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Abstract

High dynamic range (HDR) displays are be-
coming more common, which has given rise
to a number of reverse tone mapping tech-
niques. The goal of these techniques is to ex-
pand the dynamic range of all the existing low
dynamic range content to �t that of these dis-
plays. Most of the reverse tone mapping oper-
ators, however, fail to o�er a good solution in
cases where the input images contain large sat-
urated areas. In this paper we present an in-
teractive higher-level approach to reverse tone
mapping. Inspired by the Zone System used
in photography, it can also be used as an artis-
tic tool where both the tonal balance and the
mood of the �nal depiction can be adjusted by
the user.

1 Introduction

The increasing dynamic range of modern mon-
itors enables them to display images with
much greater contrast, similar to some real-
world scenes. High dynamic range (HDR)
content visualized on these monitors therefore
recreates the real world more faithfully than
low dynamic range (LDR) images viewed on
conventional displays. However, there exists a
great amount of legacy content which has been
recorded and stored in low dynamic range for-
mats, which now needs to be dealt with for a

correct visualization on HDR displays.

Reverse tone mapping (rTM) refers to the
process of expanding the range of an LDR in-
put image or video to create an HDR depiction
which matches real-world luminance values as
faithfully as possible. Obviously, accurate re-
construction of these real-world luminances is
an impossible task, since some information is
inevitably lost due to data quanti�cation, sen-
sor saturation and nonlinearities in the cam-
era response when capturing and encoding the
LDR image. Most existing reverse tone map-
ping operators (rTMOs) do not aim at recov-
ering that lost information, but they try to
convey a convincing HDR depiction instead.
A notable exception to this is the HDR hallu-
cination technique [WWZ∗07], which presents
a user-guided approach to �ll in missing infor-
mation of clamped areas by transferring tex-
ture detail from other parts of the image.

To produce a pleasant HDR image from
LDR input, existing rTMOs work under the
general assumption that highly saturated pix-
els need to be expanded much more than the
rest. As a result, bright image areas represent-
ing features like highlights, or the sun in the
sky, are largely boosted, thus counter-parting
the clamping of information in the LDR image
and better representing the real-world experi-
ence.

Even though these techniques can produce
appealing results for a wide range of LDR con-



tent, there are some cases in which the general
approach of boosting bright areas may not be
the best way to proceed, as shown recently by
Masia and colleagues [MAF∗09]. These cases
include images -such as those shown in Figure
1- which contain large saturated areas, either
because of artistic purposes or due to a bad
exposure.

In this paper we show how a tailored ap-
proach to dynamic range expansion can be
a good alternative in those cases which are
unfavorable for existing rTMOs. We present
two di�erent techniques, one based in Ansel
Adams' Zone System [Ada83], and another
based on detection of salient features, which
allow the user to control dynamic range ex-
pansion based on her own preferences or in-
tended goal. The techniques can also be used
in combination with each other. This pro-
vides a new method for reverse tone map-
ping and an artistic tool where tonal bal-
ance and mood of the �nal HDR image can
be adjusted by the user (in a similar man-
ner to existing tools for LDR or HDR images
[BA83,LLW04,BPD06,LFUS06,FFLS08]).

2 Previous Work

In the last few years, several new reverse
tone mapping techniques have been proposed
(we refer the reader to the existing liter-
ature for a comprehensive review on the
topic [BDA∗09]). Daly and Feng were among
the �rst to address the problem of dynamic
range expansion [DF03, DF04], although the
speci�cs of HDR displays were not taken into
account, given that the �rst prototypes had
not been available yet. Banterle and col-
leagues [BLDC06,BLD∗07] introduce the term
inverse tone mapping since their approach
consists of literally inverting Reinhard's tone
mapping operator [RSSF02]. Subsequent den-
sity estimation of the bright areas of the in-
put LDR image yields an expand-map, which
guides the non-linear range expansion. In al-
most concurrent work, Meylan et al. [MDS06,
MDS07] simplify the problem to a simple high-
light detection by luminance thresholding, ap-
plying a piece-wise linear reverse tone mapping

function that allocates more range to those
highlights.

To extend the techniques to video, Rem-
pel et al. [RTS∗07] combine a Gaussian-
blurred brightness enhancement function with
an edge-stopping function in real time. A bi-
lateral �lter is used instead by Kovaleski and
Oliveira [KO09], while Banterle and colleagues
add temporal coherence to their original ex-
pand map [BLDC08]. Didyk et al. [DMHS08]
label bright areas in the image as di�use sur-
faces, light sources, specular highlights and re-
�ections using a trained classi�er and relying
on additional user intervention. A di�erent
expansion function is then proposed for each
type.

All these techniques share the common in-
sight that bright (or even clamped) areas in
the image need to be identi�ed and boosted
signi�cantly more than the rest of the pix-
els. A di�erent approach was proposed by
Akyüz and colleagues [AFR∗07]: by means of
a series of psychophysical studies, they show
that a simple linear expansion can yield re-
sults that are preferred even over a true HDR
image. Recently, Masia et al. [MAF∗09] show
that although existing rTMOs work well for
under-exposed input data, their performance
drops with over-exposed content. They pro-
pose a simple gamma expansion for those
cases, whose value they derive from the key
of the input image.

In contrast with previous works, we propose
here a higher-level approach to reverse tone
mapping where, in addition to pixel intensity
data, saliency information at object level is
leveraged as well. Coupled with some user
input, this allows us to assign more dynamic
range to the predicted regions of interest.

3 Using the Zone System for rTM

The so-called Zone System was introduced by
Ansel Adams as a guide to produce good pho-
tographs with correct tonal values [Ada83].
Exposure is the main factor which determines
the way in which the luminance values of the
scene are �nally mapped to the limited range
of values which can be reproduced by the pho-



Figure 1: Examples of images containing large saturated areas.

tograph; choosing the right exposure is there-
fore one of the most important concerns of a
photographer. Common exposure meters are
designed to aid in this task by measuring lu-
minance values of the scene (or object of in-
terest) and suggesting the lens aperture and
shutter speed values. However, irrespective
of the scene -its lighting or content-, the val-
ues provided by an exposure meter are always
such that the object of interest will appear
as middle gray in the �nal image, which in
many cases will not be the adequate election.
A simple example which illustrates this prob-
lem is that of photographing a black and white
checkerboard and a scene which is all black ex-
cept for a white square: the same exposure set-
tings should be used in both of them, yet the
reading of an exposure meter would give very
di�erent exposure settings for each one. Ansel
Adams' Zone System provides a simple way
of, using this middle gray reading of exposure
meters, choosing the best exposure settings.
This system is not only a tool for photogra-
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Figure 2: Division of luminance in zones according
to Ansel Adams' System.

phers still widely in use today [Joh99,Gra97],
but also a formalization of sensitometry prin-
ciples which provides deep insight into how
mapping of tonal values works. Reinhard et
al. [RSSF02] already rely on it as a basis for
their well-known tone mapper, and posterior
works on interactive tone management have
also built on this system [LFUS06]. Following
Adams' technique the luminance values in a

scene can be divided into ten di�erent lumi-
nance zones (0 through IX, see Figure 2) ac-
cording to the equation given by Koren [Kor]:

p=((exp(v sin(π zone−1
16 )−1)/(exp(v)−1))ψ, (1)

where p represents the zone limits in normal-
ized pixel luminances and ψ is the encoding
function responsible for non-linearities in the
LDR values (usually the inverse of a γ func-
tion). The value v = 5.25 is set so that zone
V on a properly calibrated monitor appears
as middle gray [Ada83], de�ned as 21% of the
maximum screen brightness level (this is simi-
lar to 18% re�ectance referenced to 90% white,
which is pure white on good photographic pa-
per). Equation 1 is designed so that input
values of zero and one map to zones 0 and
IX respectively, while the sine function is re-
sponsible for the compression required at high
pixel levels. Once the luminance range of the
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Figure 3: Left : Input LDR image. Right : The
result of luminance decomposition for zone-based
reverse tone mapping.

LDR input image is divided in zones according
to Equation 1 (see Figure 3) the reverse tone
mapping process is done by assigning di�er-
ent expansion functions to the di�erent zones.
Although in theory these functions could be
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Figure 4: Zone-based reverse tone mapping. Left : HDR image obtained by linearly expanding luminance
values, and corresponding expansion function. Top center : Original LDR image. Right : HDR image
obtained with a piece-wise linear expansion function based on the Zone System, and corresponding graph
showing this expansion function.

as complex as desired, we choose to use linear
functions for each zone, as they o�er a good
balance between simplicity and control over
the expansion. Thus, the resulting rTM func-
tion is piece-wise linear. The darkest and the
brightest zones (0 and IX, respectively) of the
LDR image are mapped to the lowest and the
highest luminance values of the HDR display.
A second constraint is that the rTM function
must be monotonically increasing, as other-
wise gradient reversals may appear that spoil
the �nal depiction. Expansion is performed on
the luminance channel, and the RGB channels
are then recovered. Saturation can be tuned
when recovering chromaticities in order to ob-
tain the best depiction. Adjusting the slopes
of each of the zones may seem like an involved
process; however, in the end it somehow re-
sembles what photographers constantly do, as
it translates to assigning ranges of the HDR
image luminance to each zone of the LDR in-
put image. Besides, the calculation of the re-
sulting HDR image is almost immediate, thus
allowing the user to try di�erent curves be-
fore choosing the �nal one. As an example,
Figure 4, right shows an HDR image obtained
by using a piece-wise linear curve on which

only three values were speci�ed: Zone IV be-
ing assigned 10% of the HDR image luminance
range, Zone VI 40% of that range, and Zone
VII 60% of it, which translates to adjusting
three points of the LDR�HDR curve shown.
We can also appreciate how this simple tuning
of the rTM function yields a more appealing
depiction than the linear scaling (shown to be
on par in subject preference with the HDR im-
age itself by Akyüz and colleagues [AFR∗07]).
Additionally, this zone-based expansion can
also be used as part of a bigger rTM frame-
work, as examples in Section 5 show.

4 Content-aware rTM

As noted before, the general approach in rTM
is to allocate most of the additional dynamic
range that an HDR display o�ers to saturated
areas in the scene. However, this may not al-
ways be the optimal choice. To our knowl-
edge, none of the previous techniques have
taken into consideration the semantics of the
scene. In an image where a large region of it
is saturated, such as the leaf in the snow in
Figure 1, treating in a di�erent way the ob-
ject of interest (in this case the leaf) and the



saturated background (the snow) can lead to
more visually appealing results than boosting
the saturated area while leaving the leaf nearly
untouched. The same reasoning applies to the
rest of the images in Figure 1, and in general to
images which, either as a result of the artist's
choice, or because of wrong exposure, contain
large saturated areas. Moreover, when dealing
with these type of images, linearly expanding
the dynamic range (which in general terms is
the other rTM alternative o�ered by the liter-
ature) would result in a signi�cant loss of vis-
ible contrast, which is a crucial characteristic
of these type of images.
We therefore propose to use a higher-level

approach in these cases, taking into account
the content of the scene and detecting the ob-
ject of interest in order to use di�erent reverse
tone mapping functions for it and for the back-
ground. To separate the region of interest
from the background a saliency detector can
be used.

4.1 Detecting salient features

Saliency detection techniques pursue the ob-
jective of detecting those regions where the
viewer's attention concentrates when looking
at the image. Even though it is an active
�eld where research continues to o�er new and
improved methods, a series of detectors exist
which are able to o�er convincing results in a
wide variety of images. In general, saliency de-
tection is performed by developing more or less
complex models of the human visual system
and using them in combination with image
metrics. Most models of attention are based
on the fact that at the �rst stage of visual at-
tention low-level visual features (i.e. edges,
intensities, orientations) are extracted. Fol-
lowing this, many existing methods obtain low
level features on a �rst stage, and on a second
stage they compute saliency based on these
features, as does the well-known work of Itti et
al. [IKN98]. However, for many purposes it is
necessary to perform a third stage in which ob-
ject segmentation is applied to extract salient
objects instead of just a map of salient loca-
tions. In our case the need for this third stage
in the saliency detection is obvious, as we look

for an accurate separation between the object
of interest and the background. From within
the saliency detection techniques developed in
the last years, we found two of them to meet
our needs and applied them to our content-
aware reverse tone mapping framework. They
are both brie�y summarized below.

Learning-based saliency detection.

This method, introduced by Liu and col-
leagues [LSZ∗07], delivers, for each input
image I, a binary saliency map A = ai, where
ai takes values 1 or 0 depending on whether
each pixel belongs or not to the salient object,
respectively. In essence, they formulate the
problem as a Conditional Random Field
(CRF) in which P (A|I) is inferred using a
combination of salient features. Learning
using a large training database is used to
determine the optimal linear combination of
the computed salient features.

Given an image I, whose saliency is to be
computed, the objective is to obtain a binary
saliency mask A. To do this P (A|I) is com-
puted as:

P (A|I) =
1

Z
exp(−E(A|I)), (2)

where Z is the partition function (equivalent
to a normalizing factor) and the energy E(A|I)
is de�ned as:

E(A|I) =
∑
i

K∑
k=1

λkFk(ai, I)+
∑
i,i′

S(ai, ai′ , I).

(3)
The �rst term of Equation 3 corresponds to
the linear combination of saliency features, so
that λk are the coe�cients which are calcu-
lated by learning and Fk(ai, I) are the K fea-
ture functions employed. As for the second
term, i and i′ denote two adjacent pixels, and
S(ai, ai′ , I) is intended so that the pixels in
the homogeneous inner part of the salient ob-
ject are included as salient ones. The function
S is thus designed so that the likelihood that
two adjacent pixels are assigned di�erent la-
bels decreases the more similar in color the
pixels are.

The feature functions Fk follow the expres-



sion:

Fk(ai, I) =

{
fk(i, I) ai = 0

1− fk(i, I) a1 = 1
, (4)

with fk(i, I) being a di�erent function depend-
ing on the feature computed but always taking
values within the [0, 1] interval. In their work,
Liu et al. choose to use three di�erent feature
functions at di�erent levels: multi-scale con-
trast at local level, center-surround histogram
at regional level, and color spatial distribu-
tion at a global level. The experiments per-
formed in their work show how the combina-
tion of the three yields an optimal result. Fig-
ure 5 (bottom row) shows an example of these
feature functions used and the �nal saliency
mask obtained from them. Training has

Figure 5: Saliency detection with the di�erent
methods. Top left : Input image. Top right :
Saliency detection using the Saliency Cuts algo-
rithm. Bottom row : Saliency detection using the
learning-based saliency detection approach (im-
ages from the saliency database publicly avail-
able at http://research.microsoft.com/∼jiansun/).
Further details can be found in the text.

to be performed for the CRF in order to ob-
tain the coe�cients λk which determine the
in�uence of each feature function. To do this,
the training set is a large database of images
(ca. 21,000 images) where the salient object
has been manually labeled. The obtention of
λk is posed as a maximization problem where
the objective function is the sum of the log-
likelihood (details on how to solve the opti-

mization problem can be found in their paper):

λ =

λ1

λ2

λ3

 = argmax
λ

∑
n

logP (Aj |Ij ; λ),

(5)
where Ij , j = 1..N , refer to the images in
the training set and Aj to their correspond-
ing saliency binary masks.

Saliency Cuts. This method, presented by
Fu et al. [FCLL08] is essentially a combination
of two techniques: the use of graph cuts for ob-
ject segmentation [BJ01,RKB04] and the spec-
tral approach to saliency detection of Hou et
al. [HZ07].

Interactive graph cuts methods pose object
segmentation as a minimal graph cuts prob-
lem. The nodes of the graph are formed by
image pixels, and the two terminal nodes {s, t}
correspond to object and background, respec-
tively. These marking of pixels as object or
background by the user constitute the hard
constraints on the problem, while soft con-
straints which take into account boundary and
region information are also incorporated. The
problem of �nding minimal cuts in the graph is
then solved via a max��ow algorithm [BK04].

As for the saliency detection, following the
spectral residual approach to the problem the
saliency map is computed as:

S(x) = g(x) ∗ F−1[exp(R(f) + P (f))]2, (6)

where R(f) is the spectral residual, obtained
as L(f) − A(f), L(f) being the log spectrum
of the input image (after downsampling it)
and A(f) being the general shape of log spec-
tra. g(x) is a Gaussian �lter used to smooth
the �nal saliency map, F−1 denotes the In-
verse Fourier Transform, and P (f) represents
the phase spectrum of the image (the reader
can refer to the original paper for a compre-
hensive description). In the Saliency Cuts
implementation this map S(x) is then bina-
rized to obtain an object saliency map So(x).
This binary saliency map, together with the
auto-labeling used for the background and the
salient object when performing the segmenta-
tion, can be seen in Figure 5 (top right).



The idea behind the Saliency Cuts frame-
work is that even though interactive graph
cuts can yield very accurate segmentations
when proper priors are used, it usually requires
a skillful user to select the appropriate regions
to feed the algorithm. However, saliency re-
gions detected by the algorithm by Hou and
colleagues can serve as seeds to the graph cuts
segmentation process, thus obtaining an au-
tomatic and accurate separation between the
salient object and the background. The limi-
tations of the method lie in the fact that they
can only detect a single object and in their
assumption that the salient object is at the
center of the image, while the sides are always
assumed to belong to the background.

4.2 Expanding the dynamic range

Once the division in object of interest and
background has been performed, di�erent ex-
pansion functions can be used for each. These
expansion functions can be of any type. Given
that we are focusing on an interactive ap-
proach where the user guides the reverse tone
mapping process, we choose again to use piece-
wise linear functions after a separation in lu-
minance zones as explained in Section 3. Re-
sulting HDR images obtained with this rTM
framework and the corresponding saliencies
and expansion functions are shown in the Re-
sults section.

5 Results and Discussion

Figure 6 shows an example of a complete
pipeline using our rTM approach, combining
the two techniques described in the previous
sections. The original image is segmented
yielding a binary mask containing the salient
object, and a division in luminance zones of
the input image is performed. Next, the user
can adjust the range of luminance in the HDR
�nal image that will be assigned to each zone,
both for the seals and for the background inde-
pendently. This allows the user to easily ma-
nipulate the tonal balance of the image to get
the best depiction. In this case a non-linear
curve (shown in blue in the graph) has been

applied to the seals, thus increasing their con-
trast and making them more salient; the snow
has been just linearly expanded. Segmenta-
tion has been performed using Saliency Cuts
(seeds used for the foreground and background
are shown in blue and red, respectively). Even
though both of the saliency detection meth-
ods presented produce segmentations accurate
enough for our purposes given input images
which are not excessively complex, for increas-
ing complexity (either morphological or re-
lated to luminance values) manual segmenta-
tion may be necessary. The presence of more
than two salient objects in the image also re-
quires a manual segmentation, as the meth-
ods discussed cannot segment more than one
object. In the results presented in Figure 7
the object of interest was segmented manu-
ally and, again, di�erent zone-based piece-wise
linear expansion functions were used for the
salient object and for the background.

The interactive nature of the approach pre-
sented implies that the functions for reverse
tone mapping, which determine how the high
dynamic range image will look, are adjusted
and tuned with low dynamic range renditions
of the images as feedback. This is reasonable
due to the fact that recent psychophysical ex-
periments have demonstrated that the subjec-
tive quality of HDR images that have been
generated from LDR images depends more on
the presence of absence of spatial artifacts
than on the exact luminance values, and thus
a reasonably predictive evaluation of an HDR
image can be done with an LDR depiction of
it [MAF∗09].

6 Conclusions and Future Work

In this work we have presented an interactive
approach to reverse tone mapping which can
be useful for a wide variety of images, espe-
cially those containing large saturated areas.
The basis of our method is inspired by pho-
tographer Ansel Adams' well-known Zone Sys-
tem, which allows us to divide the luminance
range of the image into zones. With the aid
of this division in zones, and in an interactive
process, a piece-wise linear function to expand



Figure 6: Complete pipeline using our rTM approach. From left to right : Input LDR image, auto-labeling
of salient object (blue) and background (red) and binary saliency mask, expansion functions for the salient
object (blue) and the background (red), and �nal HDR image. Original image copyright of National
Geographic.

Figure 7: Reverse tone mapping using di�erent zone-based expansion functions for the salient object and
the background. From left to right : Input LDR image, manually obtained saliency mask, expansion
functions for the salient object (blue) and the background (red) and �nal HDR image. Original image
courtesy of Leandro Fessia, all rights reserved.

the LDR image can be provided by the user.
Furthermore, our technique includes the pos-
sibility of using higher-level information as a
guide for the expansion, segmenting the im-
age in the object of interest and the back-
ground and using di�erent expansion functions
for each. This interactive approach o�ers a
tool to expand the dynamic range of a scene
with signi�cant yet intuitive control over the
�nal result. Besides, being able to freely ad-
just the luminance ranges of the zones makes
it possible to obtain very di�erent HDR depic-
tions of the same input image, potentially pro-
viding an artistic tool for photographers and
artists in general.

Regarding future work, adding a �tting step
of the piece-wise linear rTM functions pro-
posed to smoother ones would be desirable.
In the same sense, when dealing with content-
aware rTM, taking care of the luminance tran-
sitions in the boundary between the objects of

interest and the backgrounds would be nec-
essary, either by somehow smoothing the bi-
nary mask or by placing constraints to the re-
lationship between both -the object's and the
background's- expansion functions. It would
also be interesting to work in Yxy color space
instead of RGB to automatically keep ratios
between color channels constant. Besides,
thorough comparison between the proposed
rTM technique and existing reverse tone map-
ping operators by means of psychophysical ex-
periments would certainly be interesting for
the �eld. Finally, salient object detection is an
open �eld of research, and our approach would
de�nitely bene�t from future advances in this
�eld. Other lines of future research could in-
volve the design of a contrast-based rTMO,
following the �ndings of the work by Mantiuk
et al. [MMS06], which shows promising results
in the �eld of contrast processing of HDR im-
ages, working in visual response space.
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