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Figure 1: We introduce a scalable content-aware video retargeting method. Here, we render pairs of original and deformed motion trajecto-
ries in red and blue. Making the relative transformation of such pathlines consistent ensures temporal coherence of the resized video.

Abstract

The key to high-quality video resizing is preserving the shape
and motion of visually salient objects while remaining temporally-
coherent. These spatial and temporal requirements are difficult to
reconcile, typically leading existing video retargeting methods to
sacrifice one of them and causing distortion or waving artifacts.
Recent work enforces temporal coherence of content-aware video
warping by solving a global optimization problem over the entire
video cube. This significantly improves the results but does not
scale well with the resolution and length of the input video and
quickly becomes intractable. We propose a new method that solves
the scalability problem without compromising the resizing quality.
Our method factors the problem into spatial and time/motion com-
ponents: we first resize each frame independently to preserve the
shape of salient regions, and then we optimize their motion using a
reduced model for each pathline of the optical flow. This factoriza-
tion decomposes the optimization of the video cube into sets of sub-
problems whose size is proportional to a single frame’s resolution
and which can be solved in parallel. We also show how to incorpo-
rate cropping into our optimization, which is useful for scenes with
numerous salient objects where warping alone would degenerate
to linear scaling. Our results match the quality of state-of-the-art
retargeting methods while dramatically reducing the computation
time and memory consumption, making content-aware video resiz-
ing scalable and practical.

Keywords: content-aware video retargeting, scalability, temporal
coherence

Links: DL PDF WEB VIDEO

1 Introduction

Content-aware video retargeting enables to resize videos and
change their aspect ratios while preserving the appearance of vi-
sually important content. It has been the topic of active research in
the recent years due to the proliferation of video data presented in
various formats on different devices, from cinema and TV screens
to mobile phones. The key to high-quality video retargeting is
preserving the shape and motion of salient objects while retain-
ing a temporally coherent result. These spatial and temporal re-
quirements are difficult to reconcile: when the resizing operation
is optimized to preserve the spatial content of each video frame in-
dependently, corresponding objects in different frames inevitably
undergo different transformations, and temporal artifacts such as
waving may occur. Perfectly coherent resizing, such as homoge-
neous (linear) scaling or cropping, distorts all image content. It is
difficult and sometimes impossible to avoid both spatial and tem-
poral artifacts [Wang et al. 2009], and striking a good balance is a
challenging problem.

It is possible to optimize spatial shape preservation and temporal
coherence together, as shown by Wang et al. [2010]. However, their
method formulates a global optimization on the entire video cube,
which does not scale well and becomes intractable as the resolution
or the length of the video increase. Other existing retargeting meth-
ods usually have to sacrifice one of the goals. Content-aware crop-
ping potentially discards visually important objects and introduces
virtual camera motion; it is very efficient since only a limited num-
ber of parameters (panning, zoom factor) need to be solved for each
frame. Other methods employ locally-varying image deformation
that adapts to the saliency information, and limit the handling of
temporal coherence to a small number of frames at a time [Shamir
and Sorkine 2009]. The problem size then becomes linear in the
resolution of a single frame, making these methods scalable, but
temporal coherence may suffer substantially since object motions
are non-uniformly altered using such “windowing” approaches.

In this paper, we propose a new content-aware video retargeting
method that is scalable without compromising temporal coherence.
Our key insight is that the problem can be factored into its spa-
tial and time/motion components, both of which can be solved ef-
ficiently and scalably. Our approach handles spatial and temporal
components of the problem sequentially. First, we independently
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optimize the spatial resizing of each frame without regarding the
motion information. We then analyze the resulting motion trajec-
tories in the resized video, i.e., the deformed pathlines of the input
optical flow. We optimize the pathlines such that their shapes and
offsets to neighboring pathlines are consistent with the input video
yet also close to the result of the first stage. This may appear as an
expensive optimization, but since we use a reduced model for each
pathline, the number of variables is linear in the spatial resolution of
the video. The final step our algorithm resolves per-frame retarget-
ing using the optimized pathlines as guides, thereby consolidating
them into the final coherent result.

In addition to warping the video, we also show how to incorpo-
rate content-aware cropping into the optimization process without
giving up scalability. As observed by Wang et al. [2010], crop-
ping may be necessary in cases where the video is crowded with
multiple prominent objects, or if their motion trajectories overlap
with the entire background. Spatially-varying warping operations
inevitably degenerate to linear scaling or cause temporal artifacts in
such cases. We use the definition of temporal persistence of [Wang
et al. 2010] to determine critical regions of all video frames. To
leverage cropping, we first warp video frames to a natural size,
where this size may be larger than the target resolution. We then
pan the video frames to ensure that all critical regions fit into the
target cube and crop off the regions that fall outside the cube. We
augment the optimization such that cropping and warping are com-
bined together efficiently.

Our results match the quality of state-of-the-art temporally-
coherent retargeting methods while dramatically reducing the com-
putation time and memory consumption. We visually compare our
results with the recent techniques in the accompanying videos and
report the statistics on time and space costs in Sec. 5. The scala-
bility of our approach makes it practical to retarget videos of high
resolution and length.

2 Related work

Image retargeting. Content-aware image retargeting forms the
basis of our approach, as we use it to optimize the spatial con-
tent appearance of each frame. The methods for image retar-
geting are generally classified into discrete and continuous tech-
niques [Shamir and Sorkine 2009]: discrete methods remove or in-
sert pixels to change the aspect ratio, while continuous approaches
compute spatially-varying warps with the desired image dimen-
sions as boundary constraints. Cropping [Chen et al. 2003; Liu
et al. 2003; Suh et al. 2003; Santella et al. 2006], seam or region
carving [Avidan and Shamir 2007; Rubinstein et al. 2008; Pritch
et al. 2009] and patch-based approaches [Simakov et al. 2008; Cho
et al. 2008; Barnes et al. 2009] all discard, duplicate and/or rear-
range discrete portions of the image to minimize the distortion of
salient image parts. They achieve excellent results, especially when
several operators are combined [Rubinstein et al. 2009; Dong et al.
2009; Wu et al. 2010], as confirmed by a recent comprehensive user
study [Rubinstein et al. 2010]. However, achieving temporal coher-
ence for discrete approaches is challenging in our context, since the
forward and backward mappings between the original and resized
images are not each other’s inverses. This precludes us from using
the discrete approaches, as we rely on two-way correspondence to
be able to optimize the video motion pathlines.

We can use any method from the continuous category for per-frame
resizing, such as [Gal et al. 2006; Wang et al. 2008; Zhang et al.
2009; Karni et al. 2009] or the per-frame variants of the video re-
sizing methods [Wolf et al. 2007; Krähenbühl et al. 2009]. These
techniques formulate warp energy functionals that penalize distor-
tion of salient regions, excessive bending of lines, self-intersections

and more, and compute the image deformation that minimizes the
energy. The optimization is usually done on a discrete mesh over-
laid on the image, and full correspondence between the input and
the resized image is retained. Moreover, the advantage of the con-
tinuous energy minimization approach is easy customization of the
energy terms to the specific task at hand.

Video retargeting. Video retargeting is more challenging than
image retargeting because of the additional temporal coherence re-
quirement and the need to preserve object motions. On the other
hand, video offers more play room for cropping, because objects
cropped in one frame might be visible in the next. This motivated
Wang et al. [2010] to define temporal persistence, which we also
use in this work: it lets cropping to shorten the time segment in
which an object is visible, as long as it is present in some minimal
number of frames. Other cropping approaches [Liu and Gleicher
2006; Deselaers et al. 2008; Gleicher and Liu 2008] focus on max-
imizing the amount of visually salient content within each cropped
frame while optimizing the introduced virtual camera motion.

As discussed earlier, temporal coherence makes content-aware
video resizing expensive, since multiple, if not all frames must
be considered simultaneously. Earlier works tried to retarget tem-
porally adjacent regions consistently. Wolf et al. [2007] and
Krähenbühl et al. [2009] used continuous warping with such consis-
tency constraints, and Rubinstein et al. [2008] iteratively carved the
discrete video cube using graph-cut optimization. Such approaches
can be made efficient if only a limited number of previous frames
is used to constrain the consistency of the next frame; streaming
application then becomes possible [Zhang et al. 2008; Krähenbühl
et al. 2009]. However, this leads to temporal artifacts since motion
information is largely ignored.

Incorporating the optical flow alleviates these artifacts but intro-
duces the scalability problem. Wang et al. [2009] detected cam-
era and object motions and ensured consistent resizing of promi-
nent foreground objects. This requires optimization on the entire
video cube; Wang et al. [2009] implemented a “sliding window”
streaming approach, but it does not fully guarantee that objects re-
tain their shape throughout the whole video. To improve coherence,
the streaming technique of Krähenbühl et al. [2009] averaged sev-
eral past and future frames’ saliency maps. Niu et al. [2010] pre-
served camera and object motions while resizing the video frames
sequentially. They encouraged consistent resizing of foregrounds
using a motion history map and maintained the backgrounds by
constraining them w.r.t. the previous frame. Their results are highly
dependent on the first frame because of this sequential processing.

Our approach is related to the crop-and-warp technique of Wang
et al. [2010], which combines cropping and warping in one global
optimization. Like them, we wish to compute the optimal trade-off
between spatial and temporal distortion using energy minimization.
Wang et al. [2010] solve a global optimization on the entire video;
we also regard the whole video volume for motion preservation,
but we factor the optimization into smaller problems, allowing our
approach to scale to a large number of frames.

3 Motion-preserving scalable video warping

Pixel motions between consecutive frames together comprise the
motion information of the video, which is extremely apparent to
the human eye. Our goal is to preserve the coherence of these mo-
tions in the retargeted result and avoid temporal artifacts such as
waving. At the same time, we wish to spatially preserve the shape
of important objects, a goal which may stand in conflict with tem-
poral coherence. We strike a balance through scalable optimization
of these two objectives.



Consider the set of all points in the first frame of the video. We can
trace the pathlines of these points in the optical flow of the video
(they form three-dimensional trajectories, where time is the third
axis). When the video is resized, the pathlines deform; incoherence
of the deformation among the pathlines is what causes temporal
artifacts. If the video is simply linearly resized, all pathlines un-
dergo the same transformation, and offsets between any two path-
lines in each frame are transformed by the same scaling transfor-
mation. The video stays perfectly temporally-coherent, although of
course all depicted objects are squeezed or stretched. On the other
hand, if the offsets between two pathlines are transformed by a de-
formation that varies (i.e., has non-vanishing derivative w.r.t. time),
this creates motion artifacts and incoherence. Temporally-coherent
and content-preserving video resizing should therefore minimize
the temporal derivative of the pathline offset transformation and at
the same time preserve the shapes of salient objects.

We can formulate a discrete formulation of the above principle in
the following way: denote by P the set of pathlines of the optical
flow that we traced in the video; each Pi ∈ P is a sequence of pix-
els Pi = {pm

i ,p
m+1
i , . . . ,pn

i }, where each node pt
i = (xti, y

t
i) is

the position of the traced pixel at frame t. We may seed pathlines
in the first frame of the video (m = 1) and also anywhere in the
middle (m > 1); the pathline ends when the traced point leaves the
frame. We place the seeding nodes on a regular grid and compute
P using the method of Werlberger et al. [2009]. Denote by E the
adjacencies of the pathlines, i.e., {i, j} ∈ E if pt

i and pt
j are neigh-

bors on the seeding grid and at least one of the pathlines Pi,Pj

started at frame t. We would like the offsets pt
i − pt

j all undergo
some scaling transformation Sij for all t (Sij ∈ R2×2 can be a
non-uniform scaling matrix), so the error term can be written as

EP =
∑
{i,j}∈E

n∑
t=m

∥∥(p̂t
i − p̂t

j)− Sij(p
t
i − pt

j)
∥∥2 , (1)

where p̂t
i is the location of pt

i in the resized video. Both the Sij’s
and p̂t

i’s are unknowns here. Combining EP and spatial energy
terms that aim to preserve the shape of salient areas in each frame
would result in a complete video resizing framework. However, this
approach introduces a scalability problem, since all sampled pixels
in all frames are involved in the energy minimization and the entire
video cube must be optimized at once.

Instead, we factor the problem into two separate ones: the spatial
retargeting, which resizes each frame individually while preserving
important objects, and the temporal dimension, which preserves the
relationships between the motion pathlines. Our process consists
of three sequential steps: (1) We retarget each frame separately;
the salient objects are then preserved, but the motion pathlines get
distorted; (2) We optimize the motion pathlines, balancing between
their original and deformed shapes (from step (1)) while striving to
preserve the coherent relationship between neighboring pathlines as
in Eq. 1; (3) We resize each video frame again, using the positions
of the pathline nodes from step (2) as guides. We will see that this
factorization allows to keep the number of variables proportional
to a single frame’s resolution N , so that we need to solve O(T )
independent problems of size O(N) (T being the total number of
frames), which can be done in parallel, as opposed to solving one
optimization problem with O(N · T ) variables.

Step 1: Per-frame resizing. We can employ any image retar-
geting method to resize the individual frames, as long as per-pixel
correspondences between the original and resized images can be
obtained; any variational warping method, e.g. [Gal et al. 2006;
Wang et al. 2008; Krähenbühl et al. 2009; Zhang et al. 2009; Karni
et al. 2009] is suitable, while the discrete approaches are not, since
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Figure 2: The original, linearly scaled, per-frame resized and the
optimal motion pathlines are shown in red, gray, green and blue,
respectively, projected onto the (x, t) plane. Note that the hori-
zontal offsets between the pathlines are consistently reduced in the
linearly scaled and the optimized trajectories.

they do not allow to easily establish the pt
i ↔ p̂t

i correspondence.
We combine the gradient magnitudes of the pixels colors and opti-
cal flow vectors, as well as face detection, to compute the saliency
maps that guide the per-frame retargeting operator. We chose to use
the scale-and-stretch method of Wang et al. [2008] where salient
objects undergo similarity transformations.

Step 2: Optimization of the motion pathlines. Step 1 may dis-
tort motion information since each frame is resized independently
and motion is not considered. We correct the motion pathlines by
optimizing the offset deformation between neighboring pathlines,
encouraging it towards constant scaling, as in Eq. 1 (see Fig. 2).
To reduce the number of involved variables, we model the defor-
mation of each pathline as translation plus scaling along x, y axes:
P̂ = SiPi + ti, thereby reducing the unknowns p̂m

i , . . . , p̂
n
i to

just a single (non-uniform) scaling matrix and a translation vector
per each pathline Pi. We rewrite Eq. 1 into

ΩP =
∑
{i,j}∈E

n∑
t=m

‖((Sip
t
i + ti)− (Sjp

t
j + tj))

− Sij(p
t
i − pt

j)‖2. (2)

We balance between temporal coherence expressed above and spa-
tial shape preservation achieved in Step 1 by considering the dis-
tance to the pathlines resulting from Step 1:

ΩD =
∑
Pi

n∑
t=m

∥∥(Sip
t
i + ti)− qt

i

∥∥2 , (3)

where Qi = {qm
i , ...,q

n
i } is the deformed version of Pi after

Step 1. We minimize ΩP +µΩD to solve for Si,Sij , ti and obtain
the optimized pathlines as

P̂i = SiPi + ti. (4)

The parameter µ balances the spatial and temporal constraints. We
set µ = 0.5 in our system.

Step 3: Motion-guided per-frame resizing. To consolidate the
optimized pathlines into one coherent video, we repeat the content-
aware retargeting of each frame, adding to the warping energy of
frame t the locations of the pathline nodes at time t (p̃t

i) as posi-
tional constraints:

Ωt
H =

∑
Pi

∥∥p̃t
i − p̂t

i

∥∥2 , (5)

where p̃t
i are the final node positions we are optimizing in this step.
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Figure 3: Our cropping and warping process. The target video cube is depicted in pink. To reduce the width of a video (left), our first step is
to warp the frames to a natural size γ (middle left) where this size may be larger than the desired width. To incorporate cropping, we translate
the video frames to allow all critical regions lie within the cube (middle right) and finally discard the outer regions (right).

Discretization details. We overlay regular quad grids on each
video frame; denote their vertices by vt

j . A typical quad size is
20×20 pixels. The vertices of the first frame’s grid are used to seed
the motion pathlines Pi. A pathline may end before the last frame
if the motion trajectory goes outside the frame; as a result, in some
frames there may be grid vertices that have no pathlines in their
surrounding quads. We use such vertices to seed more pathlines to
create a more uniform distribution of pathline samples.

The pathlines are defined at the pixel level yet we use a coarser grid
mesh when computing the warp. Therefore, we represent the path-
line location using the quad vertices surrounding it. Namely, we
use mean-value coordinates pt

i =
∑

k∈V(pt
i)
wt

kv
t
k to reformulate

Eq. 5 in terms of the unknown deformed grid vertices, where V(pt
i)

are the vertex indices of the grid quad that pt
i belongs to. We obtain

the least-squares positional constraints

ΩT =
∑
Pi

∥∥∥∑j∈V(pt
i)
wt

j ṽ
t
j − p̂t

i

∥∥∥2 . (6)

4 Combining crop with per-frame retargeting

As explained in [Wang et al. 2010], video retargeting methods
that strive to preserve both salient spatial content and temporal co-
herence necessarily degenerate into linear scaling when the video
is densely populated with prominent objects or when some fore-
ground objects overlap with the entire background in the course of
their motion. To remedy this, Wang et al. [2010] proposed to com-
bine warp-based resizing with cropping. They determine a critical
region for each frame, which contains active foreground objects or
content that is invisible in the following frames. Non-critical re-
gions are allowed to be discarded; the actual amount of cropping is
weaved into the global optimization problem.

We would like to employ the same technique to improve our re-
targeting results while avoiding global optimization over the entire
video cube. We mimic the logic of the crop-and-warp technique
on a per-frame basis. In the following, we describe the technique
for width-reducing resizing; stretching the video can be achieved
equivalently by reducing its height and then uniformly scaling to
the desired resolution.

We compute the critical regions using the method of Wang et
al. [2010]; the critical regions are contained between two vertical
lines in each frame. Denote by W the original width of the video
and Wtarget the target width. To combine cropping and warping, we
will warp each frame to a width γ that is larger than Wtarget, such
that the content that does not fit into the target video cube will be
discarded. However, we must make sure that all critical regions sur-
vive after retargeting, i.e., their widths after retargeting have to be
smaller than γ. Since the retargeted widths of the critical regions

0 Wtarget
γ β W

Figure 4: W is the input video width andWtarget is the target width.
To determine the natural width γ, we warp each video frame with
soft boundary constraints, with an upper bound β on the resulting
width. The warped frames have different sizes due to the different
saliency maps. We set the natural width γ as the average of the
warped frame widths. The upper bound β ensures that the width
of the critical region is smaller than Wtarget and fits into the target
video cube.

are unknown a priori, we estimate an upper bound β of the desired
width γ, i.e., Wtarget ≤ γ ≤ β. We do this by taking the frame with
the widest critical region and testing different widths until the re-
targeted critical region fits into Wtarget. Specifically, we repeatedly
reduce the frame’s width by 5 pixels using the content-aware image
warping approach. Theoretically, other frames could still have crit-
ical regions larger than Wtarget when retargeted to β, but we found
this heuristic to work well in practice.

We combine cropping into our system by warping each video frame
to a natural width γ. We then pan the video frames such that all
critical regions slide into the target video cube, and we crop the
video. The steps of this process are illustrated in Fig. 3 and 4, and
detailed below.

Step 1: Natural-width frame warping. We pre-warp each frame
independently using a soft constraint on its width to determine the
natural video width γ ≤ β. Specifically, we constrain the x coordi-
nate of the top-left vertex of each frame t to 0 and the bottom-right
one (denoted vt

br,x) softly to Wtarget by using the energy term:

ΩC = λ
∥∥v̂t

br,x −Wtarget
∥∥2 subject to v̂t

br,x ≤ β. (7)

where λ = 0.05 is the weighting factor used in our system. This
least-squares term replaces the original constraints on the x coor-
dinates in the warping method (as mentioned, we employ [Wang
et al. 2008]) while the constraints on y coordinates of the bound-
ary remain the same. Warping with such soft constraints makes the
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Figure 5: This example shows that the quality of our method is compatible to that of Wang et al. [2010] although the results are not exactly
the same. The man is preserved better by [Wang et al. 2010] but the child is preserved better by our method. All results are temporally
coherent, but the linear scaling method squeezes everything. Please refer to the accompanying video for the footage.

widths v̂t
br,x vary from frame to frame, depending on the content

and salience of each frame. Note that the upper bound β makes sure
that all critical regions will fit into the target cube. We set the natu-
ral width γ as the average of the frame widths (Fig. 4). We finally
warp all frames to width γ using our new algorithm presented in
Sec. 3, where the spatial and temporal aspects are both considered.

Step 2: Frame panning. Since Wtarget ≤ γ, we lastly translate
the frames such that each critical region fits into the target cube. To
do this, we detect the frames whose critical regions ended up closest
to the left (right) boundaries and we translate those frames such that
they sit exactly at the left (right) boundary of the target cube. We
call these frames “keyframes” and we smoothly interpolate their
panning to the rest of the video using splines.

Step3: Cropping. We discard the video content outside the tar-
get cube to complete the video retargeting process. Note that the
cropping does not lead to significant content loss, since the content
of the discarded parts persists for a while in the target video in other
frames.

5 Results and discussion

We implemented and tested our algorithm on a desktop PC with
Core i5 2.66 GHz CPU and 8 GB of RAM. Each tested video clip
represents a single scene, since there is no need for coherent re-
sizing across scene cuts. We utilize the method of Rasheed and
Shah [2003] to segment long input videos into individual scenes.

Quality. We ran our algorithm on a large amount of videos, in-
cluding footage with complicated scenes and multiple challenging
motions. We found that our results are compatible to those pre-
sented by Wang et al. [2010], which is the most recent state-of-the-
art content-aware video retargeting method. Due to the different
strategies used to preserve temporal coherence, not all results are
identical, but most of them are similar. In some cases, our results
are even better since the motion pathline optimization is global for
the entire video clip, whereas Wang et al. [2010] apply temporal
constraints only locally (to neighboring frames). We also compare
our method to [Krähenbühl et al. 2009], a highly-efficient online

quad size (pixels) our mem. Wang’s mem. our time Wang’s time
20 × 20 22 Mb 175 Mb 2.2 sec. 24 sec.
10 × 10 100 Mb 688 Mb 10 sec. 63 sec.
5 × 5 432 Mb 3.8 Gb 41 sec. 286 sec.
3 × 3 1.2 Gb — 95 sec. —

Table 1: We resize a 688×288 pixel resolution video with 224
frames using different sizes of grid meshes to compare the costs
of our method and [Wang et al. 2010]. The costs of optical flow
and saliency computation are not included since they are not our
contributions and are equal for both approaches. A dash means
that the method cannot handle certain resolutions.

algorithm that supports streaming. Since this method does not con-
sider motion information of optical flows, it may inevitably lead
to waving artifacts. We show the comparisons in Figures 5, 6 and
our accompanying videos. Please note that the waving artifacts can
only be observed in videos.

Performance. As discussed earlier, although all motion pathlines
are solved together to retain coherence, the unknowns of each path-
line are only a scaling matrix and a translation vector, and we need
an additional scaling matrix per edge between neighboring path-
lines. Hence the number of variables for temporal optimization is
linear in the video resolution N , with a small constant (there are 2
unknowns for each scaling matrix and 2 more for each translation
vector). The subsequent per-frame resizing step requires solving
O(T ) independent optimizations, each having O(N) unknowns,
where T is the number of frames. Hence, our method can run in
parallel. By contrast, the method of Wang et al. [2010] requires
solving an optimization problem with O(N · T ) unknowns and is
not easily parallelizable. We thus achieve higher performance, and
our technique scales linearly. This advantage is especially notable
when handling long videos, as can be seen in Fig. 7: the time spend
per frame remains more or less constant as the video length in-
creases. We show the comparative timing statistics in Table 1.

We minimize the objective functionals using a CPU-based conju-
gate gradient solver. Since neighboring frames usually have similar
deformations, we consider the result of the previous frame as an
initial guess for the next one, such that the optimization can con-
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Figure 6: We compare our method with [Krähenbühl et al. 2009] and [Wang et al. 2010]. Since [Krähenbühl et al. 2009] does not explicitly
take motion information into account, the resized tree widens when the scene is moving left. In contrast, [Wang et al. 2010] and our method
do not have this problem.

verge in fewer iterations. We do not apply a direct solver like pre-
vious works, since it cannot benefit from a good initial guess, and
matrix factorization is expensive. In addition, we do not employ
the GPU to speed up the solver due to the overhead of transferring
data between the main memory and the graphics memory, which
is problematic in our setting where we solve moderately-sized but
numerous per-frame optimizations. Instead, we developed the code
with OpenMP to benefit from CPU-based parallel processing.

Memory consumption. Our algorithm never requires the entire
video cube at once and greatly saves memory space compared to
global cube optimization. We show the peak memory usage statis-
tics in Table 1 for different grid mesh sizes. Peak usage occurs
during the optimization of motion pathlines since each offset be-
tween neighboring pathlines is considered. Compared to [Wang
et al. 2010], our memory consumption is significantly lower, even
when using a high-resolution grid mesh. It is also worth noting that
our memory footprint size is nearly independent of the video length,
thanks to the constant number of unknowns per each motion path-
line. In contrast, the memory consumption of the method in [Wang
et al. 2010] is proportional to the video length since all deformed
grid vertices need to be solved simultaneously. As can be seen, the
method of Wang et al. [2010] fails for large resolutions (or large
number of frames) due to exceeding memory requirements.

Limitations. Our system solves video frames individually to
achieve scalability. In order to preserve temporal coherence, how-
ever, it has to optimize motion pathlines over the entire clip, as well
as compute critical regions of all frames in advance. This prevents
us from realizing a streaming implementation which is necessary
for online retargeting. It would be possible to consider the mo-
tion pathlines in a bounded number of frames. In our experiments,
the waving artifacts are hardly noticeable for window sizes of 100
frames and above. However, when combining with cropping, the
maximal critical region size may dramatically differ between differ-
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Figure 7: We test the scalability of our method by plotting the num-
ber of processed frames per second when retargeting increasingly
long portions of a 900-frame video clip. The dashed line shows the
average FPS. The FPS remains more or less constant (the actual
time somewhat depends on the content of the video).

ent parts of the video. Without the examination of all video frames,
the combination ratios between cropping and warping would be in-
consistent and the resulting distortions would be noticeable even for
large window sizes.

6 Conclusions

We introduced a content and motion aware video retargeting sys-
tem which achieves scalability. Thanks to the factorization of the
problem into individual per-frame optimization of spatial content
and motion pathlines for temporal coherence, a global optimization
of entire video cube is no longer necessary, thereby greatly reduc-
ing the computational cost and memory consumption. This is an
important advantage in view of the increasing resolution of videos
commonly available to consumers, both professional footage such
as news or entertainment programs, and casual self-recorded video.
Retargeting a video may require user input to specify semantically
meaningful or interesting regions according to the artist’s inten-
tions; automatic saliency measures are still imperfect. Having an



interactive algorithm to resize videos is thus important such that
editing the saliency information results in immediate feedback. In
future work, we would like to extend our method and design a sys-
tem capable of streaming-based online retargeting.
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