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Figure 1: Our generative motion retargeting framework enables the motion dynamics of one creature to be transferred to another in a plausible manner. For
this purpose, motion capture data of the source creature is transferred to the target while taking a few static body poses of the target into account, among other
constraints. This allows us to transfer the motion dynamics of tame and cooperative animals, such as dogs, to more exotic creatures, such as horses, rodents,
or carnivorous dinosaurs, for which motion capture data may be difficult to obtain but individual body poses are readily available.

Abstract
Creating plausible motions for a diverse range of characters is a long-standing goal in computer graphics. Current learning-
based motion synthesis methods rely on large-scale motion datasets, which are often difficult if not impossible to acquire. On
the other hand, pose data is more accessible, since static posed characters are easier to create and can even be extracted from
images using recent advancements in computer vision. In this paper, we tap into this alternative data source and introduce a
neural motion synthesis approach through retargeting, which generates plausible motion of various characters that only have
pose data by transferring motion from one single existing motion capture dataset of another drastically different characters.
Our experiments show that our method effectively combines the motion features of the source character with the pose features
of the target character, and performs robustly with small or noisy pose data sets, ranging from a few artist-created poses to
noisy poses estimated directly from images. Additionally, a conducted user study indicated that a majority of participants found
our retargeted motion to be more enjoyable to watch, more lifelike in appearance, and exhibiting fewer artifacts. Our code and
dataset can be accessed here.

CCS Concepts
• Computing methodologies → Motion processing;

1. Introduction

The ability to generate plausible motion across a diverse array of
characters is a crucial aspect of creating immersive and engaging

experiences in this digital era, and is vital to a wide range of ap-
plications including augmented reality, cinematography, and edu-
cation.
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Recently, motion retargeting from unpaired motion data has
emerged as a promising approach to address these needs [GYQ∗18,
VYCL18, ALL∗20, VCH∗21, ZWK∗23]. Powered by cycle-
consistent generative adversarial networks [ZPIE17, GPAM∗14,
LBK17], these approaches have moved away from traditional ap-
proaches, which require skeleton-level correspondence [Gle98,
CK00, MBBT00, PW99, TK05, VCH∗21, ZWK∗23] or pose-
level correspondence [SP04, BVGP09, SOL13, WPP14, CYÇ15,
AMYB17], successfully demonstrating the capability to transfer
motion between different skeletal structures using unpaired motion
data [VYCL18, ALL∗20, GYQ∗18, DAS∗20], as long as they are
topologically similar. However, these approaches largely depend
on having symmetric data, i.e., a similar amount of high-quality
motion data from both the source and target domains is required,
which can be challenging and sometimes impractical to obtain, es-
pecially for unique non-humanoid characters.

To this end, we propose Pose-to-Motion, which leverages static
pose data from the target domain to tackle the fundamental chal-
lenge posed by the scarcity of high-quality motion data. Com-
pared to motion data, typically acquired through extensive mo-
tion capture (MoCap) sessions, pose data is more accessible, and
can be obtained by, e.g., contemporary computer vision techniques
[LTV∗22, WLJ∗23, SMH24, ZKBWB19], analyzing the fossils of
extinct creatures, or by artist creation [Tru22, BB22].

Our method leverages an asymmetric CycleGAN, transforming
source domain motion data to target domain pose data and vice
versa, effectively allowing us to “project” motion onto our target
characters using solely their pose data (Fig. 3). This cycle is further
refined by synthesizing plausible root transformations using soft
constraints, overcoming the root ambiguity problem arising from
the lack of motion data in the target domain. While neither cycle
consistency nor adapted soft constraints are novel concepts, apply-
ing them to asymmetric data within the realm of motion retargeting
offers a new and effective solution to the unique challenges we face
in our task. This approach specifically addresses the large domain
gap between motion clips in the source domain and static poses in
the target domain. As we demonstrate in section 4, our method is
able to generate plausible motion for a wide range of subjects by
combining the motion prior from another domain, where MoCap
data has been captured a-priori, and the pose prior of the subject
observed from static poses, even when the pose data is small or
noisy.

In summary, this paper makes the following primary contribu-
tions:

1. We propose a novel motion-retargeting approach for motion
synthesis, which leverages pose data from the target domain to
tackle the fundamental challenge posed by the scarcity of high-
quality motion data.

2. We overcome the root ambiguity issue unique in the pose-to-
motion setting by adapting a combination of existing networks
and regularizations.

3. We present a detailed analysis and comparison against existing
retargeting approaches, showing state-of-the-art results in terms
of motion quality and versatility across a wide range of charac-
ters.

Figure 2: Motion retargeting to versatile characters. Given a small set
of artist-created posed animals (e.g. t.rex, hamster) or noisy poses derived
from 2D images (horse), our method successfully transfers the dog motion
to these animals despite significant differences in their bone structures. We
include images of the closest instance in the training data at the lower left
corner, highlighting the preservation of key attributes during the motion re-
targeting process. Notably, the elongated tail of the T.rex, the arched spine
of the hamster, and the forward-bending knee of horse are all preserved
even though the source dog pose does not contain these characteristics.
Please refer to the supplementary video for additional qualitative evalua-
tion of the motion clips.

2. Related work

Motion Retargeting. As one of the pioneering works, [Gle98]
proposed to solve the kinematics constraint of two topologically
identical skeletons with a space-time optimization problem. [LS99,
CK00] further employ per-frame inverse kinematics (IK) for re-
targeting, followed by a smooth process while preserving high-
frequency details. [MBBT00] explore the possibility of using an
intermediate skeleton to retarget motion between skeletons with
different numbers of bones. In addition to simple kinematics con-
straints, [PW99] introduce dynamics constraints to the spacetime
optimization and achieves better realism of the source motion se-
quence. [TK05] take a different approach by modeling the retarget-
ing problem as a state estimation on a per-frame Kalman filter and
further improve the realism of generated motion.

However, those methods are limited to retargeting between mo-
tions with skeletons containing limited differences in bone propor-
tion, thus are unable to handle retargeting between different crea-
tures. Since the desired motion gaits and the correspondence be-
tween motions cannot be inferred solely from bone proportions in
these cases, especially for drastically different creatures like hu-
manoid and quadrupeds, [BVGP09] propose to exploit a few sparse
mesh pairs to transfer poses between different creatures using fea-
ture extraction and extrapolation. [YAH10] also exploits paired
poses and is able to retarget motion to a different creature. [SOL13]
demonstrate the ability to control a target creature with human mo-
tion, given paired motion examples. [WPP14] model the locomo-
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tion of different creatures with the same skeletal structure with a
physically-based optimization method, and is able to capture the
gait with a few examples. However, it requires delicate handcrafted
design and is limited to locomotion. [IAF09] utilizes Gaussian pro-
cessing and probabilistic inference to map motion from one control
character to a different target character, but it requires artists’ edits
as training data.

[CYÇ15] use paired pose and mesh to retarget motion from hu-
mans to different meshes. Although they are able to perform re-
targeting between different creatures, at least several paired poses
or motions are required as guidance. Besides, when applying pose
transfer method to motion in a frame-by-frame manner, the high-
frequency details of motion and the temporal coherence are not
well preserved, and the missing global translation information
leads to severe foot skating artifacts. The same issue also ap-
plies to the generative model for poses [PCG∗19] learned from
a large dataset, making motion generation with only pose prior
extremely challenging. An interesting exception is the work of
[AMYB17], which requires only a manually assigned part corre-
spondence to achieve motion style transferring between different
creatures. [RWY∗23, YSI∗23, PALVdP18, PCZ∗20] use Deep RL
to generate physics-based retargeting methods leveraging a physics
simulator.

Neural Motion Processing. With the progress of deep learning,
deep neural networks are applied to motion process and synthe-
sis tasks [AWL∗20,YYB∗23,LAZ∗22,SGXT20,LYRK21,TCL23,
TRG∗22, YSI∗23, ZLAH23, SMK22, HYNP20, KAS∗20, SZKS19,
HSK16], including recurrent neural networks (RNNs) [FLFM15,
AAC22], convolutional neural networks (CNNs) [HSKJ15,
HSK16]. As for motion retargeting, [JKY∗18] apply a U-Net
structure to paired motion data to solve the problem. Villegas et
al. [VYCL18] use cycle-consistency adversarial training [ZPIE17]
on a RNN for retargeting, and drops the requirement for paired
motion datasets. Dong et al. [DAS∗20] use cycle-consistency train-
ing to transform adult motion capture data to the style of child
motion, trained on a small number of sequences of unpaired mo-
tions from both domains. PMnet [LCC19] opts for CNNs and
achieve better performance. With the proposed skeleton-aware net-
works, [ALL∗20] can retarget among skeletons with different yet
homeomorphic topologies. [LWJ∗22] bypass the usage of adver-
sarial training and use an iterative solution with a motion au-
toencoder. At the same time, directly transferring poses without
any correspondence information pose-wise and geometry-wise is
made possible with neural networks [GYQ∗18, LYS∗22]. More re-
cent works keep exploring the possibility of better retargeting re-
sults by incorporating skinning constraints introduced by the ge-
ometry [VCH∗21, ZWK∗23]. Note those methods require motion
dataset on both source and target skeleton for training, but the diffi-
culty of acquiring high-quality and comprehensive motion dataset
greatly limits their usage. We demonstrate that we can achieve sim-
ilar performance as skeleton-networks [ALL∗20] on the Mixamo
dataset [Ado20] in Section 4.1, while our model is trained only
with a pose dataset for the target character.

3. Method

3.1. Data representation.

We inherit the representation for pose and motion from prior work
[ALL∗20], which we briefly recap below. Given a character’s skele-
ton with J joints, its pose is represented by a vector P ∈ R6J , which
defines the relative joint rotations in the kinematic tree, with each
rotation represented by a 6-dimensional vector [ZBL∗19].

A character’s motion consists of a sequence of poses [Pn]
N
n=1

and root transformations [Rn]
N
n=1, where Rn is composed of root

orientation θr ∈ R6 and velocity vr ∈ R3. The root transformation
is handled as a special structure connected to the root node. As
such, the overall representation of motion can be denoted by M ∈
RT×(6(J+1)+3), where T is the number of frames in the sequence.
Note that the root displacement, xr, can be computed from root ve-
locity using the forward Euler method xr(t +1) = xr(t)+ vr(t).

In the following, we denote the motion and pose from a domain
Q∈ {S,T } as MQ and PQ respectively.

3.2. Asymmetric Cycle-consistency Learning

Our model builds on the foundation of the “classic” design
of a symmetric motion retargeting network [ASL∗18, ALL∗20,
GYQ∗18], which adopts a CycleGAN framework [ZPIE17] to
maximize the likelihood of the output motion in the distribution
of the target motion data. In the absence of target motion data,
we aim to transfer the source motion such that each frame in the
output adheres to the pose priors observed in the target domain’s
pose data. More concretely, our objective is to learn a mapping
G : S → [Tn]

N
n=1

argmax
G

pT
(

P̃T
n

)
s.t.

[
P̃T

n

]N

n=1
= G

(
MS

)
. (1)

Since the data in the source and target are unpaired, i.e. pose-level
correspondence is absent, we adopt a CycleGAN [ZPIE17] frame-
work, following the approach of prior works addressing unpaired
motion retargeting [ASL∗18, ALL∗20, GYQ∗18].

This forms an asymmetric cycle as shown in Fig. 3. The first
half maps a given source motion MS to a set of poses and root
transformations (discussed in section 3.2) in the target domain:([

P̃T
n

]N

n=1
,
[
R̃T

n

]N

n=1

)
= G

(
MS

)
, (2)

whereas the other half maps the outputs back to motion in the
source domain:

M̃S = F
([

P̃T
n

]N

n=1
,
[
R̃T

n

]N

n=1

)
. (3)

Correspondingly, a pose discriminator DP and a motion discrimi-
nator DM distinguish the outputs of the two half cycles against real
pose and motion samples, respectively.

The asymmetric CycleGAN can be supervised in the same way
as in prior work [ALL∗20], which includes a Wasserstein adversar-
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Figure 3: Method overview. Our method builds on an asymmetric CycleGAN. The first half of the cycle maps a motion sequence from the source domain MS

to a sequence of poses
[
P̃T

n
]N

n=1 and root transformations [Rn]
N
n=1in the target domain; the individual poses are compared against the pose dataset of the target

domain using a pose discriminator DP. The other half of the cycle maps the sequence of poses and root transformations (M̃T ) back to a motion sequence
in the source domain M̃S , which is supervised with a reconstruction loss and an adversarial loss using a motion discriminator. The contact and end-effector
consistency implicitly regulates the root prediction, leading to more realistic motion.

ial loss with gradient penalty [GAA∗17] and a reconstruction loss:

Lcycle =LGAN (G,DP)+λGPLGP (DP)+ first cycle

LGAN (F ◦G,DM)+λGPLGP (DM)+ second cycle

λreconLrecon (G,F) , (4)

where LGAN and LGP are the standard Wasserstein adversarial loss
and gradient penalty , and Lrecon is the reconstruction loss de-
fined as the L2 distance between the input source motion and the

remapped source motion,
∥∥∥M̃S −MS

∥∥∥2

2
.

The asymmetric CycleGAN framework is agnostic specific
architecture of G and F . We choose the design from prior
work [ALL∗20, PCG∗19, LAZ∗22], which is constructed of mul-
tiple layers of skeleton-aware operators [ALL∗20] to account for
different joint hierarchies. The motion discriminator, DM , also uses
skeleton-aware operators and adopts a patch-wise classification to
reduce overfitting [LAZ∗22]. The pose-level discriminator, DP,
consists of J +1 discriminators, one for each joint rotation and an-
other one for all rotations [DRC∗22].

3.3. Root Transformation

The asymmetric CycleGAN framework generates reasonable mo-
tions by combining the rough trajectory from the source motion
and the pose prior from the target. However, these generations of-
ten suffer from artifacts such as foot sliding and jittering. The rea-
son is that the root transformations in the target domain has been
neglected in the objective defined in eq. (1), leading to unresolved
ambiguity when mapping the root transformation. One trivial (but
wrong) solution is to have an identity mapping from the source root
motion to the target root motion with scaling, yet this solution leads
to various artifacts as shown section 4.2, due to the negligence of
changes in the bone size, skeleton structure, e.t.c.

To address this issue, we propose to a.) predict root transfor-

mations
[
R̃T

n

]N

n=1
for the target domain, and b.) employ a set of

soft constraints, described below, to effectively regulate these pre-
dicted roots and alleviate the root ambiguity issue. Although these
soft constraints do not directly supervise the root transformations,
they promote consistency between the generated and source motion
from various complementary perspectives. This guidance helps the
root predictions converge towards more realistic and plausible so-
lutions.

Contact Consistency. This constraint ensures that the contact-to-
ground patterns in the retargeted motion match those of the input
source motion. In a more intuitive sense, we determine contacts
by examining the velocity of the foot joints. The hypothesis is that
when the velocity is close to zero, it indicates a contact point. Al-
though the relative distance from foot to floor could serve as a use-
ful metric, the changing floor position is not available in our dataset.
Therefore, we rely solely on velocity thresholding for contact iden-
tification. Therefore, we enforce the retargeted motion to maintain
contact whenever the source motion does. We manually specify the
correspondence of the “feet” end-effectors between the characters
to ensure contact consistency. Specifically, using the shorthand Mn
for the motion at frame n, we can write the velocity of a specific
joint as v j (Mn) = FK j(Mn)−FK j(Mn−1), where FK denotes the
forward kinematics function that converts joint angles into joint po-
sitions x ∈ R3J . Then, one can express this constraint using the loss

Lcon =
1

N |Φ| ∑
j∈Φ

N

∑
n=1

∥∥∥v j(M̃
T
n )

∥∥∥2

2
s j(M

S
n ) with

s j(M
S
n ) = 1

[∥∥∥v
(

MS
n

)∥∥∥
2
< ϵ

]
,

(5)

where Φ represents the set of foot joints and s j(MS
n ) is the refer-

ence contact label from source motion, and ϵ is the velocity thresh-
old to define contact.
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method
J. Angle

Err.↓

Root Rel
J. Pos.
Err.↓

Global
J. Pos.
Err. ↓

Mean J.
Pos. Jitter
(×102) ↓

Contact
Consis ↑

frame-level SA-Net 7.12 0.53 3.88 0.81 86.6%
motion-level SA-Net 11.06 0.67 0.83 0.52 84.1%

Pose-to-Motion (ours) 6.71 0.52 0.81 0.49 91.4%

Table 1: Quantitative evaluation on Mixamo. We compare our approach
with the frame-level and motion-level Skeleton-Aware Network [ALL∗20],
which perform motion retargeting on frame-by-frame and sequence-by-
sequence basis, respectively. Our method leverages pose information and
further uses the proposed root estimation techniques to achieve more accu-
rate global joint position and higher-quality motion with less jittering and
more consistent ground contact.

End-Effectors Consistency. End-effectors are the terminal points
of a skeleton structure that are commonly used to interact with the
real world. End-effector consistency takes advantage of the fact that
homeomorphic skeletons share a common set of end-effectors, and
encourages that their normalized velocities from the source and
retargeted motions are consistent. Enforcing this constraint helps
prevent common retargeting artifacts like foot sliding [ALL∗20].
Formally, this constraint is formulated using the following loss

Lee = EMS∼PS
1
|Θ| ∑

j∈Θ

∥∥∥∥∥∥
v j

(
M̃T

)
hT j

−
v j(MS)

hS j

∥∥∥∥∥∥
2

2

. (6)

Here, Θ denotes the end-effector joints, and hSj and hTj correspond
to the lengths of the kinematic chains from the root to the end-
effector j in the source and target domain, respectively.

Furthermore, under the assumption that the rest poses P0 in the
source and target domain are similar, we require the end-effectors
of the source and retargeted motion at every frame n to exhibit com-
parable offsets to their rest poses. This objective is based on the
premise that if one character’s end-effector has moved in a specific
direction (relative to its rest pose), the retargeted character should
have its corresponding end-effector positioned similarly. We man-
ually specify the correspondence between the end-effectors of the
characters based on their semantic correspondences. We compute
the offsets and this relative end-effector loss using:

o(Mn) = FK(Mn)−P0 (7)

Lee,r = EMS∼PS
1
|Θ| ∑

j∈Θ

∥∥∥∥∥∥
o j

(
M̃T

n

)
hTj

−
o j(MS)

hSj

∥∥∥∥∥∥
2

2

. (8)

In summary, our overall learning objective is

L=λcycleLcycle +λconLcon +λeeLee +λee,rLee,r. (9)

4. Experiments and Evaluations

We evaluate our approach using three distinct datasets: first the
Mixamo dataset, which is a large-scale paired character–motion
dataset. Since this dataset provides paired data, it allows us to eval-
uate the retargeting motions against ground truth for quantitative

assessment. Second, we employ an animal dataset, using a large-
scale dog MoCap data from [ZSKS18] as the source domain, along
with a smaller animated animal dataset from [Tru22], containing
approximately 1000 frames, as the target domain. This particular
setup serves as a stress test to evaluate how our model handles
scenarios where the target domains have limited data and highly
distinct topologies. Lastly, we extract 3D poses from a horse im-
age dataset [WLJ∗23] as the target domain and use the dog MoCap
dataset as the source domain. This experiment demonstrates our
method’s capability to learn from accessible but noisy data (in this
case, extracted 3D poses obtained from images). To evaluate our
results qualitatively, please refer to the supplementary video.

4.1. Mixamo dataset

We conduct a quantitative evaluation on the Mixamo dataset
[Ado20], which consists of characters with unique skeletal struc-
tures, each performing the same set of 2,400 motion clips. To emu-
late a target domain with only pose data, we extract individual pose
from the target motion clips, removing the temporal information in-
cluding global translation. 20% of the data is reserved for testing in
both the source and target domains. For our quantitative evaluation,
we select two distinct characters from the Mixamo dataset (Aj and
Mousey), each possessing five primary limbs (two hands, two feet,
and a head).

4.1.1. Baselines

We compare our method with a state-of-the-art symmetric mo-
tion retargeting Skeleton-Aware Network [ALL∗20] (SA-Net). Our
model differs from the baseline in the asymmetric design and ad-
ditional loss terms Lee,r and Lcon described in 3.3, which we in-
corporated to improve root transformation and motion realism in
absence of motion data.

We investigate two variations of the SA-Net. The first, denoted
as motion-level SA-Net, is the original SA-Net, which necessitates
motion data from both domains, trained with all the losses de-
scribed in [ALL∗20]. The second variation is a frame-level SA-Net.
In this setup, both domains consist of poses, PS and PT , and two
generators and discriminators are trained for translating poses be-
tween these domains. During retargeting, frame-by-frame decoding
is employed. For root transformation, we approximate the transla-
tion from the source root’s velocity after scaling it by the skeleton
size, and the rotation is directly copied from the source to the tar-
get. This variation serves to quantify the benefit of motion prior.
We train the baseline models for the source and target characters
from scratch following the author recommended protocol.

4.1.2. Motion Reconstruction.

Table 1, presents the quantitative evaluation of the different meth-
ods described above. We use commonly employed metrics for as-
sessing motion reconstruction quality [JYG∗22].

(1) Mean Joint Angle Error: Calculates the joint angle difference
(in degrees, represented as axis angles) between the retargeted
and ground truth joint angles.

(2) Mean Root Relative Joint Position Error: Calculates the
MSE between the local joint positions of the retargeted and
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ground truth motions after removing the global root translation
and rotation. The error is normalized by the skeleton’s height
and multiplied by 1000.

(3) Mean Global Joint Position Error: Measures the MSE of the
global joint positions between the retargeted and ground truth
motions. The error is normalized by the skeleton’s height and
multiplied by 1000.

(4) Mean Joint Position Jitter: Estimates joint position jitter by
computing the third derivative (jerk) of the global joint posi-
tion. A lower value indicates smoother motion, which is gener-
ally more desirable.

(5) Contact Consistency Score: Calculates the ratio of consistent
contacts made between the source and target domains. A con-
tact is considered consistent if the contact state (contact or no
contact) determined by eq. (5) is the same in both the source
and retargeted motion. A higher Contact Consistency Score in-
dicates better contact consistency.

Our method compares favorably against both baselines across all
metrics. Frame-level SA-Net performs on par in terms of joint
angles and relative joint position (see the first two columns), in-
dicating that the relative joint positions can be sufficiently esti-
mated from pose information. Our method leverages this informa-
tion and further uses the proposed root estimation techniques to
achieve more accurate global joint position and higher-quality mo-
tion with less jittering and consistent ground contact (see the last
three columns). Motion-level SA-Net is similar to ours in terms of
the Mean Global Joint Position Error, but is worse in the terms of
pose-level retargeting accuracy (see Mean Joint Angle Error and
Mean Root Relative Joint Position Error in column 2 and 3) and
contact consistency (see the last column). This can be attributed to
the relative end-effector loss, Lee,r and the contact consistency loss
Lcon, which specifically focuses on the relative joint positioning
and contact consistency.

4.2. Animal dataset

We further assess the robustness and versatility of our method by
applying it to the challenging task of retargeting animal motion,
specifically from dogs to two drastically different animals, T.rexes
and hamsters. As the source domain, we use a large-scale dog
MoCap dataset from [ZSKS18] consisting of 30 minutes of un-
structured dog motion encapsulating various locomotion modes.
In contrast, the target domain was comprised of a small number
of short motion clips of T.rexes and hamsters from the Turebone
dataset [Tru22], from which we extract individual poses as our
training data in the target domain. This evaluation setup presents
a high level of complexity due to the large domain gap between the
source and target domains. We manually specify the end-effectors’
correspondences based on semantic meaning. For the T.rex, we
mapped its two hind legs to the dog’s two hind legs for contact
consistency loss and mapped all five limbs for the end-effector con-
sistency loss.

4.2.1. Motion Quality

We use the same baselines as in the Mixamo dataset. Both are re-
trained on this dataset using the same hyperparameters as in the
original implementation when possible. Since there is no ground

method
Mean J. Pos. Jitter

(×102) ↓
Contact Consis ↑

T.rex Hamster Horse T.rex Hamster Horse
frame-level SA-Net 5.37 8.87 2.19 86.2% 83.5% 77.2%

motion-level SA-Net 0.68 0.46 - 89.8% 94.6% -
Pose-to-Motion (ours) 1.08 1.33 0.88 92.6% 91.1% 81.4%

Table 2: Quantitative evaluation for zoo and horse datasets. Our method
largely outperforms frame-level SA-Net [ALL∗20] in terms of both joint
position jitter and contact consistency. While the motion-level SA-Net
[ALL∗20] is capable of generating smooth motion, its qualitative results
degrade significantly, as shown in Fig. 4.

Figure 4: Comparison with motion-level SA-Net on the animal dataset.
Pose-to-Motion achieves more plausible poses compared to the motion-level
SA-Net, despite the absence of target motion information. We believe the
reason is that motion-to-motion mapping is a much harder task requiring
significantly more amount of data and diversity for convergence. For more
qualitative evaluations, please watch our supplementary video.

truth motion data, we evaluate motion quality metrics: Mean Joint
Position Jitter and Contact Consistency Score.

As shown in Table 2 and Fig. 2 (T.rex and Hamster), despite the
large domain gap and the very limited amount of training poses
(600 frames for hamster and 7000 frames for T.rex), our method
is able to synthesize high-quality motion. In contrast, the frame-
level SA-Net exhibits high jittering and poorer contact consistency.
While the motion-level SA-Net appears smoother motion, it has
noticeably less realistic pose as shown in Fig. 4. Please check addi-
tional qualitative evaluations in our supplementary video.

Figure 5: Preservation of pose characteristics through adversarial train-
ing. We compare the retargeting with and without adversarial training. The
latter relies solely on the end-effector and reconstruction loss to establish
pose correspondence, thus unable to leverage any pose prior from the target
domain, leading to unrealistic and out-of-distribution retargeting results,
such as the hamster’s head and hip, as well as the T.rex’s tail being bent
upwards in an unnatural way.

© 2024 The Authors.
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Figure 6: Precision and Recall: Empirical estimation of data coverage and
realism of retargeted poses using precision (left) and recall (right). For both
plots, higher values indicate better performance. Across all testing scenar-
ios, our approach (Pose-to-Motion) consistently achieved higher values, in-
dicating better pose realism and coverage.

4.2.2. Pose Realism and Data Coverage.

One of our primary goals is to preserve the diversity and peculiar-
ities of the poses in the target domain. The retargeted pose should
ideally span the entire space of realistic target poses without includ-
ing extraneous poses. To evaluate how well our approach achieves
this, we employ Precision and Recall to assess pose realism and
data coverage respectively [DRC∗22]. Given K retargeted poses,
precision evaluates the ratio of “accurate” predictions. A retargeted
pose is considered accurate if the Mean Root Relative Joint Position
Error with at least one sample in the target pose dataset is smaller
than a threshold ϵ. On the other hand, recall measures the ratio of
“covered” training poses over the size of the training dataset. A
training pose is considered covered if the Mean Root Relative Joint
Position Error with at least one sample among the retargeted poses
is smaller than a threshold ϵ.

For both, we use K = 8000 and plot the precision/recall as a cu-
mulative distribution P(d ≤ ϵ) in Fig. 6. Omitting pose prior by
removing the adversarial losses (LGAN and LGP) leads to a sig-
nificant deterioration in precision and recall. This highlights the
effectiveness of GAN training in generating realistic and diverse
retargeted poses that cover the entire distribution of target poses.
Fig. 5 visually illustrates this effect. In the absence of adversarial
losses, the retargeted poses retain traits from the source domain but
appear unnatural in the target domain.

4.2.3. Data efficiency

One advantage of our method is data efficiency: besides not requir-
ing hard-to-acquire motion data, our model is able to effectively
capture the character-specific pose features from very few poses.
We demonstrate this advantage with the Hamster character, com-
paring the outcomes of training with 0%, 1%, 10%, 40% and 100%
random samples of the total 600 poses. Note that the 0% data sce-
nario corresponds to the case where no pose prior is available, i.e.
only the end-effector loss described in Section 3.3 is utilized during
the training process. Since the motion prior remains consistent, we
focus on how well the character-specific pose features are captured
under the varying pose data size using precision and recall metrics,
defined in Section 4.2.2, which measures pose realism and cover-
age respectively. We observe that even with 60 poses, our method

Figure 7: Dataset size ablation: In this table, we examine the impact of
dataset size on the final performance of our approach. We present preci-
sion and recall for training sessions with different pose dataset sizes, 0% (0
poses), 10% (60 poses), and 100% (600 poses). We observe that even with
60 poses only, our approach is able to learn meaningful pose features, and
yields results with relatively high precision and recall.

was able to learn meaningful pose features, yielding results that
exhibited both high pose realism and coverage, as shown in Fig. 7.

4.3. Horse dataset from Images

Our approach is evaluated using pose datasets obtained from im-
ages. To extract 3D poses from a diverse collection of horse images,
we utilize the unsupervised method called MagicPony [WLJ∗23].
The dataset used in our evaluation consisted of approximately
10,000 images, capturing various horse poses from different view-
ing angles. These extracted 3D poses from MagicPony served as
our target domain pose data. We further augmented our dataset by
flipping the left and right limbs of the horse. For the source domain,
we use the same dog MoCap dataset described in Section 4.2. The
purpose of this experiment was to demonstrate the robustness and
versatility of our approach when applied to readily available but
potentially noisy image-derived datasets. Fig. 8 visually illustrates
the pipeline. As evident in figs. 2 and 8, the retargeted horse poses
match the dog poses in the source domain, while at the same time
preserving the important features unique to horses, e.g., forward-
bending knee, less upright head, and smaller strides.

5. User Study

To evaluate the synthesized motion holistically, we also conduct a
user study in which we focus on the general appeal, the alignment
with the target pose, and the realism of the motion itself. We ren-
dered 9 motion clips for 3 characters - Hamster and T.rex (see sec-
tion 4.2), and Horse section 5, and compare it with commercial
motion processing software - MotionBuilder [Aut]. MotionBuilder
employs inverse kinematics (IK) for motion retargeting without
pose priors. We use MotionBuilder following the standard proce-
dure recommended by professionals, with default settings. Note
that MotionBuilder requires manually setting correspondences be-
tween skeletons using a template skeleton, a step that our approach
eliminates. The clips included in our study are chosen adhering to

© 2024 The Authors.
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Figure 8: Retargeting using noisy pose data estimated from 2D images.
We extract pose priors from a noisy pose dataset generated from state-of-
the-art 3D reconstructions method developed in the vision community, and
demonstrate that it is possible to synthesize coherent and plausible horse
motions by retargeting a dog motion sequence to the horse domain, essen-
tially enabling conditional 2D-to-4D synthesis.

the principle of representative sampling, specifically we sampled 9
motion clips, three per character, from different motion categories
(walking, running, and turning). Within each category, the target
motion is randomly sampled to minimize bias.

For each motion clip, we ask human subjects the following ques-
tions:

• Q1: Which one is more pleasing to watch?
• Q2: Which adapted animation on the right captures the essence

of the original animation displayed on the left side of the video
more effectively?

• Q3: Which adapted animation on the right exhibits better
smoothness, lifelikeness, and overall visual appeal?

• Q4: Which adapted animation on the right shows fewer notice-
able issues, such as overlapping body parts or unnatural move-
ment of feet?

The anonymous participants were volunteers recruited via email
from both within and outside our university. Among 26 partici-
pants, 78% found our results more pleasing to watch, 82% reported
observing fewer artifacts, 77% noted an increase in lifelikeness,
and 70% recognized a closer alignment with the source motion, as
depicted in fig. 9. We employed a one-tailed hypothesis test with
a null hypothesis - user satisfaction is 50% or lower. The resulting
p-value of 0.00467, below the standard 0.05 significance level, sug-
gests a higher user satisfaction rate with our results [GSR∗16]. Our
user study shows that our approach, which leverages pose priors,
leads to more lifelike, smoother and artifact-free animations, with
an enhanced overall user experience compared to the traditional IK-
based retargeting (MotionBuilder). The default results from Mo-
tionBuilder disregard pose priors, and integrating these priors re-
quires substantial labor and extensive tuning by a professional artist
for each motion clip. In contrast, our approach learns automatically

Figure 9: User Study: We conducted a user study to evaluate the quality of
retargeting achieved through our method, comparing it with the commercial
software MotionBuilder. In this study, nine motion clips were generated for
three distinct characters — Hamster, T.rex, and Horse — with 26 users par-
ticipating in total. The specific questions posed to the participants during
the study are detailed in section 5. Generally, the feedback indicated that
participants preferred the retargeting results of our method, finding them to
be more enjoyable to watch (78%), noticing that they produced fewer ar-
tifacts (82%), exhibited greater lifelikeness (77%), and better aligned with
the source motion (70%).

from the pose data. We have included the details of the user study,
the interface design, and a sample Google Form here for reference.

6. Implementation Details

Our retargeting network G and F follows SA-Net [ALL∗20] lever-
aging skeleton-aware operators to take account of the skeleton
structures. The pose-level discriminator DP in our network com-
prises J+1 discriminators: one for each of the J joint rotations and
an additional one for all rotations combined. Each discriminator is
structured as a fully connected neural network [DRC∗22].

Our network and training framework is implemented in PyTorch
and trained on an NVIDIA GeForce GTX Titan Xp GPU (12 GB).
We train all our models for 50 epochs using the Adam optimizer
[KB14] and the loss terms described in Sec. 3. During training,
we employ a fixed temporal window with T = 64, and during in-
ference, our temporal window can be arbitrarily long due to the
convolutional nature of our model.

We use the same set of hyperparameters λcycle, λcon, λee, and
λee,r for all examples. The code, hyperparameters, and the dataset
can be found in this anonymous GitHub page.

7. Discussion and Conclusion

Our work tackles the challenging task of synthesizing plausible mo-
tion in the absence of reference motion data. We propose a novel
motion synthesis approach that leverages static pose data by pro-
jecting the motion prior from another domain with MoCap data
and hallucinating plausible root joint movement. Through extensive
experiments on a variety of datasets, we demonstrate that the pro-
posed method can generate high-quality motion sequences that are
both plausible and diverse despite significantly different skeleton
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topologies, sizes, and proportions, and even outperforms motion-
to-motion retargeting in the low-data regime.

Limitation. While we demonstrated that pose data can provide ex-
tremely useful priors for motion synthesis, there are some limita-
tions that inevitably arise from the lack of reference motion data in
the target domain. As we transfer the motion prior from the source
domain, the generated motion can contain motion traits from the
source domain that are unrealistic or physically infeasible for the
target domain. For example, dogs have specific gaits that are dif-
ferent from those of horses, our method is not able to account for
such differences. Similarly, the motion prior from the source do-
main may not be able to capture the full range of motion of the
target domain. One promising venue for future work is to combine
pose and limited motion priors to generate more realistic motion,
addressing the missing motion prior and integrating it to enhance
the synthesis process.

Conclusion. In this paper, we introduced a neural-based motion
synthesis approach through retargeting, leveraging static pose data
from the target domain to overcome the restrictive requirement of
high-quality motion data. Our approach opens up new possibilities
for motion synthesis in domains where motion data is scarce or
unavailable. By utilizing the latest advancements in related fields
such as computer vision, our method can potentially stimulate new
applications, such as 2D-to-4D generation, to create new engaging
and interactive experiences in entertainment, education, telecom-
munications and beyond.
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