Smooth Shape-Aware Functions with Controlled Extrema

Alec Jacobson¹ Tino Weinkauf² Olga Sorkine¹ ¹ETH Zurich ²MPI Saarbrücken

input shape + handles

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Spurious extrema cause distracting artifacts

unconstrained Δ^2 [Botsch & Kobbelt 2004]

$$\mathbf{x}_i' = \sum_{j=1}^H f_j(\mathbf{x}_i) \, T_j \, \mathbf{x}_i$$

Spurious extrema cause distracting artifacts

unconstrained Δ^2 [Botsch & Kobbelt 2004]

$$\mathbf{x}_i' = \sum_{j=1}^H f_j(\mathbf{x}_i) \, T_j \, \mathbf{x}_i$$

Bounds help, but don't solve problem

bounded Δ^2 [Jacobson et al. 2011]

$$\mathbf{x}_i' = \sum_{j=1}^H f_j(\mathbf{x}_i) \, T_j \, \mathbf{x}_i$$

Bounds help, but don't solve problem

bounded Δ^2 [Jacobson et al. 2011]

$$\mathbf{x}_i' = \sum_{j=1}^H f_j(\mathbf{x}_i) \, T_j \, \mathbf{x}_i$$

Gets worse with higher-order smoothness

bounded Δ^4 [Jacobson et al. 2011]

$$\mathbf{x}_i' = \sum_{j=1}^H f_j(\mathbf{x}_i) \, T_j \, \mathbf{x}_i$$

 Δ^k , k > 2 oscillate too much

#11

Gets worse with higher-order smoothness

bounded Δ^4 [Jacobson et al. 2011]

$$\mathbf{x}_i' = \sum_{j=1}^H f_j(\mathbf{x}_i) \, T_j \, \mathbf{x}_i$$

EITH

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

We explicitly prohibit spurious extrema

$$\mathbf{x}_i' = \sum_{j=1}^H f_j(\mathbf{x}_i) \, T_j \, \mathbf{x}_i$$

We explicitly prohibit spurious extrema

$$\mathbf{x}_i' = \sum_{j=1}^H f_j(\mathbf{x}_i) \, T_j \, \mathbf{x}_i$$

$$\mathbf{x}_i' = \sum_{j=1}^H f_j(\mathbf{x}_i) T_j \mathbf{x}_i$$

$$\mathbf{c}_i = \sum_{j=1}^H f_j(\mathbf{x}_i) \mathbf{c}_j$$

unconstrained Δ^2 [Finch et al. 2011]

$$\mathbf{c}_i = \sum_{j=1}^H f_j(\mathbf{x}_i) \mathbf{c}_j$$

Image courtesy Mark Finch

unconstrained Δ^2 [Finch et al. 2011]

$$\mathbf{c}_i = \sum_{j=1}^H f_j(\mathbf{x}_i) \mathbf{c}_j$$

unconstrained Δ^2 [Finch et al. 2011]

$$\mathbf{c}_i = \sum_{i=1}^H f_j(\mathbf{x}_i) \mathbf{c}_j$$

Exact, but sharp geodesic

Exact, but sharp geodesic

Exact, but sharp geodesic

Smooth, but extrema are lost

Exact, but sharp geodesic

Smooth and maintain extrema

$$\underset{f}{\operatorname{arg\,min}} E(f)$$

Interpolation functions:

$$E_L(f) = \int_{\mathcal{M}} \|\nabla^k f\|^2 dV, \quad k = 2, 3, \dots$$

$$\underset{f}{\operatorname{arg\,min}} E(f)$$

Data smoothing:

$$E_L(f) = \int_{\mathcal{M}} \|\nabla^k f\|^2 dV, \quad k = 2, 3, \dots$$

$$E_D(f) = \sum_{i \in \mathcal{M}} ||h_i - f_i||^2$$

$$E(f) = \gamma_L E_L(f) + \gamma_D E_D(f)$$

 $\underset{f}{\operatorname{arg\,min}} \ E(f)$

arg min E(f)s.t. $f_{\text{max}} = known$ $f_{\min} = known$

arg min E(f)

s.t. $f_{\text{max}} = known$

 $f_{\min} = known$

linear

 $f_j < f_{\max}$ $f_j > f_{\min}$

 $\underset{f}{\operatorname{arg\,min}} \ E(f)$

s.t. $f_{\text{max}} = known$

 $f_{\min} = known$

linear

$$f_j < f_{\max}$$

 $f_j > f_{\min}$

nonlinear

$$f_i > \min_{j \in \mathcal{N}(i)} f_j$$

 $f_i < \max_{j \in \mathcal{N}(i)} f_j$

Assume we have a feasible solution

$$\underset{f}{\operatorname{arg\,min}} \ E(f)$$

s.t.
$$f_{\text{max}} = known$$

 $f_{\text{min}} = known$

linear
$$f_j < f_{
m max} \ f_j > f_{
m min}$$

$$f_i > \min_{j \in \mathcal{N}(i)} f_j$$
 nonlinear
$$f_i < \max_{j \in \mathcal{N}(i)} f_j$$

"Representative function" $\,u\,$

$$u_j < u_{\text{max}}$$

$$u_j > u_{\min}$$

$$u_i > \min_{j \in \mathcal{N}(i)} u_j$$

$$u_i < \max_{j \in \mathcal{N}(i)} u_j$$

handles

Assume we have a feasible solution

"Representative function" ${\mathcal U}$

handles	$u_j < u_{\max}$
	$u_j > u_{\min}$
interior	$u_i > \min_{j \in \mathcal{N}(i)} u_j$
	$u_i < \max_{j \in \mathcal{N}(i)} u_j$

Copy "monotonicity" of representative

At least one edge in either direction per vertex

Rewrite as conic optimization

Conic

Optimize with MOSEK

We always have harmonic representative

$$\underset{u}{\operatorname{arg\,min}} \quad \frac{1}{2} \int_{\Omega} \|\nabla u\|^2 dV$$

We always have harmonic representative

arg min
$$\frac{1}{2} \int_{\Omega} \|\nabla u\|^2 dV$$

s.t. $u_{\text{max}} = 1$

36

We always have harmonic representative

$$\underset{u}{\operatorname{arg\,min}} \quad \frac{1}{2} \int_{\Omega} \|\nabla u\|^2 dV$$

s.t.
$$u_{\text{max}} = 1$$

s.t.
$$u_{\min} = 0$$

We always have harmonic representative

$$\underset{u}{\operatorname{arg\,min}} \quad \frac{1}{2} \int_{\Omega} \|\nabla u\|^2 dV$$

s.t.
$$u_{\text{max}} = 1$$

s.t.
$$u_{\min} = 0$$

Works well when no input function exists

38

August 9, 2012

39

Resulting solution with large γ_D

If data exists, copy topology, too

If data exists, copy topology, too

Resulting solution with large γ_D

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- Data smoothing: topology-aware representative
 - Morse-smale + linear solve ~milliseconds

August 9, 2012

- Data smoothing: topology-aware representative
 - Morse-smale + linear solve ~milliseconds
- Interpolation: harmonic representative
 - Linear solve ~milliseconds

- Data smoothing: topology-aware representative
 - Morse-smale + linear solve ~milliseconds
- Interpolation: harmonic representative
 - Linear solve ~milliseconds
- Conic optimization
 - 2D ~milliseconds, 3D ~seconds

- Data smoothing: topology-aware representative
 - Morse-smale + linear solve ~milliseconds
- Interpolation: harmonic representative
 - Linear solve ~milliseconds
- Conic optimization
 - 2D ~milliseconds, 3D ~seconds

Interpolation: functions are precomputed

We preserve troublesome appendages

We preserve troublesome appendages

We preserve troublesome appendages

Our weights attach appendages to body

[Botsch & Kobbelt 2004, Jacobson et al. 2011]

Our method

Extrema glue appendages to far-away handles

[Botsch & Kobbelt 2004, Jacobson et al. 2011]

Extrema glue appendages to far-away handles

[Botsch & Kobbelt 2004, Jacobson et al. 2011]

Our weights attach appendages to body

Our weights attach appendages to body

Extrema distort small features

Unconstrained Δ^2 [Botsch & Kobbelt 2004]

Extrema distort small features

Unconstrained Δ^2 [Botsch & Kobbelt 2004] weight of middle point

Extrema distort small features

Bounded Δ^2 [Jacobson et al. 2011]

"Monotonicity" helps preserve small features

Our Δ^2

63

Unconstrained Δ^3 [Botsch & Kobbelt, 2004]

Unconstrained Δ^3 [Botsch & Kobbelt, 2004]

Unconstrained Δ^3 [Botsch & Kobbelt, 2004]

Lack of extrema leads to more stability

Lack of extrema leads to more stability

Our Δ^3

Even control continuity at extrema

#71

Even control continuity at extrema

72

Even control continuity at extrema

Even control continuity at extrema

Even control continuity at extrema

75

... but 1000 times faster

30K vertices 5 seconds per solve

... but 1000 times faster

30K vertices 5 seconds per solve

... but 1000 times faster

30K vertices 5 seconds per solve

Conclusion: Important to control extrema

- Copy "monotonicity" of harmonic functions
- Reduces search-space, but optimization is tractable

Future work and discussion

- Larger, but still tractable subspace?
 - Consider all valid harmonic functions?

August 9, 2012

Future work and discussion

- Larger, but still tractable subspace?
 - Consider all valid harmonic functions?
- Continuous formulation?

85

Acknowledgements

We thank Kenshi Takayama for his valuable feedback. This work was supported in part by an SNF award 200021_137879 and by a gift from Adobe Systems.

