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Figure 11: Hole filling: the half-sphere mesh was completed to close the “hole”. The left images show biharmonic recon-
struction using region constraints and curve constraints with different prescribed tangents. The two rightmost images show the
triharmonic reconstruction using region constraints and curve constraints with user-prescribed curvatures.
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Figure 12: Blending between surfaces (cylinders with a
square and circular cross-sections) using bi- and trihar-
monic equations and region boundary conditions. Note the
smoother behavior of reflection lines in the triharmonic case.

Figure 13: Blending between two spherical caps, with con-
trollable sharp features introduced using tangent conditions.
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Appendix A: Ciarlet-Raviart discretization and region
boundary conditions.
We outline the connection between solutions to the systems
(12) and (10) here; a full rigorous treatment would require
detailing assumptions on the smoothness spaces for bound-
ary data and is beyond the scope of this paper. To simplify
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Figure 14: Filling in a patch between surfaces. Tangents or
tangents+second derivatives can be specified at curves to
obtain the desired shape.

consideration, we assume that the solutions are classical so-
lutions, i.e., u is four times differentiable in Ω. In this case,
solutions of continuous problems with curve boundary con-
ditions and region boundary conditions are identical, as long
as the boundary conditions for the curve problem are sam-
pled from u f for the region problem.

We consider a simplified situation with homogeneous
Dirichlet conditions, i.e., we assume that for (10), u f = 0,
and for (12), b0 = 0 (this is a standard reduction for Dirich-
let conditions, using substitution u = uorig− uD where uD

satisfies the Dirichlet condition [Bra02]). This reduction re-
quires introducing a right-hand side for the second equation
in the system: ∆u = v, ∆v = ∆

2uD = g.
The Ciarlet-Raviart system (12) with lumped mass matrix

with solution (v∗
Ω̄
,u∗Ω) can be rewritten in the form
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, (16)

where we have subtracted Md,Ωe

Ω̄,0 v∗0 from both sides, to ob-

tain the same left-hand side as in (10), and gΩ
j = 〈g,ϕ j〉Ω.

In comparison, the right-hand side of (10) is [0,gΩ0 ], with
gΩ0

j = 〈g,ϕ j〉Ω0 . As shown in [Sch78], (v∗)h converges

to v in in L2-norm, and v is at least continuous on Ω̄. It
can be extended by zero to all of Ω0, consistently with
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Figure 15: Controlling deformations using tangents and
second derivatives. We solve the triharmonic equation
∆

3u = 0 for the displacement function (the edited surface is
then x+u). The Camel’s nose is lengthened and the mouth
opened by manipulating both the first and the second nor-
mal derivatives of the displacement field; the curvature of
the Max Planck’s nose is altered by interacting with the sec-
ond derivatives via the Bézier widget.

∆u f . On the other hand, the j-th component of −N∂Ω

Ω̄,0b1,

−〈b1,ϕ j〉∂Ω = 〈∇u f ,∇ϕ j〉Ωe = −〈b,ϕ j〉∂Ω = 〈v,ϕ j〉Ωe .
Combining L2 convergence of solutions (v∗)h of (10) to v,
and the fact that components of Md,Ωe

Ω̄,0 v∗0 are quadrature ap-

proximations of 〈v∗,ϕ j〉Ωe , we observe that the r.h.s. of (16)
converge in L2 norm to the the r.h.s. of the system obtained
for the (12) formulation in L2 norm, so the difference in the
solutions also converges as shown in [BF91].
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