
regions could then be constructed in parallel, drastically speeding
up the construction time.

The C++ source code of our implementation is available for down-
load at http://lgg.epfl.ch/selfassembly.

Acknowledgements

The authors wish to thank: Hao Pan and Xiaoming Fu for provid-
ing their source code and support. Etienne Vouga, Fernando de
Goes, Ramon Weber and Matthias Rippmann for providing datasets.
Bailin Deng, Andrea Tagliasacchi and Sofien Bouaziz for inspiring
discussions. This research was supported in part by the SNF Grant
(200021-137626) and received funding from the European Research
Council under the European Union’s 7th Framework Programme
(FP/2007-2013)/ERC Grant Agreement 257453, ERC Starting Grant
COSYM and ERC Starting Grant iModel (StG-2012-306877).

References

AGRAWALA, M., PHAN, D., HEISER, J., HAYMAKER, J.,
KLINGNER, J., HANRAHAN, P., AND TVERSKY, B. 2003. De-
signing effective step-by-step assembly instructions. ACM Trans.
Graph. 22, 3, 828–837.

BARTON, M., POTTMANN, H., AND WALLNER., J. 2014. De-
tection and reconstruction of freeform sweeps. Comput. Graph.
Forum 33, 2, 23–32.

BICKEL, B., BÄCHER, M., OTADUY, M. A., LEE, H. R., PFIS-
TER, H., GROSS, M., AND MATUSIK, W. 2010. Design and
fabrication of materials with desired deformation behavior. ACM
Trans. Graph. 29, 4, 63:1–63:10.

CIGNONI, P., PIETRONI, N., MALOMO, L., AND SCOPIGNO, R.
2014. Field-aligned mesh joinery. ACM Trans. Graph. 33, 1,
11:1–11:12.

COROS, S., THOMASZEWSKI, B., NORIS, G., SUEDA, S., FOR-
BERG, M., SUMNER, R. W., MATUSIK, W., AND BICKEL, B.
2013. Computational design of mechanical characters. ACM
Trans. Graph. 32, 4, 83:1–83:12.

DAVIS, L., RIPPMANN, M., PAWLOFSKY, T., AND BLOCK, P.
2012. Innovative funicular tile vaulting: A prototype in switzer-
land. The Structural Engineer 90, 11, 46–56.

DE GOES, F., ALLIEZ, P., OWHADI, H., AND DESBRUN, M. 2013.
On the equilibrium of simplicial masonry structures. ACM Trans.
Graph. 32, 4, 93:1–93:10.

DEJONG, M. J. 2009. Seismic Assessment Strategies for Masonry
Structures. PhD thesis, MIT.

DREW, J., 2013. United Lock-Block Ltd. http://www.
lockblock.com/.

EIGENSATZ, M., KILIAN, M., SCHIFTNER, A., MITRA, N. J.,
POTTMANN, H., AND PAULY, M. 2010. Paneling architectural
freeform surfaces. ACM Trans. Graph. 29, 4, 45:1–45:10.

FALLACARA, G. 2012. Stereotomy: Stone Architecture and New
Research. Presses Ponts et Chaussées.

FITCHEN, J. 1961. The Construction of Gothic Cathedrals: A Study
of Medieval Vault Erection. University of Chicago Press.

FRATERNALI, F. 2010. A thrust network approach to the equilibrium
problem of unreinforced masonry vaults via polyhedral stress
functions. Mechanics Research Communications 37, 2, 198 –
204.

FU, C.-W., LAI, C.-F., HE, Y., AND COHEN-OR, D. 2010. K-set
tilable surfaces. ACM Trans. Graph. 29, 4, 44:1–44:6.

HANSMEYER, M., AND DILLENBURGER, B., 2014. Digital
grotesque. http://www.digital-grotesque.com/.

HEYMAN, J. 1995. The Stone Skeleton: Structural engineering of
masonry architecture. Cambridge University Press.

HILDEBRAND, K., BICKEL, B., AND ALEXA, M. 2012. Crdbrd:
Shape fabrication by sliding planar slices. Comput. Graph. Forum
31, 2, 583–592.

LIU, Y., PAN, H., SNYDER, J., WANG, W., AND GUO, B.
2013. Computing self-supporting surfaces by regular triangu-
lation. ACM Trans. Graph. 32, 4, 92:1–92:10.

LIVESLEY, R. 1992. A computational model for the limit analysis
of three-dimensional masonry structures. Meccanica 27, 3, 161–
172.

LO, K.-Y., FU, C.-W., AND LI, H. 2009. 3D Polyomino puzzle.
ACM Trans. Graph. 28, 5, 157:1–157:8.

MOSEK, 2014. Mosek. http://www.mosek.com.

PANOZZO, D., BLOCK, P., AND SORKINE-HORNUNG, O. 2013.
Designing unreinforced masonry models. ACM Trans. Graph. 32,
4, 91:1–91:12.

RAMAGE, M. H., OCHSENDORF, J., RICH, P., BELLAMY, J. K.,
AND BLOCK, P. 2010. Design and construction of the Mapun-
gubwe national park interpretive centre, South Africa. African
Technology Development Forum 7, 1, 14–23.

RIPPMANN, M., LACHAUER, L., AND BLOCK, P. 2012. Interactive
vault design. International Journal of Space Structures 27, 4, 219–
230.

SCHWARTZBURG, Y., AND PAULY, M. 2013. Fabrication-aware
design with intersecting planar pieces. Comput. Graph. Forum
32, 2, 317–326.

SINGH, M., AND SCHAEFER, S. 2010. Triangle surfaces with
discrete equivalence classes. ACM Trans. Graph. 29, 4, 46:1–
46:7.

SKOURAS, M., THOMASZEWSKI, B., COROS, S., BICKEL, B.,
AND GROSS, M. 2013. Computational design of actuated de-
formable characters. ACM Trans. Graph. 32, 4, 82:1–82:10.

SONG, P., FU, C.-W., AND COHEN-OR, D. 2012. Recursive
interlocking puzzles. ACM Trans. Graph. 31, 6, 128:1–128:10.

http://lgg.epfl.ch/selfassembly
http://www.google.com/search?q=Designing+effective+step-by-step+assembly+instructions
http://www.google.com/search?q=Designing+effective+step-by-step+assembly+instructions
http://www.google.com/search?q=Detection+and+reconstruction+of+freeform+sweeps
http://www.google.com/search?q=Detection+and+reconstruction+of+freeform+sweeps
http://www.google.com/search?q=Design+and+fabrication+of+materials+with+desired+deformation+behavior
http://www.google.com/search?q=Design+and+fabrication+of+materials+with+desired+deformation+behavior
http://www.google.com/search?q=Field-aligned+mesh+joinery
http://www.google.com/search?q=Computational+design+of+mechanical+characters
http://www.google.com/search?q=Innovative+funicular+tile+vaulting:+A+prototype+in+switzerland
http://www.google.com/search?q=Innovative+funicular+tile+vaulting:+A+prototype+in+switzerland
http://www.google.com/search?q=On+the+equilibrium+of+simplicial+masonry+structures
http://www.google.com/search?q=United+Lock-Block+Ltd.
http://www.lockblock.com/
http://www.lockblock.com/
http://www.google.com/search?q=Paneling+architectural+freeform+surfaces
http://www.google.com/search?q=Paneling+architectural+freeform+surfaces
http://www.google.com/search?q=A+thrust+network+approach+to+the+equilibrium+problem+of+unreinforced+masonry+vaults+via+polyhedral+stress+functions
http://www.google.com/search?q=A+thrust+network+approach+to+the+equilibrium+problem+of+unreinforced+masonry+vaults+via+polyhedral+stress+functions
http://www.google.com/search?q=A+thrust+network+approach+to+the+equilibrium+problem+of+unreinforced+masonry+vaults+via+polyhedral+stress+functions
http://www.google.com/search?q=K-set+tilable+surfaces
http://www.google.com/search?q=K-set+tilable+surfaces
http://www.google.com/search?q=Digital+grotesque
http://www.google.com/search?q=Digital+grotesque
http://www.google.com/search?q=Crdbrd:+Shape+fabrication+by+sliding+planar+slices
http://www.google.com/search?q=Crdbrd:+Shape+fabrication+by+sliding+planar+slices
http://www.google.com/search?q=Computing+self-supporting+surfaces+by+regular+triangulation
http://www.google.com/search?q=Computing+self-supporting+surfaces+by+regular+triangulation
http://www.google.com/search?q=A+computational+model+for+the+limit+analysis+of+three-dimensional+masonry+structures
http://www.google.com/search?q=A+computational+model+for+the+limit+analysis+of+three-dimensional+masonry+structures
http://www.google.com/search?q=3D+Polyomino+puzzle
http://www.google.com/search?q=Mosek
http://www.mosek.com
http://www.google.com/search?q=Designing+unreinforced+masonry+models
http://www.google.com/search?q=Design+and+construction+of+the+Mapungubwe+national+park+interpretive+centre,+South+Africa
http://www.google.com/search?q=Design+and+construction+of+the+Mapungubwe+national+park+interpretive+centre,+South+Africa
http://www.google.com/search?q=Interactive+vault+design
http://www.google.com/search?q=Interactive+vault+design
http://www.google.com/search?q=Fabrication-aware+design+with+intersecting+planar+pieces
http://www.google.com/search?q=Fabrication-aware+design+with+intersecting+planar+pieces
http://www.google.com/search?q=Triangle+surfaces+with+discrete+equivalence+classes
http://www.google.com/search?q=Triangle+surfaces+with+discrete+equivalence+classes
http://www.google.com/search?q=Computational+design+of+actuated+deformable+characters
http://www.google.com/search?q=Computational+design+of+actuated+deformable+characters
http://www.google.com/search?q=Recursive+interlocking+puzzles
http://www.google.com/search?q=Recursive+interlocking+puzzles

STAVA, O., VANEK, J., BENES, B., CARR, N., AND MĚCH, R.
2012. Stress relief: Improving structural strength of 3D printable
objects. ACM Trans. Graph. 31, 4, 48:1–48:11.

UMETANI, N., AND SCHMIDT, R. 2013. Cross-sectional structural
analysis for 3D printing optimization. In SIGGRAPH Asia 2013
Technical Briefs.

VAN MELE, T., MCINERNEY, J., DEJONG, M., AND BLOCK, P.
2012. Physical and computational discrete modeling of masonry
vault collapse. In Proc. Int. Conf. Structural Analysis of Historical
Constructions.

VOUGA, E., HÖBINGER, M., WALLNER, J., AND POTTMANN, H.
2012. Design of self-supporting surfaces. ACM Trans. Graph. 31,
4, 87:1–87:11.

WANG, W., WANG, T. Y., YANG, Z., LIU, L., TONG, X., TONG,
W., DENG, J., CHEN, F., AND LIU, X. 2013. Cost-effective
printing of 3D objects with skin-frame structures. ACM Trans.
Graph. 32, 5, 177:1–177:10.

WENDLAND, D. 2009. Experimental construction of a free-form
shell structure in masonry. International Journal of Space Struc-
tures 24, 1, 1–11.

WHITING, E., OCHSENDORF, J., AND DURAND, F. 2009. Proce-
dural modeling of structurally-sound masonry buildings. ACM
Trans. Graph. 28, 5.

WHITING, E., SHIN, H., WANG, R., OCHSENDORF, J., AND
DURAND, F. 2012. Structural optimization of 3D masonry
buildings. ACM Trans. Graph. 31, 6, 159:1–159:11.

XIN, S., LAI, C.-F., FU, C.-W., WONG, T.-T., HE, Y., AND
COHEN-OR, D. 2011. Making burr puzzles from 3D models.
ACM Trans. Graph. 30, 4, 97:1–97:8.

ZESSIN, J., LAU, W., AND OCHSENDORF, J. 2010. Equilibrium of
cracked masonry domes. Proc. ICE-Engineering and Computa-
tional Mechanics 163, 3, 135–145.

A Lp-Relaxation

Minimizing Equation (5) is a hard, discrete problem. We therefore
use a continuous Lp-relaxation (0 < p < 1) to approximate the
minimization by

min
xi

∑
i

wi(ri|xi|p) s.t. (6), (7), (10)

where ri are additional, dynamic weights used for iterative reweight-
ing as describe in the next section. wi are weights of the discrete
problem, e.g. 1−λ and λ in Equation (5). We experimentally found
that p = 0.05 produces the least work, see Table 2.

p 0.001 0.01 0.025 0.05 0.075 0.1 0.25 0.5 0.75 1

#C 7.36 6.51 3.51 1.28 1.16 1.31 2.05 2.84 8.03 18.33
∆C 1.41 1.34 1.25 1.02 1.15 1.21 1.31 1.41 1.41 3.25

Table 2: Average number of chains and chain changes for sequences
of the model in Figure 1 computed with different parameter p. The se-
quences were computed without quasi-arches to isolate the influence
of the parameter. Note that p = 1 requires no reweighting.

B Iterative reweighting

Iterative reweighting strategies convert non-linear Lp-minimization
problems into a series of linear or quadratic problems. We choose an
iterative reweighted L1-minimization (IRL1) to minimize Equation
(10), in particular because each subproblem is a conic program
that can be solved globally optimal. Suppose x̂i is a minimum of
Equation (10) with ri = 1. Then x̂i is also a minimum of the conic
program in Equation (10) with p = 1 and ri = r̂i(x̂i):

r̂i(xi) =
1

|xi|1−p + εr
(11)

for εr = 0 and r̂i(0) =∞. In practice we use εr = 10−5 to avoid
division by zero. However, we do not know x̂i. According to IRL1
we iteratively estimate r̂ti from the previous solution r̂ti := r̂i(x̂

t−1
i),

leading to the following series of conic problems:

x̂ti := argmin
xi

∑
i

wi(r̂
t
i |xi|) s.t. (6), (7), (12)

starting with r̂0i := 1. Note that the modulus can be replaced with
the proper sign since all the variables subject to minimization are
constrained to be either non-negative or non-positive according to
Equation (2) and (3). We perform 5 iterations in our experiments.
The resulting chain forces however are rarely precisely zero due
to the relaxation and numerical precision. We therefore choose a
parameter εc = 10−8 below which we consider a chain to inactive.
After minimizing Equation (12) we solve the first iteration again,
this time setting variables below εc to zero: In case we cannot find a
solution, we reject the candidate block. Otherwise our construction
sequence optimization picks the candidate minimizing Equation (10)
with ri = 1.

C Friction cones

Cone constraints of a conic program would be ideal to model the
friction cone. In Equation (5), with λ > 0, some variables would
then be part of multiple cone constraints, which is not allowed
in the standard conic program formulation. We therefore use the
conservative pyramidal approximation of Equation (4) for quasi-arch
extraction, but use cone constraints for friction during the sequence
optimization. The standard conic program does only allow cones
of the form of Equation (7), but the friction cone needs a scalar
coefficient sK on the variable on the left-hand side. We therefore
transform the conic program with scaled cones:

min
x
wTx s.t. bl ≤ x ≤ bu, Ax ≤ b, Cx = d,

∀K ∈ Cones : sKxK0 ≥
(∑

i

‖xKi‖
2
)1/2

where xK0 is the left-hand side variable in cone K, and xKi sum-
mands of the right-hand side, into a standard conic program with the
same minima:

min
y

(wTD)T y s.t. Dbl ≤ y ≤ Dbu,

(AD−1) y ≤ b, (CD−1) y = d,

∀K ∈ Cones : xK0 ≥
(∑

i

‖xKi‖
2
)1/2

where D is a diagonal matrix where Dii = sK if xi appears in
the left-hand side of cone K, Dii = 1 otherwise. Note that this
transformation is only meaningful if each variable only appears in
the left-hand side of cones with the same sK .

http://www.google.com/search?q=Stress+relief:+Improving+structural+strength+of+3D+printable+objects
http://www.google.com/search?q=Stress+relief:+Improving+structural+strength+of+3D+printable+objects
http://www.google.com/search?q=Cross-sectional+structural+analysis+for+3D+printing+optimization
http://www.google.com/search?q=Cross-sectional+structural+analysis+for+3D+printing+optimization
http://www.google.com/search?q=Physical+and+computational+discrete+modeling+of+masonry+vault+collapse
http://www.google.com/search?q=Physical+and+computational+discrete+modeling+of+masonry+vault+collapse
http://www.google.com/search?q=Design+of+self-supporting+surfaces
http://www.google.com/search?q=Cost-effective+printing+of+3D+objects+with+skin-frame+structures
http://www.google.com/search?q=Cost-effective+printing+of+3D+objects+with+skin-frame+structures
http://www.google.com/search?q=Experimental+construction+of+a+free-form+shell+structure+in+masonry
http://www.google.com/search?q=Experimental+construction+of+a+free-form+shell+structure+in+masonry
http://www.google.com/search?q=Procedural+modeling+of+structurally-sound+masonry+buildings
http://www.google.com/search?q=Procedural+modeling+of+structurally-sound+masonry+buildings
http://www.google.com/search?q=Structural+optimization+of+3D+masonry+buildings
http://www.google.com/search?q=Structural+optimization+of+3D+masonry+buildings
http://www.google.com/search?q=Making+burr+puzzles+from+3D+models
http://www.google.com/search?q=Equilibrium+of+cracked+masonry+domes
http://www.google.com/search?q=Equilibrium+of+cracked+masonry+domes

