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Figure 1: An input surface is automatically transformed into a masonry 3D model using our algorithm. The equilibrium of the surface is
represented by two planar graphs that encode the directions and magnitudes of all forces. The generated blocks are 3D-printed and assembled
into a physical model of the surface that stands in compression without using glue or reinforcements.

Abstract

We present a complete design pipeline that allows non-expert users
to design and analyze masonry structures without any structural
knowledge. We optimize the force layouts both geometrically and
topologically, finding a self-supported structure that is as close as
possible to a given target surface. The generated structures are
tessellated into hexagonal blocks with a pattern that prevents sliding
failure. The models can be used in physically plausible virtual
environments or 3D printed and assembled without reinforcements.
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1 Introduction

Most of the world’s architectural heritage consists of buildings in
unreinforced masonry. They are made of unsupported bricks, or
stone blocks called voussoirs, and they stand thanks to their specific
structural form and thickness. No supporting framework is needed,
since the entire structure is in a static equilibrium configuration
where all the forces are compressing the bricks. Self-supporting
structures have applications in architecture and physically plausi-
ble virtual environments [Whiting et al. 2009], and their study is
intriguing from a discrete differential geometry viewpoint [Vouga
et al. 2012].

The design of such structures is a challenging task that requires
deep structural knowledge. Optimization tools to assist the design
have been recently proposed, but they still rely on manual input.

The foundation for these methods is the Thrust Network Analysis
[Block 2009], a computational framework that allows to understand
the static equilibrium of existing masonry structures and be directly
used as a design tool [Rippmann et al. 2012]. The core idea is to
reduce the dimensionality of the problem by first finding a pair of
planar graphs that describe the horizontal equilibrium of the 3D
shape, and then optimizing only for the height. The “Safe Theorem”
states that if a system of forces that is in static equilibrium with the
loads exists, and this system is completely enclosed in the masonry
structure, then the structure will stand without the need for additional
reinforcements [Heyman 1995].

In this work, we present an algorithm that transforms an input height
field, generated with any standard modeling software, into a masonry
model consisting of hexagonal blocks. We compute a model whose
shape is close to the input surface and which is able to stand in
compression, i.e. without requiring any additional reinforcements
or “glue”. The masonry model can be used in a destructible virtual
environment, allowing physically plausible interactions with it, and
it can also be 3D-printed and assembled (Figure 1). The design
process does not require structural knowledge, since our algorithm
is automatic: the user just needs to provide an input shape, to which
our method fits a self-supporting surface.

This paper makes the following contributions:

1. We observe that the quality of the discrete force pattern is fun-
damental to the analysis of the static equilibrium (see Figure
4). We propose a small set of structurally-informed heuristics
to estimate the force flow in a masonry structure based on its
geometry, and apply these heuristics to guide a field-aligned
remeshing [Bommes et al. 2009] to generate high-quality force
patterns. Our method handles structures with unsupported
edges, sharp creases and anticlastic (negative Gaussian curva-
ture) sections.

2. We derive a bottom-up approach to generate a best-fitting self-
supporting surface that is as close as possible to an input target
shape. We iteratively deform an automatically generated self-
supporting surface to approximate the target. Thanks to the
bottom-up approach, our optimization is robust and fast.

3. We partition the self-supporting surface into blocks that are
directly suitable for physical simulation and realization via 3D
printing. The tessellation into blocks is anisotropic, aligned
with the force flow and has a staggered, hexagonal pattern to
avoid sliding failures.
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We demonstrate several results of fitting a self-supporting masonry
model to challenging freeform shapes with unsupported boundaries.
We validate our algorithm by 3D-printing and assembling two mod-
els; their construction and destruction sequences are shown in the
accompanying video.

2 Related work

Equilibrium analysis of masonry. Unreinforced masonry struc-
tures generally fail not due to lack of compressive strength, but due to
instability [Heyman 1995]. Understanding the equilibrium of struc-
tures in masonry is thus of primary concern. Heyman introduced
the limit analysis framework to unreinforced masonry structures.
For spatial structures, thrust network analysis can be used to assess
the stability of masonry [O’Dwyer 1999; Block 2009; Fraternali
2010]. In computer graphics, an alternative equilibrium approach to
masonry based on rigid body mechanics was proposed by [Whiting
et al. 2009; Whiting et al. 2012]. The most relevant work for our
approach is [Vouga et al. 2012]; we discuss and contrast it with ours
in Section 5.3.

Flow of forces. An important issue of the discretized networks is
the choice of their topology, as it is clear that the equilibrium solu-
tions heavily depend on it [O’Dwyer 1999; Kilian and Ochsendorf
2005]. For masonry, there has been extensive debate about the struc-
tural behavior of masonry vaults (see [Block and Lachauer 2012] for
an overview). For the best assessment of the stability of the struc-
ture, the chosen connectivity should represent the “flow of forces”
in it. Many scholars have assumed that the vault forces flow to the
supports in the same manner as water would drain off the vault’s
upper surface, i.e. following lines of steepest descent [Borgart 2005].
However, this assumption does not explain the equilibrium of vaults
with unsupported boundary edges, because such edges cannot trans-
fer thrust, while a curvature analysis of the vaults geometry could
result in thrusts hitting these edges. Nonetheless, this approach is
popular in state-of-the-art architectural practice, e.g. to produce ribs
patterns for shells [Bhooshan and El Sayed 2011], because it is
easy to implement, and no alternative exists. In this work, we use
a few structural heuristics to estimate the flow of forces in an input
geometry, which specifically address unsupported edges.

Heyman [1995] explains that Gothic vaults act as thin shells with
stress concentrations along creases, as there is a direct relation be-
tween curvature and membrane stresses in shells [Calladine 1983].
But, shell equations are very hard to solve in the general case, and
become infeasible to solve for e.g. discontinuities in boundary con-
ditions. This was addressed for the specific case of vaults under
vertical loading and supported only at their corners by [Williams
1990]. Others have used linear elastic analysis on flat plates for
given boundary conditions to produce force patterns from the prin-
ciple stress directions [Borgart 2005], or photo-elastic analysis of
3D plastic models [Mark 1982]. The issue with these approaches is
that they count on tensile capacity, which significantly influences
the resulting force equilibria, and can thus not serve to postulate
good force patterns for masonry shells that act in compression only.
By contrast, our algorithm relies solely on the structurally-informed
geometric analysis of the shape to generate self-supporting surfaces.

Architectural geometry. The topic of architectural geometry is
receiving increasing attention in computer graphics and geometry
processing. For example, several works consider rationalization of
freeform surfaces via PQ meshes (see e.g. [Liu et al. 2006; Bouaziz
et al. 2012]); a special type of statics-sensitive PQ meshes is dis-
cussed in [Schiftner and Balzer 2010; Vouga et al. 2012]. Ratio-
nalization via reducing the number of uniquely-shaped tessellation
blocks was presented in [Eigensatz et al. 2010; Fu et al. 2010; Singh
and Schaefer 2010]. While rationalization is outside the scope of

Figure 2: Each face of the planar form diagram Γ is a vertex of the
reciprocal Γ∗ (marked in the same color in the illustration). Each
edge of Γ has a corresponding, parallel edge in Γ∗ (depicted in the
same color). An additional vertex (bottom right) is added to Γ∗ for
every chain of open edges in Γ.

this paper, the above approaches can be potentially used in combi-
nation with our method to create self-supporting models that are
cost-effective to produce in practice. A self-supporting structure can
also be constructed using folding elements instead of unreinforced
masonry [Zimmer et al. 2012].

3 Preliminaries and notation

The input to our algorithm is a target surface, described by a height
functionH = H(x, y) defined over some planar domain Ω ⊂ R2,
and a set of supported points B ⊂ Ω. We assume that gravity is in
the negative z direction, and we wish to find a masonry structure
whose shape is as close as possible toH and which stands under its
own weight. The target shapeH can be a piecewise linear surface
(a mesh) or a freeform surface, designed with any CAD modeling
software. We assume that the structure will be attached to the
ground surface or a pillar at every supported point. Our goal is (i) to
compute a (discrete) surface S whose shape is as close as possible
to H, and which stands in compression while being supported at
the specified locations (x, y,H(x, y)), (x, y) ∈ B; (ii) create a
tessellation (remeshing) of S, such that all the facets can be turned
into bricks with which the masonry structure can be physically
realized or simulated in a virtual environment.

Thrust Network Analysis. In order for a surface to stand in
compression, all its unsupported vertices must be in static equi-
librium with the applied loading. We use Thrust Network Analysis
(TNA) [Block 2009] to characterize the equilibrium conditions and
we derive a computational technique to find a self-supporting surface
that closely fits the inputH. We briefly review the basic notions of
TNA here for completeness.

The continuous system of forces inside a masonry structure is dis-
cretized by a graph S = {V, E ,F}, whose vertices are embedded
inR3 and whose edges represent directions of compression forces
acting on the vertices. If it is possible to find a positive magnitude
for all the compression forces such that the resultant acting on every
vertex (together with the load) vanishes, then S represents a state of
static equilibrium. If S fits inside the masonry shell, the Safe Theo-
rem guarantees the stability of the shell for the given loading case,
although the actual force distribution might end up being different
than the one represented by S. For further discussion, see [Heyman
1995; Block 2009; Vouga et al. 2012].

The loads due to gravity are discretized as vertical forces acting on
every vertex vi, corresponding to the weight of the material in the
Voronoi cell of vi. Assuming a uniform thickness of the masonry



structure (thickness being measured in the surface normal direction),
the loads are pi = (0, 0,−ρAi), where Ai is the Voronoi area on
the surface, and ρ is the density of the material multiplied by the
uniform thickness value.

Denote by VB the set of supported vertices, that is, all vertices
vi = (xi, yi, zi) such that (xi, yi) ∈ B; for these vertices we
fix zi = H(xi, yi). Denote by VU = V \ VB the unsupported
vertices. In general, we use subscripts B, U to refer to supported and
unsupported entities (vertices, edges, etc.), respectively. We call an
edge supported if both its vertices are in VB, and we call edges with
at least one vertex in VU unsupported. Unsupported boundary edges
are also termed open edges.

S is self-supporting if the forces cancel out at every unsupported
vertex and all the forces are in compression. Formally, the following
equilibrium equations must be satisfied for each i ∈ VU :∑

j∈Ni

wij(vj − vi) = pi (1)

wij ≥ 0 (2)

whereNi is the set of neighbors of vertex i and wij is a symmetric
weight (wij = wji) that scales the magnitude of the forces associ-
ated with every edge. Equation (2) indicates that all forces are in
compression.

In TNA, instead of directly enforcing the entire system of equations
above, the problem is factored into horizontal and vertical equilibri-
ums, making it simpler to solve and providing a reciprocal diagram,
that is a graphical representation of the static equilibrium.

Form and reciprocal diagrams. Consider first the horizontal
equilibrium of S. Let Γ be the projection of S onto the horizon-
tal plane. Denote Γ’s edge vectors by eij = (xj − xi, yj − yi, 0),
where (i, j) ∈ EU (we do not include any supported edges in Γ).
Then from Equation (1) we have:

∀i ∈ VU ,
∑
j∈Ni

wijeij = 0, wij ≥ 0. (3)

This equation states that the vectors wijeij form a convex, closed
loop, if laid out as a consecutive chain in the plane. This implies
that if Equation (3) is satisfied for every unsupported vertex, then a
reciprocal planar graph Γ∗ exists. Γ∗ has the combinatorics of the
dual graph of Γ: it has a vertex corresponding to every face of Γ, and
it has an edge e∗ corresponding to every (unsupported) edge e of Γ.
For every pair of incident faces in Γ, there is an edge between the
corresponding vertices in Γ∗. Additionally, for every consecutive
chain of open edges in Γ, Γ∗ has a corresponding vertex, to which
all the corresponding dual edges are connected. Refer to Figure 2
for an illustration.

Equation (3) implies that Γ∗ has a valid planar embedding, such
that for each edge e∗ = wije. And conversely:

Lemma 1. If two planar graphs Γ and Γ∗ (with connectivity cor-
respondence as described above) exist, such that every edge e ∈ Γ
is parallel to the corresponding edge e∗ ∈ Γ∗, then Equation (3) is
satisfied with wij = ‖e∗ij‖/‖eij‖.

From now on, we will call Γ the form diagram, Γ∗ the reciprocal
diagram, and wij the force densities.

Vertical equilibrium. A form diagram Γ and its reciprocal Γ∗

characterize a self-supporting surface which can be computed by

solving the vertical equilibrium in Equation (1):

∀i ∈ VU ,
∑
j∈Ni

‖e∗ij‖
‖eij‖

(zj − zi) = −ρAi (4)

s.t. ∀i ∈ VB, zi = H(xi, yi), (5)

where zi are the z-coordinates of the vertices of S. Note that by
uniformly scaling the reciprocal diagram, or equivalently, scaling the
force densities wij , we generate an infinite family of self-supporting
surfaces (see Figure 3).

Equilibrium equations in matrix form. To simplify the nota-
tion, we represent Γ by a pair of matrices V and C. The matrix
V = [x y] is a |V|×2 matrix, containing the coordinates of Γ’s i-th
vertex in the i-th row. The matrix C is a |EU | × |V| matrix encoding
the connectivity of Γ such that CV is the matrix of Γ’s edge vectors
as rows. The e-th row represents the e-th edge of Γ:

Ce,k =

 1 e ∈ EU , e = (i, j), k = i,
−1 e ∈ EU , e = (i, j), k = j,

0 otherwise
(6)

Note that we assign arbitrary directions to Γ’s edges, such that each
(i, j) ∈ EU is an ordered pair (refer to Figure 2). We just need to
take care that the reciprocal edges in Γ∗ are ordered consistently
with this assignment. We assign an orientation to each edge e∗ of Γ∗

as follows: if its corresponding edge (i, j) ∈ Γ is incident on faces
f1 and f2, and w.l.o.g. the planar orientation on f1 is such that a
positive cyclic walk along f1’s faces runs in the same direction as the
ordering (i, j), then e∗ will have the ordering (f1, f2); otherwise it
will be (f2, f1) (see Figure 2).

With this notation at hand, we can compactly express the equilibrium
equations (1):

CT
VUDwC [x y z] = [0 0 p] (7)

s.t. zB = HB,

where Dw is a diagonal matrix with the force densities wij in
the same order as the edges appear in C, CVU is the matrix C
where all the columns corresponding to the supported vertices VB
were removed, and p is a column vector with the stacked vertical
components of the loads pi.

3.1 Overview

We use the elements of TNA described above, namely the represen-
tation of the horizontal equilibrium with the form and reciprocal
diagrams, and the vertical equilibrium equations, to guide the opti-
mization of a self-supporting surface to fit a given shape. Our only
requirement on the input shapeH is that it must be a height field. Our
approach is divided into three consecutive steps. First, in Section 4,
we introduce a set of structural heuristics to estimate the flow of
forces on the target surface. Using this estimated flow, we generate a
structurally informed form diagram Γ by employing a field-aligned

Figure 3: Different surfaces generated using a fixed Γ and a uni-
formly scaled Γ∗ (scaling values 2, 1, 0.5, and 0.02, left to right).



Supported boundary

(a) (b) (c) (d)

Figure 4: A non-optimized form diagram (b) cannot describe the equilibrium of the features of this simple shape (a). Our algorithm computes
a least-squares solution, removing most of the features (c). The method of [Vouga et al. 2012] does not change the parts of the surface
that are locally in equilibrium (the bumps are partially visible on the right), but it introduces an additional feature to make the structure
self-supporting (d). In Figure 6, an optimized pattern is used for the same target shape. The Hausdorff distance between the input surface and
the computed self-supporting shape is 0.042 for our fit and 0.150 for [Vouga et al. 2012]’s (normalized w.r.t. the bounding box diagonal).

remeshing technique. This step determines the connectivity of Γ
and provides a good initial guess of its geometry. In the second step
(Section 5), we synchronously optimize the geometry of Γ and Γ∗

to generate a self-supporting surface that is as close as possible to
the input shapeH. Finally, in Section 6, we describe a structurally
informed algorithm to tessellate the generated self-supporting sur-
face S into hexagonal blocks, such that the compression forces and
the friction between the blocks would prevent sliding failure. The
extruded blocks can then be put together and the structure stands
without using any “glue” between the blocks.

4 Field-Aligned Form Diagram Optimization

The form diagram Γ is a discretization of the force flow of the
surface, where forces are aligned with the edges and act on the
vertices of Γ. The geometry and connectivity of Γ play a crucial role
in the generation of a self-supporting structure. Γ has been manually
generated for each model in previous works [Block 2009; Vouga
et al. 2012].

Interestingly, increasing the resolution of the form diagram does not
directly improve the quality of the discretization; the most important
aspect of the form diagram is that its edges represent the directions
of the forces acting on a vertex, and thus a good discretization should
represent as many directions as possible. This is however impossible
for triangle or quad meshes, independently of the density, since the
the average valence of the vertices is 6 and 4, respectively. Optimiz-
ing the directions of the edges is thus fundamental to generate good
discretizations that will lead to high quality best-fitting surfaces. A
randomly oriented pattern arbitrary limits the directions of the forces,
restricting the expressiveness of the equilibrium model to specific
shapes (predominantly with positive Gaussian curvature), as shown
in Figure 4.

We propose the first automatic, structurally informed approach to
generate the connectivity and geometry of the form diagram by com-
bining a set of structural heuristics with a field-aligned remeshing
algorithm [Ray et al. 2008; Bommes et al. 2009]. While we fix the
connectivity for the remaining steps of our automatic pipeline, the
automatically-generated Γ could also be used as a starting point
for existing form-finding tools [Rippmann et al. 2012], where users
manually design the form diagram.

4.1 Heuristics for force flow estimation

We analyze the input geometry H to extract features that require
a specific flow of forces to be represented. We observed expert
designers use the form finding tool RhinoVault [Rippmann et al.
2012], and with their help we discovered three important rules that
are followed to generate good form diagrams. Generally, the form-
finding process requires a lot of experience, and the designers cannot

always describe why some specific choices are made; however, we
found that our three heuristics are sufficient for a wide range of
interesting shapes, as shown in Figures 1, 2, 4, 6, 7, 9, 13-15.

(1) Open Edges are unsupported parts of the boundary of the sur-
face; they require special treatment in the form diagram, since the
load associated with a vertex on an open edge must be redirected
onto the open edge itself, or into the interior of the surface. While
for a supported boundary vertex the direction of the incoming forces
is irrelevant, for a vertex on an open edge it should be parallel to the
direction of the open edge, to allow forces to flow to the support.

(2) Anticlastic Parts are hard to realize in a self-supporting surface
because the forces coming from the direction of maximal curvature
can only be compensated by bigger forces approximately parallel
to the orthogonal direction (see Figure 5). The transition between
these regions and the rest of the surface should be smooth, to allow
the force to flow until a supporting vertex is reached. An example of
an anticlastic part and an appropriate force pattern for it is shown
in Figure 6. Note that sections with positive Gaussian curvature do
not require any special treatment since all the incident forces can be
used to compensate for the weight (Figure 5).

Figure 5: In anticlastic regions (left), a wrong alignment of the
force pattern does not allow to represent the equilibrium of a vertex
(red), since all directions of the force flow are pointing downward.
This does not happen if the Gaussian curvature is positive (right).

(3) Sharp Features can appear in self-supporting surfaces (cf.
gothic masonry), and they require a chain of edges covering the
entire feature in the form diagram in order to properly represent it.

In Figure 6, we show a didactic example where all the heuristics are
used to generate the form diagram and the corresponding best-fit
surface computed with the algorithm presented in Section 5.

4.2 Cross Field Generation and Quadrangulation

We transform the heuristics above into directional constraints for
the generation of a smooth cross field on Ω. The cross field will
then guide a remeshing algorithm to generate an initial guess for Γ
(both connectivity and geometry). We take this approach because
our directional constraints can be naturally represented by a 4-RoSy
(cross) field.



We start by densely meshing Ω with a constrained Delaunay triangle
meshM (we use the Triangle software [Shewchuk 1996] and ask
for at least 10K samples). We then use the Mixed-Integer Quadran-
gulation algorithm (MIQ) [Bommes et al. 2009] to compute a cross
field onM according to our three heuristics, and convert it into a
quad mesh.

MIQ computes the cross field by minimizing an energy that asks for
a smooth field. A discrete cross field is represented in each triangle
ti ∈ M by an angle θi with respect to a local frame [Ray et al.
2008]. Smoothness of the field means that the fields of each pair
of adjacent triangles ti, tj should not be too different. However,
we cannot just measure the difference |θi − θj | because this angle
representation is ambiguous: the angle in every triangle is unique
only up to a rotation by multiples of 2π/4, and also the local frames
of different triangles might be different. Denote by κij the (fixed)
rotation angle between the local frames of ti and tj , and let pij
be an integer variable, called the period jump. Now the field in
triangle ti can be expressed relatively to a neighboring triangle tj
as θi + κij + 2πpij/4.

We minimize the following specific variant of the cross field energy,
proposed by [Panozzo et al. 2012], where directional constraints can
be soft or hard:

Efield(θ, p) = (1− α)
∑

(i,j)∈M

(θi + κij +
2π

4
pij − θj)2+ (8)

+ α
∑

ti∈Tsoft

ωi(θi − θ̄i)2, [soft constraints] (9)

s.t. ∀tk ∈ Thard, θk = θ̄k. [hard constraints] (10)

Here, Tsoft and Thard denote the sets of triangles where the field
is soft- and hard-constrained, respectively, and α, ωi control the
strength of the soft constraints. This is a mixed-integer problem,
since the θi’s are real and the pij’s are integer. We employ the
greedy mixed integer solver of [Bommes et al. 2009]. To make the
minimizer unique, the variables pij should be fixed at a subset of
edges [Bommes et al. 2009].

Our heuristics (Section 4.1) are translated into constraints as follows:

1. Open edges are hard constraints that align the field with the
boundary edges. Hence all triangles ti that have a bound-
ary edge are added to Thard, with the constraint θ̄i being the
direction of the boundary edge.

2. Triangles in anticlastic parts are added to Tsoft, and the field is
soft-constrained to align to the direction of minimal curvature
there. The curvature directions are computed with [Cazals and
Pouget 2003].

3. The field in triangles containing a sharp feature is hard-
constrained to align with the feature. We detect features with a
fixed threshold of 10 degrees on the dihedral angle, but a more
advanced method like [Hildebrandt et al. 2005] could be used.

Note that for our purposes, we could also use the field formulation
of Crane et al. [2010], but we prefer that of Ray et al. [2008], as it
allows to impose our directional constraints in a more natural way.
In the experiments showed in this paper, we used α = 0.5 and a
fixed value ωi = 0.05 for the soft constraints.

Once the field is computed, we follow MIQ [Bommes et al. 2009]
to generate a mesh that is as aligned as possible with the cross
field. The resolution of the mesh is controlled by the minimal edge
length parameter h. We adjust h to obtain meshes with around 500
vertices. MIQ might introduce polygonal faces around singularities
of the field if the resolution is too coarse, but this is not a problem
for our application, since we need to generate a planar graph, not

Open 

Edge

Creases

Anticlastic
Target


Surface

Initial

form 

diagram

Optimized

form 

diagram

Optimized

reciprocal 
diagram

No heuristics Open edges only All heuristics

Supported Edges

Figure 6: We demonstrate the effect of our heuristics. We compute
the best-fit models (bottom row), starting from the yellow height field
H. We use no heuristics on the left column, we add the constraints
on the open edges in the middle and all of them on the right. We
show the generated form diagram in the second row, the optimized
form and reciprocal diagrams after the best-fit optimization in the
third and fourth row. The color represents the normalized magnitude
of the force densities, i.e., the ratio of the lengths of the edges of the
reciprocal and form diagrams.

necessarily a pure quad mesh. In the remeshing phase of MIQ, we
force edge chains to snap to open edges and sharp features; in the
end we (combinatorially) remove all the supported edges since they
should not belong to Γ, as explained in Section 3.

The process above provides us with the initial guess for the form
diagram, which we term Γ+. Its computed connectivity will be fixed
for the remainder of our algorithm, inducing corresponding connec-
tivity on the reciprocal graph Γ∗. In what follows, we optimize the
geometry of the form and reciprocal diagrams in order to create a
self-supporting surface that fits the input geometryH well.

5 Fitting self-supporting surfaces

The force diagram Γ alone is not sufficient to describe the equilib-
rium state of a self-supporting surface, since it only describes the
direction of the forces but not their magnitude, and moreover, a Γ
resulting from the previous section may not have a planar reciprocal
Γ∗. We now describe an algorithm to optimize the geometry of
Γ and generate a reciprocal diagram Γ∗, such that the unique self-
supporting surface associated with Γ and Γ∗ is close, in the least
squares sense, to the input geometryH. The ”best-fit” algorithm is
divided into two steps:

1. Generate an initial pair of diagrams (Γ, Γ∗) such that Γ∗ is
the reciprocal of Γ (Section 5.1)

2. Find a best-fitting self-supporting mesh S by iteratively and
jointly optimizing Γ and Γ∗ (Section 5.2).



5.1 Initial least-squares diagrams

From Lemma 1 we know that a self-supporting surface is uniquely
defined by a pair of reciprocal graphs Γ and Γ∗. We already have
an initial guess Γ+ for the form diagram resulting from the field-
aligned remeshing. We use a geometric construction inspired by
[Rippmann et al. 2012], that we call least-square diagrams, to find a
pair of reciprocal graphs (Γ, Γ∗) such that Γ is close to our initial
Γ+. The procedure iteratively deforms a pair of planar graphs to
make their edges as parallel as possible, in a least squares sense.

The (combinatorial) connectivity of Γ∗ is constructed from the con-
nectivity of Γ+ according to the definition in Section 3. We initialize
Γ∗’s vertex positions as the barycenters of the faces of Γ+; we rotate
Γ∗ by π/2 and then iteratively average the corresponding edges of Γ
and Γ∗ until they become parallel. Specifically, in each iteration we
compute a weighted average direction ti of each pair of reciprocal
edges:

t̃i = (1− β)
ei

‖ei‖
+ β

e∗i
‖e∗i ‖

; ti = t̃i/‖t̃i‖ . (11)

We then use the ti’s to compute new diagrams Γ,Γ∗ whose edges are
aligned with ti as much as possible. The weight β allows to control
the deformation of the form diagram; we used β = 0.01 for all the
experiments in our paper, since we want to preserve resemblance to
the already optimized Γ+. After computing the averaged directions,
Γ is deformed by the following linear optimization:

V = argmin
V

∑
i

‖ei − liti‖2 (12)

s.t. v1 = 0, (13)

where li are the edge lengths of Γ in the previous iteration. The
deformation for Γ∗ is computed equivalently. The constraint (13)
is set to eliminate the translational degree of freedom of the energy
(12). We then repeat the averaging and the subsequent deformation
iteratively until the angles between the edges of Γ and Γ∗ become
smaller than a tolerance ε, which we set at 0.01 degrees in our
experiments. The effect of this procedure is shown in Figure 7,
where we compute the initial (Γ,Γ∗).

The generated pair of reciprocal graphs can be used to extract a
self-supporting surface using Equation 4. Rewritten in matrix form
(7), it reduces to solving the following system:

CT
VUDwCz = p (14)
s.t. zB = HB

where Dw is the diagonal matrix with the force densities, computed
as ratios between the edge lengths of Γ∗ and Γ (see Lemma 1).

As discussed in Section 3, by scaling the reciprocal diagram we
generate a family of self-supporting surfaces; we can thus pick the
surface that is the closest, in the least squares sense, to the target
geometryH. The solution is unique, and can be computed by solving
the following quadratic program:

argmin
z,r

‖z− h‖2 (15)

s.t. CT
VUDwCz− rp = 0, (16)

zB = HB, r > 0, (17)

where h is a vector containing the target heightH(xi, yi) for vertex i
of Γ, and r is the scaling factor for the force densities. Note that
the equilibrium constraint (16) is linear in z and r. After solving
Equation (15), we update the vertex coordinates of the reciprocal
diagram Γ∗ by scaling all of its vertices by 1/r.

Form diagram Initialization Target surface

Self supporting modelReciprocal diagram

Figure 7: From top to bottom: the initial diagrams, the same dia-
grams optimized to be reciprocal pairs, and the diagrams after the
best-fit optimization. On the right, we show the target (top) and the
self-supporting surfaces generated from the diagrams on the left.

5.2 Best-fit gradient descent

The iterative averaging process in Section 5.1 did not take into
account the target geometryH when producing (Γ,Γ∗), it was only
concerned with computing a Γ∗ that is indeed a reciprocal of Γ.
Although the subsequent optimization of the scaling factor r brings
us closer to fitting the target shape, the self-supporting mesh we
computed can be still quite far fromH (Figure 7). We now deform
the pair of diagrams to achieve a better fit.

We measure the distance to the target shapeH using the same objec-
tive as in Equation (15), but this time we optimize by varying the
positions of the vertices of Γ and Γ∗, V and V∗, while constraining
them to remain a reciprocal pair. Since they are a reciprocal pair, the
geometry of Γ and Γ∗ can be parameterized by the force densities w:
V = V(w), V∗ = V∗(w). Equation (14) enables us to express
the z-coordinates of the self-supporting surface as a function of w
as well (see the Appendix). Hence our objective becomes

f(w) = ‖z(w)−H (V(w))‖2 (18)

and the optimization of w is formulated as

min f(w) s.t. Γ∗(w) is the reciprocal of Γ(w). (19)

Our strategy to minimize (19) is to perform gradient descent steps,
and enforce the reciprocity constraint in each iteration. Similarly to
[Vouga et al. 2012], we assume the loads p are fixed for one opti-
mization step, as well as the target height values s := H (V(w)).

The gradient descent step (t+ 1) updates the current force densities:

w(t+1) = w(t) − λ∇f(w(t)). (20)

λ is selected with a backtracking line search algorithm, and
∇f(w(t)) can be derived analytically, as shown in the Appendix.

After obtaining the updated force densities w(t+1), we deform Γ∗

and Γ so that the ratios between their respective edge lengths are
the w(t+1)’s and they stay reciprocal. To do this, the positions of
the vertices of Γ and Γ∗ are updated using the same least-squares
diagram algorithm presented in Section 5.1, with the only difference
that instead of trying to preserve the original edge lengths ‖e‖, ‖e∗‖,



we want to have the ratio ‖e∗ij‖ = w
(t+1)
ij ‖eij‖. These slightly

different iteration formulas are given in the Appendix.

Similarly to [Vouga et al. 2012], we are not guaranteed to decrease
the best-fit energy at every step, since the energy might increase
when we enforce the reciprocal constraints. However, in our experi-
ments the algorithm always converges to a local minimum, which of
course might not be the global optimum (Figure 9). To speed up the
gradient descent, we do not run the least-squares diagrams algorithm
until (Γ,Γ∗) are perfectly reciprocal: a single iteration is sufficient
to approximately enforce the constraints, and we iterate until they
are precisely reciprocal only after the last step of gradient descent.

5.3 Discussion

Our best-fit approach generates a sequence of self-supporting sur-
faces that approximate the input shapeH. This is different from the
previous method of [Vouga et al. 2012], which starts from the target
shapeH and gradually deforms it into a self-supporting surface. The
energy minimized by the two methods is also different: [Vouga et al.
2012] minimizes the residuals of Equation (1), using penalty terms
in order to stay close to H. In contrast, we minimize directly the
squared difference betweenH and the generated surface. The fit is
thus different, as shown in the extreme example of Figure 4. The
use of a non-optimal pattern clearly shows that our method is more
global, but loses local features like the shape of the bumps, while
[Vouga et al. 2012] is local, but must introduce additional features
to make the structure self-supporting. The two algorithms perform
similarly on the example in Figure 1, producing two indistinguish-
able fits with a Hausdorff distance of 0.008 to the input height field
(ours) and 0.003 ([Vouga et al. 2012]).

Similarly to [Vouga et al. 2012], we are also not guaranteed to find
the global best-fitting solution, due to the nonlinear nature of the
problem and the dependence on the connectivity of Γ, which in our
case is obtained using structural heuristics. In fact, both algorithms
may get stuck in a local minimum or fail to converge if the force
patterns are not sufficiently supported. In Figure 8, we show that our
method is quite robust to bad input surfaces, and works even if they
are far from being self-supporting, while on the same example the
method of [Vouga et al. 2012] does not converge. On the other hand,
in Figure 9, our method finds a local minimum that is not as good
as the one found by [Vouga et al. 2012]. The difference could also
be a consequence of the different discretization of the loads: we use
the Voronoi areas on the surface, whereas [Vouga et al. 2012] uses
the Voronoi areas in the horizontal projection. In flat regions they
nearly coincide, but on steep regions (like the borders of Figure 9)
the projected approximation is less accurate.

In the method of Vouga et al. [2012], the scaling of the forces (called
ρ in their paper), that in theory should not affect the shape of the
final best-fitting surface, actually does change the computed surface,
since it scales only the vertical part of the equilibrium equation
(Equation (7) of [Vouga et al. 2012]) and of the corresponding energy,
changing the minimum. An improper choice of this weighting term

Figure 8: Our method can find a self-supporting surface (right)
even if the input heighfield is far from being self-supporting (left).

Figure 9: Our method is not guaranteed to find the global minimum;
in this example the self-supporting surface we compute (top right), is
not as close to the input height field (top left) as the result in [Vouga
et al. 2012]. The Hausdorff distance (normalized w.r.t. the bounding
box diagonal) is 0.071 for our fit and 0.059 for [Vouga et al. 2012]’s.

may cause the algorithm to diverge. In our method, this parameter
(r) is actually a variable that participates in the best-fit: we optimize
it in Equation (15).

To summarize, both methods have their advantages and disadvan-
tages. We suggest to use our method if a least-squares fitting is
desired, and use [Vouga et al. 2012] if it is important to preserve
the parts of the input shape that are locally self-supporting, at the
price of potentially introducing additional features in the non-self-
supporting parts ofH. Combining the two methods by deforming
the target surface using our least-squares diagrams to impose the
horizontal equilibrium is an interesting venue for future work.

6 Optimization of the block pattern

A self-supporting model can be constructed by extruding the self-
supporting mesh computed in Section 5 equally in the positive and
negative vertex normal directions, and then remeshing it into blocks.
The structure will stand without any support other than the defined
one, provided that there is sufficient friction between the blocks. The
force pattern optimized in Sections 4-5 is the optimal explanation of
the equilibrium for the model, since we generate the model by ex-
truding it: the form diagram is exactly in the middle by construction,
and it is the safest equilibrium description, since a structure with
this specific shape and an infinitesimally small thickness will stand.
As this shape is the direct result of the chosen combination of form-
and reciprocal diagrams, we thus align our blocks to the resulting
force pattern to avoid sliding failure [Rippmann and Block 2013].

The most obvious tessellation can be computed by projecting the
form diagram onto the self-supporting surface, obtaining a quad
mesh tessellation aligned with the flow of forces. However, this
choice is not optimal, since chains of consecutive quads (a quad strip
between two edge loops) can freely slide and fall off, as shown in
Figure 10. To prevent this problem, masonry structures are usually
built using staggered patterns [Rippmann and Block 2013]. We
generate such patterns using a greedy algorithm that converts an
existing quad mesh into an hexagon-dominant tessellation. Each
hexagon is then transformed into a block by extruding its vertices
both in the positive and negative vertex normal directions, and the
generated non-planar faces are arbitrarily triangulated.



Figure 10: A staggered block pattern (right) prevents the formation
of chains of blocks that can easily slide off the surface.

Initial quad mesh. To keep the resolution of the block tessellation
decoupled from the resolution of the form diagram, we perform
an additional remeshing step: the best-fit surface S, computed in
Section 5, is uniformly triangulated and then remeshed into a quad
mesh Q = {VQ, EQ,FQ}, employing the same heuristics used to
generate the force diagram in Section 4.

Staggered pattern. A regular grid can be transformed into an
hexagonal, staggered pattern by removing “every second edge”. In
Figure 11, we apply this procedure to a regular grid, and as can be
seen, the generated pattern has an orientation, i.e., all the edges that
we removed are parallel. A different tessellation could be obtained
by rotating this image by 90 degrees, i.e., by removing horizontal
instead of vertical edges. The orientation of the pattern is important
in order to remove all the chains of quads that can slide off from
open edges (Figure 10). In the regions that are far from the open
edges, the orientation of the pattern is not important, but we would
like it to change smoothly over the surface for aesthetics reasons.

Figure 11: A quad mesh (left) is transformed in a block pattern made
of hexagonal pieces (middle) by removing the edges that correspond
to the yellow nodes in the dual graph (right).

A regular staggered pattern can be constructed only starting from
a quad mesh that does not contain singularities, and since it is
usually not the case for complex shapes, we must robustly introduce
variations in the pattern to handle the singularities. The orientation
of the block pattern is computed as a smooth 2-RoSy field F on the
self-supporting surface S . The orientation is used to decide whether
an edge is “horizontal” or “vertical”: only the vertical edges will
be candidates for removal (Figure 11). We constrain the field to be
parallel to open edges, obtaining a correct alignment of the pattern
on them and smoothly varying it everywhere else. We denote by
s(e) the alignment score of an edge e ∈ EQ, computed as:

s(e) = ‖eTF(e)‖ (21)

where F(e) is the direction of the 2-RoSy field on the barycenter
of the edge e. A subset of the edges of Q is removed to create
the block pattern; we select the edges to remove by solving a 2-
coloring problem on a graph G = {VG , EG}, where VG = EQ. EG
contains an edge for every face f ∈ FQ that connects the two
edges of f with lower alignment score s (these are the blue edges in
Figure 11). Similarly, EG contains an edge for every vertex v ∈ VQ,
that connects the two edges incident on v with lower alignment score
s (red edges). After the 2-coloring problem is solved, all edges of

the first color are removed. To solve the 2-coloring problem, we start
from a random vertex and we propagate the color to the neighbors
with a breadth-first search.

7 Results

We ran our experiments on an Intel i7 quad-core processor clocked
at 3.4 GHz. Our implementation is written in MATLAB, with the
exception of the field generation and quadrangulation algorithms,
which have been implemented in C++.

For all the examples in the paper, the user input is a surface designed
with Rhino and a set of supporting vertices B. We show statistics
for our examples in Table 1.

We 3D-printed and constructed two models: a freeform staircase
inspired by the famous Guastavino’s stairs (Figure 12) and a freeform
vault (Figure 1). The blocks have been 3D-printed using a Z Corp
ZPrinter 650 with a fixed thickness of 8 mm. In addition to the
blocks, a wooden base has been manually designed and laser-cut to
hold the supported blocks in place. The construction of the models
also requires formwork to hold the pieces until they are all placed.
The formwork has been milled and cut up into pieces, so that it can be
taken out at the end of the assembly (Figure 13). The accompanying
video shows the construction of the model. Interestingly, since
masonry is a problem of stability rather than stresses [Heyman
1995], it is independent of scale. As a result, scaled block models can
actually be used as structural models [Zessin et al. 2010; Van Mele
et al. 2012].

Guastavino’s stairs. In Figure 12 we show two unreinforced
shapes inspired by Guastavino’s stairs. On the top, we used straight
open edges and a more geometrical design, while in the bottom
the same idea is realized with smooth edges and supports. Our
method automatically finds best-fit surfaces that are very close to the
sketches, with the exception of the top part that needs to be modified
to make the structure self-supporting. The fits computed for both
surfaces suggest that both are self-supporting, but by looking at the
form and reciprocal diagrams, we can get an insight on the stability
of the model (the magnitudes of the forces are pseudo-colored on a
logarithmic scale, dark red indicates large magnitude). We clearly
see that the structure in the top, while self-supporting, will not be
stable when 3D-printed. The reciprocal diagram of the top result,
when drawn to scale, is approximately 2 times larger than the one
for the bottom result; this means that the forces are overall much

Model |EU | TΓ+ Tbestfit Ttess #B Err. dH

Teaser 1436 6.8 24.0 10.9 248 1.2 ·10−06 0.01
Stairs (t) 518 2.6 10.1 5.0 131 5.6 ·10−06 0.05
Stairs (b) 871 2.9 13.4 5.7 148 1.4 ·10−08 0.04
Bumps 418 6.3 14.3 7.3 49 1.1 ·10−04 0.02
Tristar 444 3.1 17.0 11.6 358 1.3 ·10−09 0.02
Db. torus 1151 3.6 25 11.9 334 4.7 ·10−10 0.03
Spiral 249 3.1 6.3 8.7 222 5.8 ·10−12 0.01
Jerónimos 1004 6.8 20.3 69.2 1164 5.6 ·10−04 0.02

Table 1: Statistics for our experiments. From left to right: the
number of edges in Γ; the optimization time (in seconds) to generate
the initial guess Γ+ (Sec. 4), best-fit (Sec. 5), tessellation (Sec. 6);
the number of blocks; the maximum relative error (measured as
the maximal per-vertex residual in Equation (1), normalized by
the Voronoi area); the Hausdorff distance (normalized w.r.t. the
bounding box diagonal) between our best-fit solution and the user-
provided height field.



Supported

Figure 12: Two designs inspired by the Guastavino’s stairs. On the top, the sharp edges of the input model generate a surface with an uneven
force distribution. A smoother design allows forces to be evenly distributed, as can be seen from the form and reciprocal diagrams. [Copyright
photograph: Guastavino/Collins Collection, Avery Architectural and Fine Arts Library, Columbia University].

Figure 13: We use a milled formwork to assemble the model. When
all the pieces are in place, the model becomes self-supporting, and
the formwork can be removed. Additional loading lead to collapse.

bigger and can potentially break the bricks in a real structure. Also,
the distribution of the forces is different. In the top, the forces
are concentrated in a few edges, meaning that the forces acting
on most of the blocks are very small, and they could thus easily
collapse when a small point load is applied or if the 3D printing is
not perfectly accurate. In the bottom, the distribution is more even,
with bigger forces on the open edge. We printed this model at the
size of 45cm × 45cm × 45cm, and we show a collapse sequence
generated by applying external point loads in the accompanying
video and in Figure 13.

Freeform vault. Our second 3D-printed result is a freeform vault,
supported on the boundary and on two small edges in the middle
(Figure 1). The model has two wide unsupported holes and it also
contains parts that are almost horizontal, but surprisingly it can
stand in compression only. The model is very stiff and robust to
external point loads, as shown in the accompanying video. Its size is
55cm × 40cm, and the height is just 10cm. The boundary support
has been 3D-printed, and the plexiglas columns laser cut.

Spiral stairs. The model shown in Figure 14 is supported all along
the outside edge and the two short edges at the top and at the bottom.

Figure 14: A self-supporting spiral structure and the corresponding
form and reciprocal diagrams. This model is supported only on the
outer edge and on the end lines.

The target surface is a half-parabolic section swept along a helix
with a constant “climbing angle”. The spiraling vault would want to
be synclastic, meaning that the sweep curve would also want to be
e.g. a parabolic section, rather than a straight line. To compensate
for this, as shown in the reciprocal diagram in Figure 14, the forces
need to increase towards one of the short supported boundaries, to
approximate the straight section (zero curvature) in the spiraling
“direction”, resulting in the beautiful shell shape.

Jerónimos vault. We sketched a section of the Jerónimos vault
and used it to generate a physically plausible 3D model (Figure 15).
The model is supported on the two central pillars and at the boundary,
since this is not the full vault but just a section. For this example, we
constrained the form diagram generation to have edges perpendicular
to the boundary. This simple change to our constraints is a useful
tool, since it allows to control the boundary conditions of the form
diagram. This can be used to divide a complex but symmetric vault
into multiple sections and compute the best-fit separately for each.

Limitations. We do not have a guarantee that the least-square dia-
grams algorithm will always generate a pair of reciprocal diagrams,
although in all our experiments this was indeed the case. Further,
our algorithm may fail to produce a self-supporting surface when
the input is not properly supported. While we do not have a formal
proof, we experimentally found that our best-fit algorithm is robust,
and it always generates a self-supporting surface given a properly
supported form diagram, possibly generating a surface that is very
far from the input surface if it contains impossible features (Figure 8).



We are not always able to find the globally optimal best-fit surface,
since this would require to find the connectivity and geometry of the
optimal form diagram, which is a very hard combinatorial problem.

8 Conclusions and future work

We presented an automatic algorithm to generate self-supporting
models, starting from a user-provided height field. The algorithm is
automatic and able to generate models for a wide range of shapes.
The 3D-printed models validate our approach, showing that it is
possible to completely automatize the generation of masonry models.

Our formulation can currently handle height fields, but it should
be possible to extend it to support arbitrary surfaces; we leave this
extension as a future work. Another interesting research problem is
the automatic segmentation of the input into parts that can be con-
structed independently, thus greatly reducing the formwork needed
for their realization. This is a combinatorial problem on top of an al-
ready hard optimization problem that is also combinatorial. Finally,
machine learning techniques could be used to obtain more refined
heuristics and further improve the quality of the diagrams and the
block tessellations.

We believe that our contribution will have an impact both in the
computer graphics and the structural engineering community. In the
former, the automatic generation of physically plausible masonry
models will allow to generate complex virtual environments where
the characters can realistically interact with the structures. In the
latter, the use of the proposed algorithms, combined with additional
user input, will enable designers to freely explore self-supporting
forms without requiring structural knowledge.
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connections on discrete surfaces. Comput. Graph. Forum 29, 5.

EIGENSATZ, M., KILIAN, M., SCHIFTNER, A., MITRA, N. J.,
POTTMANN, H., AND PAULY, M. 2010. Paneling architectural
freeform surfaces. ACM Trans. Graph. 29, 4.

FRATERNALI, F. 2010. A thrust network approach to the equilibrium
problem of unreinforced masonry vaults via polyhedral stress
functions. Mechanics Research Communications 37, 2.

FU, C.-W., LAI, C.-F., HE, Y., AND COHEN-OR, D. 2010. K-set
tilable surfaces. ACM Trans. Graph. 29, 4.

HEYMAN, J. 1995. The Stone Skeleton: Structural engineering of
masonry architecture. Cambridge University Press.

HILDEBRANDT, K., POLTHIER, K., AND WARDETZKY, M. 2005.
Smooth feature lines on surface meshes. In Proc. SGP.

KILIAN, A., AND OCHSENDORF, J. 2005. Particle-spring systems
for structural form finding. J. IASS 148, 77.

LIU, Y., POTTMANN, H., WALLNER, J., YANG, Y.-L., AND
WANG, W. 2006. Geometric modeling with conical meshes
and developable surfaces. ACM Trans. Graph. 25, 3, 681–689.

MARK, R. 1982. Experiments in Gothic structure. The MIT Press,
Cambridge.

O’DWYER, D. W. 1999. Funicular analysis of masonry vaults.
Computers and Structures 73, 1-5.

PANOZZO, D., LIPMAN, Y., PUPPO, E., AND ZORIN, D. 2012.
Fields on symmetric surfaces. ACM Trans. Graph. 31, 4.

RAY, N., VALLET, B., LI, W., AND LÉVY, B. 2008. N-Symmetry
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Appendix

Gradient of the best-fit energy. Equation (14) allows to express
the z-coordinates of the unsupported vertices of the self-supporting
surface as a function of w:

zVU (w) =
(
CT
VUDwCVU

)−1 (
pVU (w)−CT

VUDwCVBzVB

)
.

The gradient of Equation (18) can be derived analytically:

∇f(w) =− 2(zVU (w)−H (VVU (w)))T

(CT
VUDwCVU )−1CT

VUD(Cz(w)).

Least-squares diagrams for the best-fit iteration inside the
gradient descent iterations of best-fit (Section 5.2) look as follows:
(we count the least-squares diagram iterations by index s, and the

outer loop of the gradient descent is indexed by t)

t̃(s+1) = (1− β)
e

(s)
i

‖e(s)
i ‖

+ β
e∗i

(s)

‖e∗i (s)‖
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