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Abstract
We propose the space of axis-aligned deformations as the meaningful space for content-aware image retargeting.
Such deformations exclude local rotations, avoiding harmful visual distortions, and they are parameterized in 1D.
We show that standard warping energies for image retargeting can be minimized in the space of axis-aligned de-
formations while guaranteeing that bijectivity constraints are satisfied, leading to high-quality, smooth and robust
retargeting results. Thanks to the 1D parameterization, our method only requires solving a small quadratic pro-
gram, which can be done within a few milliseconds on the CPU with no precomputation overhead. We demonstrate
how the image size and the saliency map can be changed in real time with our approach, and present results on
various input images, including the RETARGETME benchmark. We compare our results with six other algorithms
in a user study to demonstrate that the space of axis-aligned deformations is suitable for the problem at hand.

1. Introduction

Image retargeting resizes an input image to a given tar-
get resolution, where the aspect ratio changes. In order to
avoid distorting the entire image by homogeneous scaling,
or discarding important image parts by cropping, content-
aware retargeting techniques were developed. These meth-
ods selectively deform the input image into the target di-
mensions according to a saliency map, preserving the shape
of important image components while distorting unimpor-
tant background content. A few general methodologies for
retargeting were proposed in the recent years, such as dis-
crete carving/shifting, continuous warping and hybrid ap-
proaches [SS09]; some algorithms are even available in
modern commercial image editing software [Ado10]. To
help assess and further improve content-aware retargeting,
a number of representative techniques were recently bench-
marked and compared in a large-scale user study [RGSS10].

When analyzing the plethora of recent image retargeting
approaches and their results, three prominent facts and chal-
lenges become apparent: (i) The quality of the resizing re-
sults depends immensely on the saliency map. Nearly every
approach proposes its own variant of importance map com-
putation, but it is disjoint from the content-aware resizing
operator itself and can be easily exchanged. It is evident that
a “silver-bullet” automatic saliency detection method does
not exist, i.e., each saliency computation technique will fail
on some input images, and user-guided importance specifi-
cation is desired in such cases [SS09]. (ii) Fast or even re-

original saliency map

retargeting to 200% width using axis-aligned deformations

Figure 1: Retargeting an image to wide format. The impor-
tance map was generated using a gradient filter and refined
by a few strokes. The computation of the retargeted image
took 4 ms, and the overall process took 30 sec of user time.

altime image resizing methods are extremely valuable, since
they are more easily amendable to video retargeting and al-
low interactive control of the resizing process [KLHG09].
(iii) The robustness of the retargeting operator is another
key factor that affects the quality of the results, namely the
smoothness, predictability and avoidance of unwanted self-
intersections (foldovers) in the resized image. Preventing
foldovers appears to be a difficult task [CFK∗10], requir-
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ing complex, time consuming optimization that is not always
guaranteed to be feasible and hence may not be robust.

This work focuses on continuous (warp-based) retarget-
ing, which readily allows controlling the smoothness of the
retargeting operator. Discrete approaches such as [RSA08,
SCSI08, BSFG09, PKVP09] are excellent at resizing and
general editing of images especially rich in texture content,
but they are known to sometimes have smoothness artifacts,
and are typically slower than warping approaches.

It may seem that a high-quality, foldover-free image retar-
geting method based on warping cannot run in realtime due
to the computational costs involved. In particular, prevention
of self-intersection poses a nonlinear constraint in the opti-
mization. The contribution of our work is to show that this
does not have to be the case, and even realtime interactive
adjustment of the saliency map is possible, if an appropriate
space of image deformations is taken for the retargeting op-
erator. Observing the behavior of the state-of-the-art warping
methods [KFG09, KLHG09, CFK∗10], we notice that they
hardly introduce any local rotations in the image deforma-
tion. This indeed makes sense, since if the resizing operator
contains local, varying rotations, they manifest themselves
as “swirls”, which are highly noticeable distortion artifacts.
Lack of local rotation leads the retargeting deformation to
be axis-aligned, i.e., the isoparametric lines remain straight
and parallel after deformation, only changing the spacing be-
tween themselves (see Fig. 2). Our key observation is there-
fore, that the space of axis-aligned deformations is the ap-
propriate space for content-aware image retargeting.

This observation has important consequences. First, the
deformation space can be parameterized in 1D, since an
axis-aligned deformation is determined by the intervals be-
tween the vertical and horizontal isoparametric lines. Pre-
vious retargeting methods parameterize the deformations in
2D, leading to optimization problems in the order of M×N
unknowns, where M, N are the vertical and horizontal input
image resolution, whereas a 1D parameterization necessi-
tates only O(M+N) unknowns. Further, preventing foldovers
and controlling the stretching of axis-aligned deformations
is simple and robust, since it merely poses linear inequal-
ity constraints on the isoparametric line spacing. These con-
straints can always be posed in a feasible way, contrary to
the previously proposed 2D constraints on lack of foldovers.

In this work, we show how to build a complete im-
age retargeting system based on the axis-aligned deforma-
tion space. We demonstrate that several deformation en-
ergies, meaningful for the content-aware retargeting appli-
cation, such as the as-similar-as-possible and the as-rigid-
as-possible energies, can be effectively optimized in this
space while respecting foldover-free constraints. The result-
ing optimization problems are cast as small quadratic pro-
gramming (QP) problems thanks to the 1D parameterization,
which allows for extremely efficient CPU-based computa-
tion using off-the-shelf QP solvers. Our image retargeting

[KFG09] [CFK∗10]

[WTSL08] our method

Figure 2: Excluding local rotations leads the retargeting de-
formation to be axis-aligned. The Dogs dataset is retargeted
to 50% width using recent techniques and our method. Ob-
serve that although previous approaches do not explicitly en-
force it, their deformations are nearly axis-aligned.

prototype runs in real time without requiring any precompu-
tation and enables interactive realtime resizing and editing of
the saliency map. Our solution is robust, since we minimize
convex energies under feasible constraints, guaranteeing the
convergence of the solver and quality of the results. We test
our method on the RETARGETME benchmark [RGSS10],
showing that results comparable or better than state-of-the-
art can be obtained within few milliseconds.

2. Previous work

Warp-based content-aware retargeting methods define an en-
ergy functional, and then minimize this functional given the
boundary constraints of the target image size. The energy
typically measures local deviation of the warp from a shape-
preserving deformation such as translation [GSCO06], rigid
transformation [KFG09] or similarity [WTSL08, KFG09,
ZCHM09, KLHG09], weighted by the importance map.
Additional energy terms are introduced to mitigate arti-
facts such as bending of straight lines [WTSL08, KLHG09,
CFK∗10, LJW10] or edge blurring [KLHG09]. The en-
ergy is discretized over the 2D image domain, usually em-
ploying regular grids and finite differences (few works,
e.g. [LJW10], use irregular triangle meshes). Earlier warping
methods worked with quadratic energies which are highly
efficient (only a sparse linear system needs to be solved,
and its factorization can be precomputed and reused for ar-
bitrary target image dimensions), but regrettably lead to arti-
facts, self-intersections and foldovers. Foldovers sometimes
even result in “spills” of the retargeted grid outside of the
image boundary; the spills are cropped, but the discontinu-
ity in the result remains visible (see our Fig. 3 and Fig. 5
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Figure 3: Top: the Canalhouse dataset retargeted using
[ZCHM09]. Three foldovers occur in the top and bottom
parts. Bottom: the foldover-free result of our algorithm.

in [WTSL08]). Similar techniques are used to retarget 3D
models [KSSCO08].

Later techniques moved away from the linear least-
squares formulations and proposed nonlinear energies
and/or inequality constraints to improve the retargeting qual-
ity. They prevent self-intersections by iteratively penaliz-
ing grid edge flipping [WTSL08], constraining the size of
grid cells [KLHG09] or explicitly posing positive scaling
constraints on grid cells’ transformations [CFK∗10]. The
method of Chen et al. [CFK∗10] offers formal guarantees on
lack of self-intersections and vanishing grid cells, but their
quadratic program is not guaranteed to have a feasible so-
lution. Nonlinear constrained optimization significantly in-
creases computation time, nearly excluding realtime usage;
one exception is the streaming method of [KLHG09] that
uses custom tailored multigrid solver and performs all com-
putations on the GPU, achieving impressive framerates at
pixel-level discretization. Heavy reliance on graphics hard-
ware may hinder applicability to computationally modest
platforms such as mobile devices.

It is interesting to note that, although not obliged to it
by the formulation, recent techniques exhibit nearly axis-
aligned deformations in practice due to the inclusion of
grid line bending penalties [WTSL08, KLHG09]; Chen et
al. [CFK∗10] even explicitly mention this behavior as an ad-
vantage. We directly encode axis-alignment in the deforma-
tion space and demonstrate that it not only dramatically re-
duces the size of the optimization problem but also provides
high quality retargeting results with guaranteed robustness.

We refer to [RSA08,SCSI08,BSFG09,PKVP09] for a de-
tailed discussion of discrete retargeting approaches. Discrete
methods operate by removing or adding image pixels or
patches to change the image’s size and in general reshuffle its
content (they can be seen as generalizations of cropping or

pasting). While these techniques do not guarantee smooth-
ness and sometimes pose discontinuity artifacts, they are
well-suited for images with repetitive or stochastic content
that should be removed or duplicated rather than squeezed
or stretched. Combining the advantages of discrete and con-
tinuous methods is a challenge; the method in [RSA09], al-
beit computationally expensive, was a successful attempt in
terms of the achieved quality and user rankings [RGSS10].

3. Algorithm
We show how to cast content-aware image resizing as a
small quadratic program in the space of axis-aligned defor-
mations. The number of variables is linear in the size of the
image boundary. The energy we minimize is convex, and
finding the global minimum typically takes less than 4 ms.

Denote the input image width and height by W and H.
Like most warp-based retargeting methods, we overlay a
uniform grid over the image with N columns and M rows;
the width of each column (and each cell) in the initial grid
is then W/N and the height of each row is H/M. The task is
to compute a deformed grid for the resized image, with the
desired total width W ′ and height H′. In the continuous set-
ting, an axis-aligned deformation can be fully described by
the vertical and horizontal deformation derivatives along the
boundary. In our discrete setting, we assume an axis-aligned
deformation to be piecewise-linear (linear on each grid cell),
such that it is fully determined by the widths of the deformed
grid columns and the heights of the deformed grid rows.

Let srows = (srows
1 ,srows

2 , . . . ,srows
M ) denote the unknown

heights of the rows and scols = (scols
1 , . . . ,scols

N ) the un-
known widths of the columns. The axis-aligned deforma-
tion is therefore represented by the vector of unknowns
s = (srows,scols)T ∈ RM+N . The general form of the opti-
mization that computes the retargeted image grid is:

minimize sT Qs+ sT b (1)

subject to srows
i ≥ Lh, i = 1, . . . ,M, (2)

scols
j ≥ Lw, j = 1, . . . ,N, (3)

srows
1 + . . .+ srows

M = H′, (4)

scols
1 + . . .+ scols

N =W ′. (5)

Q ∈ R(M+N)×(M+N) and b ∈ RM+N are determined based
on the energy (see Sec. 3.1), and Lh,Lw > 0 are the minimum
sizes allowed for rows and columns of the deformed grid.
The inequalities (2) and (3) guarantee that our deformation
is free from foldovers, since every cell on the grid cannot be
smaller than the specified dimensions Lh-by-Lw and cannot
invert (inside each cell the deformation is linear and there-
fore foldover-free). Eq. (4) and (5) fix the total dimensions
of the deformed grid to the desired target size.

For the above quadratic program (QP) to be feasible, we
just need Lh ≤H′/M and Lw ≤W ′/N; simple homogeneous
scaling then provides a feasible solution. The feasible do-
main is bounded, since ∀i,0≤ si ≤ max{H′,W ′}, such that
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original ASAP ARAP

Figure 4: The Fatem image resized with different energies.

the objective function in (1) is finite in the feasible region.
The energy should be defined in such a way that Q is pos-
itive (semi)definite; our problem is then convex and can be
solved with standard QP solvers.

3.1. Energy functions

Image retargeting methods rely on a saliency map ω(x,y)
that assigns an importance value between 0 and 1 to every
pixel of the image. Our goal is to compute a deformation that
preserves the image in the salient zones as much as possible
and concentrates the unavoidable distortion in less important
areas. To integrate the saliency map ω in our formulation, we
average its values inside every cell of the grid on the original
image and we obtain the saliency matrix Ω ∈ RM×N . This
per-cell integration of saliency is the proper FEM discretiza-
tion in our piecewise-linear setting.

We consider two energies in our framework, often em-
ployed by prior successful retargeting methods: (1) the As-
Similar-As-Possible (ASAP) energy [ZCHM09], which pro-
duces deformations that are locally close to similarities,
and (2) the As-Rigid-As-Possible (ARAP) energy [KFG09],
which penalizes all local deformations except translation and
rotation. Fig. 4 shows an example result with these energies.

ASAP Energy. In the space of axis-aligned deformations,
a similarity transformation is a combination of uniform
scaling and translation, since rotations are eliminated. The
ASAP energy thus minimizes non-uniform scaling:

EASAP =
M

∑
i=1

N

∑
j=1

(
Ωi, j

(
M
H srows

i − N
W scols

j

))2
. (6)

The two factors M/H and N/W compensate for the aspect
ratio of the cells in the original grid.

To minimize this energy using our QP framework, we de-
fine the following matrix K ∈R(MN)×(M+N):

Kk,l =


Ωr(k),c(k)

M
H if l = r(k),

−Ωr(k),c(k)
N
W if l = M+ c(k),

0 otherwise,

(7)

where r(k) = dk/Ne and c(k) = ((k−1) mod N)+1. From
this equation, Ks gives us the vector with energy terms
per row, and EASAP = sT KT Ks. Using the generic notation
of Eq. (1), Q = KT K and b = 0. Clearly, Q is a positive
semidefinite matrix, such that the energy is convex.

ARAP Energy. In our axis-aligned deformation space, a
rigid transformation is reduced to a translation, since rota-
tions are not allowed by definition. The ARAP energy thus
minimizes uniform and non-uniform scaling:

EARAP =
M

∑
i=1

N

∑
j=1

Ω
2
i, j

(
(M

H srows
i −1)2 +( N

W scols
j −1)2

)
.

To minimize this energy using our QP framework, we define
the following two matrices Rtop,Rbtm ∈R(MN)×(M+N):

Rtop
k,l =

{
Ωr(k),c(k)

M
H if l = r(k)

0 otherwise,
(8)

Rbtm
k,l =

{
Ωr(k),c(k)

N
W if l = M+ c(k)

0 otherwise,
(9)

where r(k) = dk/Ne and c(k) = ((k− 1) mod N) + 1. We
also define the vector v ∈RMN , vk = Ωr(k),c(k). We can now
rewrite the ARAP energy using matrix notation:

EARAP =

([
Rtop

Rbtm

]
s−
[

v
v

])T ([Rtop

Rbtm

]
s−
[

v
v

])
. (10)

In the generic notation of Eq. (1):

Q =

[
Rtop

Rbtm

]T [Rtop

Rbtm

]
, b =−2

[
Rtop

Rbtm

]T [v
v

]
. (11)

Again, the form of the Q matrix clearly indicates that it is
positive semidefinite, such that the ARAP energy is convex.

Note that even though the intermediate matrices K, Rtop,
Rbtm have MN rows, they are extremely sparse and fast
to construct procedurally. The resulting Q matrices of the
QP are square with M +N rows/columns, meaning they are
dense but small. Note also that other energies can be simi-
larly formulated in our space of axis-aligned deformations;
we have chosen to concentrate on the above two since they
are commonly used and typically provide good results. Fur-
thermore, it is possible to linearly combine these two ener-
gies to obtain an optional degree of freedom.

original image Lw = 10% Lw = 30%

Figure 5: The minimal column width Lw and row height Lh

can be prescribed. Middle: each column may not be com-
pressed to more than 10% of the original width. Right: the
minimal width is 30%, such that the deformation is less pro-
nounced, since extreme squeezing is disallowed.
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original image saliency map without regularization with regularization, wreg = 2.5

Figure 6: The effect of the Laplacian regularization. The image on the left is retargeted to 50% width using a manually painted
saliency map. As seen in the middle, retargeting using unregularized ASAP energy leads to strong variation in column width.
This effect can be mitigated by adding a weighted Laplacian regularization term, as shown on the right.

original saliency grid size 10×10 25×25 50×50 100×100

Figure 7: Grid resolution does not have a dramatic effect on the energy minimization result (here, the ASAP energy was used).

Cropping can be naturally incorporated in our method by
setting the parameters Lw and Lh to zero. The optimization
procedure is then able to collapse rows and columns, thus
cropping the original image.

3.2. Laplacian regularization

We can enrich the energies shown above with a regulariza-
tion energy that allows to increase the smoothness of the re-
sulting deformation. Laplacian regularization allows to dis-
tribute the deformation more evenly across the image, and
is particularly useful for manually painted saliency maps,
since they tend to concentrate the saliency on distinct parts
of the image and fall off abruptly to zero elsewhere (i.e.,
such saliency maps are highly non-smooth). See Fig. 6 for
an example of the effect of the Laplacian regularization.

The Laplacian regularization term is defined as follows:

Ereg =
M−1

∑
i=1

(M
H (srows

i+1 − srows
i ))2 +

N−1

∑
j=1

( N
W (scols

j+1− scols
j ))2.

(12)
The regularization penalizes two adjacent rows or columns
that have large differences in size. Note that the deformation
that minimizes the Laplacian is homogeneous scaling, such
that this regularization term can be seen as a way to blend
between homogeneous resizing and the ASAP or ARAP de-
formation, controlled by a weighting factor wreg ≥ 0.

To incorporate the regularization term into the QP (1), we
simply add the term sT (wregL)s to the energy, where L is
the standard Laplacian matrix corresponding to Eq. (12). In
other words, we add the matrix wregL to Q in Eq. (1). The
Laplacian matrix is positive semidefinite, such that this en-
ergy term does not hurt the convexity of the problem.

original
(detail) bilinear interpolation B-spline interpolation

Figure 8: Images of high resolution may benefit from higher-
order interpolation when using coarse grids for the retarget-
ing optimization. The input image resolution is 2800×1800
and the retargeting uses a 25×25 grid. Bilinear interpolation
leads to some smoothness artifacts (middle), while upsam-
pling to a 100×100 grid using the spline technique described
in Sec. 3.3 results in visually smooth interpolation.

3.3. Cubic B-spline interpolation

The formulations of the ASAP and the ARAP energies, as
well as the Laplacian regularization term, are proper linear
FEM approximations of the continuous counterparts, such
that convergence is expected under uniform grid refinement.
We have observed that the results of the optimization are
not greatly dependent on the grid resolution (see Fig. 7);
this makes sense also because our constrained deformation
space, parameterized in 1D, does not admit huge local varia-
tion. A coarse grid resolution of 25×25 (i.e, 50 optimization
variables) suffices in most cases to faithfully describe the de-
formation map. However, such a coarse bilinear grid may be
insufficient to provide high-quality results for images with
very high resolution, because the bilinear interpolation is not
smooth across grid lines.

To improve the interpolation results for high-resolution
images, we can optionally employ B-spline interpolation to
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Original Ours QP MULTIOP STREAMINGVIDEO SEAMCARVING

Figure 9: Comparisons with recent image retargeting methods: QP [CFK∗10], MULTIOP [RSA09], SV [KLHG09] and SC
[RSA08]. The supplemental material provides full comparisons on the RETARGETME benchmark [RGSS10].

upsample the retargeted grid. We define a uniform cubic B-
spline using the deformed grid vertices as control points.
This can be performed in 1D using two 1D cubic B-splines:
one for rows and one for columns. We sample the splines for
denser horizontal and vertical positions in order to produce
a new grid of arbitrary resolution. The final retargeted image
is created by bilinear interpolation on this finer grid.

The deformation described by our deformed grid is guar-
anteed to always be a bijection and, thanks to the variation
diminishing property, the finer grid obtained with the spline
is guaranteed to be foldover-free as well. An example of the
improvement is given in Fig. 8.

4. Results

We implemented an interactive application for image retar-
geting that allows in real time to change the image size, ad-
just the saliency, and tweak the other two parameters of the
optimization (the strength of Laplacian regularization and
minimal grid cell size). We provide the full comparison with
the RETARGETME benchmark [RGSS10] in the supplemen-
tal material. The accompanying video shows various record-
ings of interactive retargeting sessions.

We ran our experiments on a Core2Duo@2.4GHz, using
a single core. OpenGL was used to compute the bilinear in-
terpolation; our test system is equipped with a low-end lap-
top graphics card (the NVIDIA 320M). We employed an
easy-to-use and fast QP solver CVXGen [MB10] to solve
the QP in Eq. (1). Interactive frame rates (always above 60
fps) were attained in all our experiments. The average com-
putation time to retarget an HD image using a 25×25 grid
was 4 ms (250 fps). We observed that the ASAP energy usu-
ally produces slightly better results than ARAP, probably be-
cause of the additional flexibility of uniform scaling. Our
method produces smooth, intersection-free images that pre-

serve the salient features well, and tend to respect the input
image structure in general (Fig. 9).

Saliency maps. Our approach can be successfully applied
in a fully-automatic mode. We experimented with the auto-
matic saliency detection method of [IKN98] and [CZM∗11],
although of course any other method can be used. The main
advantages of our method, the lack of local rotations and
foldovers, are independent of the importance map choice. As
discussed earlier, automatic saliency may fail for certain im-
ages due to the subjectiveness and ill-posedness of the prob-
lem. In such cases, a minimal amount of user intervention
can improve the results; fine-tuning by the user is readily
enabled by the realtime speed of our approach.

Fig. 10 shows the results computed using the ASAP en-
ergy with three different saliency maps. The first image uses
an automatic saliency map; the person’s head is not detected
as salient and is distorted. Our application allows to interac-
tively change the contrast of the saliency map to improve the
result (Fig. 10, middle), and to simply paint over it. A sin-
gle user stroke on the head is sufficient to greatly improve
the outcome (Fig. 10, right). This example took 15 seconds
of user time. On average, in our experiments we spent 30
seconds per image to paint the saliency map and adjust the
parameters. The process is very intuitive, since the user can
watch the result of any manipulation in real time.

Interactive, user-controllable parameters. Our method
exposes a small numbers of parameter to the user to allow a
high degree of control over the final result. Please refer to the
video and the executable for demonstration of the realtime
tuning effect. The image size can of course be changed in-
teractively. The saliency map can be controlled by adjusting
its brightness and contrast, and by manual painting (Fig. 10).
The deformation can be controlled by changing the Lapla-
cian regularization weight wreg (Fig. 6). Finally, the minimal
grid cell width and height can be selected (Fig. 5). We have

c© 2012 The Author(s)
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original auto-saliency result with auto-saliency saliency contrast increase increased contrast, result
manual marking (head)

Figure 10: The original image is retargeted to 150% width, first using an automatic saliency map of [IKN98]. The result is not
perfect since the head has not been detected as a salient object. Increasing the saliency contrast improves the result (4th image),
and a single stroke on the head produces even further improvement (right).

found that saliency adjustment is the most useful control
mechanism; the other parameters were usually left at their
default values (wreg = 0.5, Lw = Lh = 20%).

Benchmarks. Our algorithm uses a single core of a CPU
and does not rely on special graphics hardware or custom-
tailored nonlinear solvers. Comparing to others methods,
the complexity of the optimization is reduced by an order
of magnitude, since the number of variables is proportional
to the number of boundary samples rather than the number
of quads. We allow real-time editing of the saliency map,
which cannot be achieved by most other methods (includ-
ing linear techniques that precompute the matrix factoriza-
tion in advance). We process full HD (1920x1080) images
in less than 4 ms using a single CPU core. [KLHG09] uses a
GPU-based multigrid solver on NVIDIA GTX280 with 240
cores, and it is still 25 times slower than our CPU implemen-
tation. [KFG09] and [CFK∗10] are about 500 times slower
than our method. [RSA09] proposes a very expensive opti-
mization that is 4 orders of magnitude slower than ours.

Integration in a web browser. Optimizing website layouts
for different screen resolutions is a difficult task. To obtain
good results in terms of usability and presentation, it is often
necessary to design customized views for every aspect ratio.

Text can be easily rear-
ranged to fit a window
of any size, but images
are only scaled homo-
geneously, limiting the
layout optimization al-
gorithm used in mobile
web browsers and po-
tentially leading to sub-
optimal results. Image

retargeting allows to change the aspect ratio of a picture, in-
creasing the quality of the final layout and saving space.

To incorporate a retargeting system in a web browser, we
should not only consider the retargeting quality but also its
efficiency and space overhead, due to energy consumption
and bandwidth limitations. Contrary to other methods, our
algorithm can be easily integrated in a web browser with

negligible time and space overhead. We see two possible
ways of extending any image format to store the information
needed to retarget it (assuming a 25×25 grid, which suffices
for high quality retargeting results up to full HD resolution):
(i) Storing the integrated saliency map. Our optimization
procedure only requires the saliency matrix Ω that can be
stored in 625 bytes if we quantize every matrix entry to one
byte. We can then retarget to arbitrary aspect ratio using the
mobile CPU.
(ii) Storing precomputed aspect-ratios. An axis-aligned grid
is parametrized by 50 floats, since only the boundary has to
be encoded. We can efficiently store multiple grids inside an
image with a very small space overhead: encoding a grid re-
quires 200 bytes, so that a set of 10 retargeted grids uses less
than 2 KB. In this setting there is no computational overhead
for the browser, as it only needs to select the desired grid for
bilinear interpolation to map the image onto the screen. Tt
is also possible to linearly interpolate two grids to obtain
any intermediate aspect ratio; in our experiments this is very
close to the exact retargeting result.

User study. We conducted a user study with 305 partic-
ipants, following the protocol of [RGSS10]. Eight meth-
ods have been compared: manual crop (CR), nonhomoge-
neous warping (WARP) [WGCO07], Scale-and-Stretch (SNS)
[WTSL08], MULTIOP [RSA09], shift-maps (SM) [PKVP09],
streaming video (SV) [KLHG09], energy-based deformation
(LG) [KFG09] and our algorithm (AA). All datasets in the
study have been created by the authors of the respective
methods, manually tweaking parameter values and some-
times the saliency to show the strengths of the retargeting
algorithm and produce the best possible result. We note that
the study participants had no reason to prefer a retargeted
image over a (manually) cropped one since the study did not
place the images in any semantic context. This biases the
study in favor of manual cropping as it does not introduce
any distortion. For this reason, cropping should be consid-
ered as a reference, not as a proper retargeting algorithm (for
more details see the original paper [RGSS10]).

The study statistics are provided in the additional mate-
rial. Fig. 11 provides a short summary that shows that our

c© 2012 The Author(s)
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Figure 11: The number of votes for the 8 methods considered
in our user-study for each image attribute. In the bottom, the
operators within a group are statistically indistinguishable
in terms of user preference. Our method ranks higher than
others and it is statistically indistinguishable from CR.

deformation subspace is a good choice for content-aware re-
targeting. Our results have been considered superior with re-
spect to six state-of-the-art methods and achieved a quality
statistically indistinguishable to SV [KLHG09], while being
simpler to implement, faster and not requiring a GPU im-
plementation to obtain interactive frame rates. Our findings
are in accordance with the original study [RGSS10], provid-
ing further validation of the consistency in the users’ prefer-
ences.

5. Conclusion

We presented an image retargeting method that is based on
axis-aligned deformations. This deformation space appears
suitable for the problem at hand, and has multiple advan-
tages, such as robustness and guaranteed lack of foldovers,
smoothness, and realtime performance. The general ap-
proach of controlling a deformation energy by the domain
boundary falls into the category of boundary element meth-
ods and allows for very efficient solutions in cases like ours.

Axis-aligned deformations have less freedom than gen-
eral variational warps. We argue that in most cases, localized
rotations are bad for image retargeting, because they lead
to swirling or significant shearing. However, it is conceiv-
able that in certain situations extreme shearing is preferable
to axis-aligned scaling, for instance when the image back-
ground has completely uniform color, so that its shearing
is not visible. As we exclude rotations from our warps, our
method will not be capable of reproducing such effects. Note
also that our method cannot guarantee the preservation of
straight lines in the image if they are not strictly axis-aligned.

We are interested in extending our method to video retar-
geting in future work, as its speed and absence of precompu-
tation overhead would enable online (streaming) execution.
Video retargeting is very challenging due to the additional
temporal coherence requirements. Our technique can be po-
tentially generalized to video by making the warps “track”
salient moving objects via deformations that are consistent
with the optical flow.
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