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Figure 11: Hole filling: the half-sphere mesh was completed to close the “hole”. The left images show biharmonic recon-
struction using region constraints and curve constraints with different prescribed tangents. The two rightmost images show the
triharmonic reconstruction using region constraints and curve constraints with user-prescribed curvatures.
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Figure 12: Blending between surfaces (cylinders with a
square and circular cross-sections) using bi- and trihar-
monic equations and region boundary conditions. Note the
smoother behavior of reflection lines in the triharmonic case.

Figure 13: Blending between two spherical caps, with con-
trollable sharp features introduced using tangent conditions.
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Appendix A: Ciarlet-Raviart discretization and region
boundary conditions.

We outline the connection between solutions to the systems
(12) and (10) here; a full rigorous treatment would require
detailing assumptions on the smoothness spaces for bound-
ary data and is beyond the scope of this paper. To simplify
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Figure 14: Filling in a patch between surfaces. Tangents or
tangents+second derivatives can be specified at curves to
obtain the desired shape.

consideration, we assume that the solutions are classical so-
lutions, i.e., u is four times differentiable in Q. In this case,
solutions of continuous problems with curve boundary con-
ditions and region boundary conditions are identical, as long
as the boundary conditions for the curve problem are sam-
pled from v/ for the region problem.

We consider a simplified situation with homogeneous
Dirichlet conditions, i.e., we assume that for (10), v = 0,
and for (12), by = O (this is a standard reduction for Dirich-
let conditions, using substitution u = u”*¢ —u” where u”
satisfies the Dirichlet condition [Bra02]). This reduction re-
quires introducing a right-hand side for the second equation
in the system: Au =v, Av = AP = g.

The Ciarlet-Raviart system (12) with lumped mass matrix
with solution (v§,ug) can be rewritten in the form
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where we have subtracted Mggoz vy from both sides, to ob-

tain the same left-hand side as in (10), and g? =(g,9/)a-

In comparison, the right-hand side of (10) is [O,ggo], with
Q
8; 0
to v in in Lz-nonn, and v is at least continuous on Q. It
can be extended by zero to all of g, consistently with

= (g,9)q,. As shown in [Sch78], (V*)h converges
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Figure 15: Controlling deformations using tangents and
second derivatives. We solve the triharmonic equation
Au=0 for the displacement function (the edited surface is
then x +u). The Camel’s nose is lengthened and the mouth
opened by manipulating both the first and the second nor-
mal derivatives of the displacement field; the curvature of
the Max Planck’s nose is altered by interacting with the sec-
ond derivatives via the Bézier widget.

Au’. On the other hand, the j-th component of —Ng%bl,

—(b1,9)a0 = (V' ,V9)j)a, = —(b,9)a0 = (v,0))0,-
Combining L? convergence of solutions (v*)h of (10) to v,
and the fact that components of Mg’gozeva‘ are quadrature ap-
proximations of (v*,@;)q,, we observe that the r.h.s. of (16)
converge in L? norm to the the r.h.s. of the system obtained

for the (12) formulation in 2 norm, so the difference in the
solutions also converges as shown in [BF91].
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