
Visual Media Retargeting

Ariel Shamir
The Interdisciplinary Center, Herzliya

Olga Sorkine
New York University

Figure 1: Retargeting of a print by the Japanese master Utagawa
Hiroshige

Keywords: media retargeting, seam carving, image warping, vi-
sual saliency, temporal coherence

1 Introduction

In recent years, many content aware methods for media manipu-
lations have gained popularity. Images and videos are analyzed,
segmented, and semantic information is extracted to assist many
manipulation algorithms. One of the problems that drew much at-
tention is media retargeting. Due to the increase in the variety of
commonly used display devices, and the prevalent use of mobile
devices as available means for media intake, media needs to be
adapted to different resolutions and aspect ratios. This problem fur-
ther increases with the explosion of image and video content on the
web. One would like to be able to present a feature film on a small
iPod, cellular phone or pocket computer, or show photographs on
projected presentation systems.

Simple scaling and cropping do not provide satisfactory results
since they mostly consider the geometric constraints of the out-
put display alone. Recently, several works have presented con-
tent aware retargeting methods. These works can be classified
into two basic approaches: discrete approaches such as seam carv-
ing [Avidan and Shamir 2007; Rubinstein et al. 2008; Rubinstein
et al. 2009] remove pixels judiciously to preserve media content,
while continuous solutions [Gal et al. 2006; Wolf et al. 2007; Wang
et al. 2008; Zhang et al. 2008] optimize a mapping (warping) from
the source media size to some target size using several types of
constraints to protect media content. In effect, these methods uti-
lize the structural and semantic information in the input media to
achieve better resizing results. In fact, retargeting methods also im-
pact many other media applications such as object removal, com-
position and layout control, compaction, temporal manipulations,
summarization and abstraction of media.

The goal of this course is to present the basic problem of media re-
targeting and detail the different methods devised recently to solve
it. We will start with a short overview of image and video repre-
sentation and concentrate on the different view points of media as a
discrete entity (pixels, graphs) or as a sampling of a continuous en-
tity (signal). We will then present the common pipeline for resizing,
used in both discrete and continuous methods. This includes first
extracting some importance or saliency maps from the media, and
then using this information while applying the different retargeting

operators. We will present several ways to define importance maps
that use spatial information in images and also temporal informa-
tion in video.

The basic seam carving approach on images uses dynamic program-
ming to find the best (least important or least noticeable) seam to be
removed. There are several ways to define the best seam using just
simple image gradients to reduce artifacts, or combining high level
information such as face detectors or user constraints. Moving from
2D images to 3D video cubes, the basic dynamic programming ap-
proach can no longer be used. Dynamic programming is thus re-
placed by a graph cut algorithm. In this course we will cover both
image and video retargeting and show both types of methods based
on dynamic programming and graph-cut, show how to combine re-
duction and enlarging, in both dimensions and show advanced is-
sues such as seam carving in gradient domain, using seam carving
for object removal and more.

The warping approach to visual media retargeting views the im-
age/video as a continuous domain and computes a warping of
that domain. Each point in the domain is assigned a local trans-
formation; important regions are constrained to undergo a shape-
preserving transformation, as much as possible (i.e., a rigid or sim-
ilarity transformation), whereas less salient areas are allowed to de-
form more. The computation of the local transformations is done
by a global optimization process that minimizes the total deforma-
tion energy. The problem can be discretized at different resolutions,
trading accuracy for speed. Warping can be utilized for both image
and video retargeting; in the case of video, the temporal coherence
constraints need to be designed differently from spatial smooth-
ness constraints. Note that, different from seam-carving, continu-
ous warping does not remove image content but rather redistributes
its density.

We will discuss the pros and cons of both approaches in the course
and devote the last part to more advanced issues such as combining
several techniques together.

2 Representations

A digital image I is defined by a grid of pixels with n rows and m
columns whose values contain numbers that encode color informa-
tion (either gray level or red, green and blue (RGB) values – see
Figure 2). A video can be seen as an ordered sequence of digital
images and often it is represented by a 3D grid or “video cube”.
If the size of the frame is n ×m and there are t frames, this cube
is created by stacking the video frames one after the other to an
n×m× t cube.

Although the inherent representation is discrete, digital images are
often viewed as a sampling of some continuous signal. This view
is also based on the acquisition process of digital images today that
utilizes sampling devices for the light coming through the lens of a
camera. This view is often used for filtering, noise reduction and
other image manipulations. In this course the two basic approaches
for retargeting can be distinguished by their view of an image either
as a discrete entity or as a sampling of a continuous signal. This in
turn affects the particular algorithms used: discrete algorithms such
as dynamic programming and graph-cut, or continuous algorithms
such as warping.

Figure 2: A digital image as a 2D discrete grid of pixels. In this
case the cells contain 3 values of RGB color.

Figure 3: A digital image as a sampling of a continuous function.

3 Problem Statement

For simplicity we will begin our discussion with images. The retar-
geting problem can be stated as follows. Given an image I of size
n ×m, and a new size n∗ ×m∗ we would like to produce a new
image I∗ of size n∗ × m∗ which will be a good representative of
the original image I. However, to date, there is no clear definition
or measure as to the quality of I∗ being a good representative of I.
In loose terms there are three main objectives for retargeting:

1. The important content of I should be preserved in I∗.

2. The important structure of I should be preserved in I∗.

3. I∗ should be free of visual artifacts.

It is clear that the definition of important can be subjective and
can depend on the application in mind. Indeed, different works de-
fine different importance functions on images that contain both low
level visual cues such as image edges and high level cues such as
people’s faces. However, the common approach taken by all media
retargeting algorithm is composed of two steps:

• The first step is the definition of an importance map and other
constraints on the original media being retargeted.

• The second step applies some operator to the media to change
the size while taking into consideration the importance map
and its constraints.

In the following we will first discuss different saliency measures
and then describe various retargeting operators.

4 Saliency Measures

For the purpose of image retargeting, a visual saliency measure
should identify important image regions that should remain intact
while the image’s aspect ratio is altered. We can define an image
importance map as a map S : I → [0, 1]. This map ranks ev-
ery pixel in an image according to its visual importance (1 being
most salient). There are different visual cues that affect our percep-
tion of visual content, some of them are low-level features such as
edges (detected by, e.g., high local intensity gradients), and others
are high-level, for example faces, structures and symmetries.

A common low-level saliency measure which we will call E1 is in
fact an edge map, computed simply from the magnitude of intensity

original image using gradient map using significance map

Figure 4: Various importance maps. The top row shows the magni-
tude of gradients map and Itty’s saliency map [1998]; these two are
combined by multiplication to obtain a visual importance in [Wang
et al. 2008]. The bottom row displays retargeting results with the
gradient map along, and using the combined map; adding the mul-
tiresolution saliency measure helps filter out spurious gradients in
the foliage area and leads to a better result.

gradients (and then normalized to [0, 1]):

E1(I) = | ∂
∂x

I|+ | ∂
∂y

I|. (1)

The rationale behind using edges is to preserve strong contours in
the image, as those usually delineate prominent objects. Further-
more, human vision is more sensitive to edges and this importance
map gives high importance value to edges and low importance value
to smooth areas. Instead of using L1 metric some works have used
L2:

E2(I) =

√(
∂

∂x
I

)2

+

(
∂

∂y
I

)2

. (2)

Other edge detection mechanisms such as Canny edge-detector
could also be used. However, strong edges might sometimes ap-
pear also in noisy regions which are not necessarily salient. A more
elaborate image saliency measure was developed, for instance, by
Itty et al. [1998]. They build a multiresolution pyramid of the
image and look for significant intensity and color changes on all
levels, combining those into a single, high-resolution map. Other
possible low-level measures are Harris-corners measure [Harris and
Stephens 1988], Histograms of gradients (HoG) [Dalal and Triggs
2005] and entropy, which all measure some properties of a win-
dow around each pixel. Not surprisingly, it was shown by Wang et
al. [2008] that combining the gradient map and the saliency map to-
gether (by multiplication) has benefits over using just a single mea-
sure, since Itty’s saliency filters out noisy gradients (see example in
Figure 4).

High-level important features can sometimes also be detected auto-
matically, for example, human faces are often detected using [Viola
and Jones 2004]. In video high-level features also include temporal
phenomena, such as scene cuts [Zabih et al. 1995], and camera and
object motions [Wolf et al. 2007; Wang et al. 2009].

Some of these elements can be computed automatically, yet for each
particular input the user may have a specific idea about which con-
tent is important, and this may not necessarily correspond to the
automatic measures. A possible solution is to measure the eye gaze
of real viewers [DeCarlo and Santella 2002] and infer the more im-
portant (salient) parts in the media [Santella et al. 2006]. Many
recent works also allow some direct degree of user intervention

Figure 5: Cropping to a given size may discard important infor-
mation in the image. Homogeneous scaling can reduce the objects
size and may also create distortions if it applied in a non-uniform
manner to account for aspect ratio changes.

either by designating specific structural constraints that should be
preserved [Krähenbühl et al. 2009] or even directly drawing on the
importance map to assign importance values to pixels [Avidan and
Shamir 2007].

Preserving all the important features at once may be a difficult, if
not infeasible task, as the different constraints might conflict with
each other. The proper weighting of all the different measures
against each other is a challenge and highly depends on the seman-
tics of the image content itself. Therefore, as mentioned before,
requiring some amount of user intervention may be unavoidable at
times for acceptable results.

5 Cropping

The cropping operator can be considered the simplest resizing op-
erator since it simply extracts a window of the desired size n∗×m∗
from the original image. Obviously, this can be done only if
m∗ ≤ m and n∗ ≤ n. Many times cropping is done manually, i.e.
the user chooses a window of the desired size inside the original
image. However, given some importance map one can also search
automatically for the window of size n∗ ×m∗ that will contain the
most important parts [Fan et al. 2003; Santella et al. 2006]. This
cannot always be done as seen, for instance, in Figure 5.

A possible extension of cropping to enlarge the image size is to
pad the frame with “black” pixels. This is sometimes called letter-
boxing and is often used to adapt old TV frottage to new screens and
vice verse. In terms of the three objectives for retargeting, cropping
mostly preserves the structure of the image and does not produce ar-
tifacts apart from cutting the image at the fringes. The main down-
side of using cropping is that content is always lost from the image
and the composition can be damaged.

6 Scaling

Scaling is define by a homogeneous map between the pixels of the
original image I and the pixels of the target image I∗. By homoge-
neous we mean that all pixels undergo the same mapping function.
If the mapping function is the same for the horizontal and vertical
direction we call the scaling uniform. One may try to use forward-
mapping to transform the pixels of the original image to their new
positions as follows:

I(x, y)→ I∗(bx · m
∗

m
c, by · n

∗

n
c)

However, forward mapping leads to many-to-one mapping as well
as to empty pixels in the target image. A solution to this is to use

(a) (b)

(c) (d)

Figure 6: Reconstruction and super-sampling of a 1D signal us-
ing piecewise-constant (b), linear (c) and cubic (d) interpolations
respectively. On images the interpolation kernels are 2D.

backward mapping as follows:

I∗(x, y) = I(bx · m
m∗
c, by · n

n∗
c)

However, simple backward mapping may lead to loosing some of
the original pixels or to pixels being duplicated. A better solution
is based on the continuous view of images. First, a model of the
original signal is defined and reconstructed using some interpola-
tion function of the pixels of I, the original image. Consequently,
this model function is sampled at the desired target resolution and
size to create the target image I∗ (see example for up-sampling a
1D signal in Figure 6). The most common approach for scaling
uses bi-cubic interpolation of the original image pixels to model
the signal.

Still, even homogeneous bi-cubic scaling can create artifacts such
as blockiness and aliasing. Moreover important objects could be
scaled beyond the point of recognition. More serious artifacts and
distortions appear when non-uniform scaling is applied to accom-
modate changes in the aspect ratio of the image (Figure 5).

7 Seam-Carving Images

7.1 Backward Energy

Assume we need to reduce the width of an image. Later, we will
show how to use seam carving for changes of size in both direc-
tions and also for extension of the image size. The seam carving
approach to content-aware resizing is to remove some pixels from
the image in a judicious manner [Shamir and Avidan 2009]. There-
fore, the key question is how to choose the pixels to be removed?
Intuitively, the goal is to remove unimportant pixels using some
importance map on I . For example, unnoticeable pixels that blend
with their surroundings could be good candidates for removal. One
can use for instance E1 edge map from Equation 1.

Given this, or similar, energy function one can think of several
strategies to achieve reduction in width. For instance, an optimal
strategy to preserve energy (i.e., keep as many pixels with high en-
ergy value) would be to remove the pixels with lowest energy in
ascending order. However, this destroys the rectangular shape of
the image, because we may remove a different number of pixels
from each row (see Figure 7(e)). If we want to prevent the image
shape from breaking we can remove an equal number of low energy
pixels from every row. This preserves the rectangular shape of the
image but destroys the image content by creating a zigzag effect
(Figure 7(d)). To preserve both the shape and the visual coherence
of the image we can use some automatic cropping mechanism. We
can look for a sub-window of the given target-width where the sum

(a) Original Image and its Energy (b) Average Energy

(c) Crop (d) Column (e) Seam (f) Pixel (g) Optimal

Figure 7: Results of 5 different strategies for reducing the width of an image by removing pixels. (a) the original image and a color mapping
of the E1 energy function, (b) Average energy graph (c) best cropping, (d) removing columns with minimal energy, (e) seam removal, (f)
removal of the pixel with the least amount of energy in each row, and finally, (g) global removal of pixels with the lowest energy, regardless
of their position. The graph shows the energy preservation curve of each strategy.

of its pixels energy is the highest from all possible sub-windows
(Figure 7(a)). Another possible strategy somewhat between remov-
ing pixels and cropping is to remove whole columns with the low-
est energy. Still, artifacts may appear in the resulting image (Fig-
ure 7(b)). Therefore, we seek a resizing operator that will be less
restrictive than cropping or column removal, but can preserve the
image content better than single pixel removals. This leads to the
use of seams (Figure 7(c)).

Formally, let I be an n × m image and define an image vertical
seam to be:

sx = {sxi }ni=1 = {(x(i), i)}ni=1, s.t. ∀i, |x(i)− x(i− 1)| ≤ 1,

where x is a function x : [1, . . . , n] → [1, . . . ,m] that is con-
tinuous in a discrete sense (two consecutive values of the func-
tion do not differ by more than 1). In other words, a vertical
seam is a connected path of pixels in the image from top to bot-
tom, containing one, and only one, pixel in each row of the image
(see Figure 8). Similarly, if y is a discretely continuous function
y : [1, . . . ,m]→ [1, . . . , n], then an image horizontal seam is:

sy = {syj }
m
j=1 = {(j, y(j))}mj=1, s.t. ∀j|y(j)− y(j − 1)| ≤ 1.

The pixels of the path of seam s (e.g. vertical seam {si}) will there-
fore be Is = {I(si)}ni=1 = {I(x(i), i)}ni=1. Note that similar to
the removal of a row or column from an image, removing the pixels
of a seam from an image has only a local effect: all the pixels of the
image are shifted left (or up) to compensate for the missing path.
The visual impact is noticeable only along the path of the seam,
leaving the rest of the image intact.

We define the cost of a seam as the sum of energy of its pixels
E(s) = E(Is) =

∑n
i=1 e(I(si)), and look for the optimal seam

s∗ that minimizes this cost:

s∗ = arg min
s
E(s) = arg min

s

n∑
i=1

E(I(si)) (3)

Although there seems to be an exponential number of possible
seams, because each path going through a pixel can come only from
one of three neighboring pixels, the optimal seam can in fact be
found using dynamic programming in linear complexity. The al-
gorithm to find the optimal seam is composed of two steps. The
first step creates the cumulative energy map M and the second step
backtracks on the map from the last row (column) to the first to find
the seam path. For example, to create the verticalM we traverse the
image from the second row to the last row and compute the cumu-
lative minimum energy M for the three possible connected seams
at each entry M(i, j):

M(i, j) = E(i, j)+ (4)
min(M(i− 1, j − 1),M(i− 1, j),M(i− 1, j + 1))

At the end of this process, the minimum value of the last row in
M will indicate the end of the minimal connected vertical seam.
Hence, in the second step we backtrack from this minimum entry
onM to find the path of the optimal seam (Figure 8). The definition
of M for horizontal seams is similar.

Reducing the width of an image by n pixels boils down to applying
the seam carving operator n times. That is, in each time step we
find the optimal seam in the image, remove the pixels associated
it and repeat the process for n times. It is worth noting that this
approach resembles the dynamic shortest paths problem [Roditty
and Zwick 2004], where finding the seam is equivalent to finding a
shortest path on a graph, and removing the seam modifies the graph
for the next iteration of shortest path search.

7.2 Forward Energy

Choosing to remove the seam with the least amount of energy from
the image (Equation 4), works in many cases, but ignores energy
that is inserted into the resized image after the seams are removed.
This inserted energy is due to new intensity edges created by pre-
viously non-adjacent pixels that become neighbors once a seam is
removed. Following this observation, we formulate the forward

Figure 8: Top: example of creating the vertical accumulated en-
ergy mapM and backtracking to find the seam. Bottom: visual rep-
resentation of the vertical and horizontal maps of an image (middle)
and the optimal seams found.

(a) (b) (c)

Figure 9: Calculating the three possible vertical seam step costs
for pixel pi,j using forward energy. After removing the seam, new
neighbors (in gray) and new pixel edges (in red) are created. In
each case the cost is defined by the forward difference in the newly
created pixel edges. Note that the new edges created in row i − 1
were accounted for in the cost of the previous row pixel.

looking criterion. At each step, we search for the seam whose re-
moval inserts the minimal amount of energy into the image. These
are seams that are not necessarily minimal in their energy cost, but
will leave less artifacts in the target image, after removal.

As the removal of a connected seam affects the image, and its en-
ergy, only at a local neighborhood, it suffices to examine a small
local region near the removed pixel. We consider the energy intro-
duced by removing a certain pixel to be the new “intensity-edges”
created in the image. The cost of these intensity edges is measured
as the differences between the values of the pixels that become new
neighbors, after the seam is removed. Depending on the connectiv-
ity of the seam, three such cases are possible (see Figure 9). For
each of the three possible cases, we define a cost respectively:

(a) CL(i, j) = |I(i, j + 1)− I(i, j − 1)|+ |I(i− 1, j)− I(i, j − 1)|
(b) CU (i, j) = |I(i, j + 1)− I(i, j − 1)|
(c) CR(i, j) = |I(i, j + 1)− I(i, j − 1)|+ |I(i− 1, j)− I(i, j + 1)|

We use these costs in a new forward-cumulative cost matrix MF
to calculate the seams using dynamic programming. For vertical
seams, each cost MF (i, j) is updated using the following rule:

MF (i, j) = P (i, j) + min

 MF (i− 1, j − 1) + CL(i, j)
MF (i− 1, j) + CU (i, j),
MF (i− 1, j + 1) + CR(i, j)

(5)

where P (i, j) is an additional pixel based energy measure, such
as the result of high level tasks (e.g. face detector) or a user sup-
plied weight, that can be used in addition to the forward energy
cost. Figure 10 shows a comparison of the results using the the two
formulations.

7.3 Image Enlarging

The process of removing vertical and horizontal seams can be seen
as a time-evolution process. We denote I(t) as the smaller image
created after t seam have been removed from I. To enlarge an image
we approximate an ‘inversion’ of this time evolution and insert new
‘artificial’ seams to the image. Hence, to enlarge the size of an
image I by one we compute the optimal vertical (horizontal) seam
s on I and duplicate the pixels of s by averaging them with their
left and right neighbors (top and bottom in the horizontal case).

Using the time evolution notation, we denote the resulting image as
I(−1). Unfortunately, repeating this process will most likely create
a stretching artifact by choosing the same seam (Figure 11(b)). To
achieve effective enlarging, it is important to balance between the
original image content and the artificially inserted parts. Therefore,
to enlarge an image by k, we find the first k seams for removal,
and duplicate them to arrive at I(−k) (Figure 11(c)). This can be
viewed as the process of traversing back in time to recover pixels
from a larger image that would have been removed by seam re-
movals (although it is not guaranteed to be the case).

Duplicating all the seams in an image is equivalent to standard
scaling (see Figure 11 (e)). To continue in content-aware fashion
for excessive image enlarging (for instance, greater than 50%), we
break the process into several steps. Each step does not enlarge
the size of the image in more than a fraction of its size from the
previous step, essentially guarding the important content from be-
ing stretched. Nevertheless, extreme enlarging of an image would
most probably produce noticeable artifacts (Figure 11 (f)). Another
example of enlarging an image using seam insertion is found in
Figure 1.

7.4 Retargeting in Both Dimensions

Image retargeting can change the image size in both directions, such
that an image I of size n ×m can be retargeted to size n∗ ×m∗,
where both m∗ 6= m and n∗ 6= n. Using seam carving, this raises
the question of what is the correct order of seam removal (or in-
sertion)? Vertical seams first? Horizontal seams first? Alternate
between the two? Or more generally, is there an optimal order of
seam removal (or insertion)?

We define an objective function using the seam costs and search for
the optimal order of seam removal (insertion) by minimizing this
function:

min
sx,sy,δ

k∑
i=1

E(δis
x
i + (1− δi)syi) s.t. (6)

k = r + c, r = (m−m∗), c = (n− n∗)

δi ∈ {0, 1} ,
∑k
i=1 δi = r ,

k∑
i=1

(1− δi) = c

δi is used as a parameter that determines if at step i we remove
(insert) a horizontal or vertical seam.

We find the optimal order using a transport map T that specifies,
for each desired target image size n∗ × m∗, the cost of the opti-
mal sequence of horizontal and vertical seam removal operations.

Figure 10: A comparison of results for reduction and expansion of the car image (leftmost) using least cost seam of Equation 4 (left in each
pair) and least inserted cost seams of Equation 5 (right in each pair).

(a) (b) (c) (d)

(e) (f)

Figure 11: Seam insertion: finding and inserting the optimum seam on an enlarged image will most likely insert the same seam again and
again as in (b). Inserting the seams in order of removal (c) achieves the desired 50% enlargement (d). Using two steps of seam insertions of
50% in (f) achieves better results than scaling (e).

Figure 12: Optimal order retargeting: On the left is the transport
map T of the retargeted image on the right. Given a target size,
we follow the optimal path from the target size to (0, 0) (on the
upper left corner) and apply either a vertical or a horizontal seam
removal to obtain the retargeted image (see example of white path
on T).

That is, entry T (r, c) holds the minimal cost needed to obtain an
image of size n− r×m− c. Again, there are an exponential num-
ber of possible ordering of vertical and horizonal seams. However,
we compute T greedily using dynamic programming. Starting at
T(0, 0) = 0 we fill each entry (r, c) choosing the best of two op-
tions - either removing a horizontal seam from an image of size
n− r ×m− c+ 1 or removing a vertical seam from an image of

size n− r + 1×m− c:

T(r, c) = min(T(r − 1, c) + E(sx(In−r−1×m−c)),
T(r, c− 1) + E(sy(In−r×m−c−1)))

(7)

where In−r×m−c denotes an image of size n−r×m−c,E(sx(I))
andE(sy(I)) are the cost of the respective seam removal operation.

We store a simple n × m 1-bit map which indicates which of the
two options was chosen in each step of the dynamic programming.
Choosing a left neighbor corresponds to a vertical seam removal
while choosing the top neighbor corresponds to a horizontal seam
removal. Given a target size n∗ × m∗ where n∗ = n − r and
m∗ = m− c, we backtrack from T(r, c) to T(0, 0) and apply the
corresponding removal operations (Figure 12).

8 Seam-Carving Video

8.1 Seam Carving using Graph Cut

The dynamic programming formulation works well for images, as
would a shortest path approach. However, neither one scales to
video and hence we switch to a graph-cut formalism that can be
used either for images or video. Graph partitioning and graph-
based energy minimization techniques are widely used in image
and video processing applications such as image restoration, im-
age segmentation, object recognition and shape reconstruction. A
graph representing an image is created by connecting pixels based
on their similarity together with some constraints. The graph is

(a) Non-monotonic (b) Unconnected (c) Original (backward) (d) Forward

Figure 13: Minimum cut on the waterfall image (top left) for various graph constructions. The seam is composed of the pixels to the left
of the cut. The different graph constructions are illustrated by four nodes representing four pixels in the image. The actual image graph is
created by tiling these sub-graphs across the image (see text for details). Graph (a) creates a general path and not a valid seam, while (b)
creates a monotonic but piecewise-connected seam. The construction at (c) is equivalent to the original seam carving algorithm (with E1).
The construction at (d) represents the new forward energy we present in Section 7.2.

partitioned into disjoint subsets by removing, or cutting, some of
its edges (arcs). For videos, it is often convenient to consider the
sequence of frames as a 3D space-time cube [Kwatra et al. 2003;
Schödl et al. 2000; Wang et al. 2004; Wang et al. 2005], and use
voxels connecting temporally instead of just pixels.

Our graph construction is a little different than most previous work
both for images and for video. The challenge we face is to design a
graph that produces only admissible cuts, e.g. cuts whose intersec-
tion with each video frame (or image) will produce a valid seam,
that is, it must satisfy two constraints:

Monotonicity the seam must include one, and only one pixel, in
each row (or column for horizontal seams).

Connectivity the pixels of the seams must be connected.

The monotonicity constraint ensures it is a function, while the con-
nectivity constraint enforces continuity. Hence, the challenge is to
construct a graph that guarantees the resulting cut will be a contin-
uous function over the relevant domain. However, standard graph-
cut based constructions do not satisfy these constraints.

8.2 Graph Cut on Images

For simplicity we will formulate the seam carving operator as a
minimum cost graph cut problem assuming we search for vertical
seams in an image. Later we will extend the discussion for video.
For horizontal seams all constructions are the same with the appro-
priate rotation. We refer to graph edges as arcs to distinguish them
from edges in the image. In our construction every node represents
a pixel, and connects to its neighboring pixels in a grid-like struc-
ture. Virtual terminal nodes, S (source) and T (sink) are created
and connected with infinite weight arcs only to the pixels of the
leftmost and rightmost columns of the image respectively (and only
to the sides of the cube for video).

An S/T cut (or simply a cut) C on such a graph is defined as a
partitioning of the nodes in the graph into two disjoint subsets S
and T such that s ∈ S and t ∈ T . The cost of a cut C = {S, T} is
defined as the sum of the cost of the ‘boundary’ arcs (p, q) where
p ∈ S and q ∈ T . Note that a cut cost is directed as it sums up the
weights of directed arcs specifically from S to T . That is, arcs in
the opposite direction do not affect the cost. To define a seam from
a cut, we consistently choose the pixels to the left of the cut arcs.
Note that if the source node is connected to the left column of the
image and the target node to the right column, then all nodes on the

left of the minimal cut must be labeled S, and all nodes on the right
of the cut must be labeled T . The optimal seam is defined by the
minimum cut which is the cut that has the minimum cost among all
valid cuts.

In a standard grid graph construction, every internal node
pi,j is connected to its four neighbors Nbr(pi,j) =
{pi−1,j , pi+1,j , pi,j−1, pi,j+1}. Following the L1-norm gra-
dient magnitude E1 energy that was used in [Avidan and Shamir
2007], we define the weight of arcs as the forward difference
between the corresponding pixels in the image either in the
horizontal direction: ∂x(i, j) = |I(i, j + 1) − I(i, j)| or in the
vertical: ∂y(i, j) = |I(i+ 1, j)− I(i, j)|. Under this formulation,
Figure 13(a) shows an optimal partition of the waterfall image into
source and target parts. This cut does not satisfy the seam carving
constraints.

To impose the monotonicity constraint on a cut, we use different
weights for the different directions of the horizontal arcs. For for-
ward arcs (in the direction from S to T), we use the weight as de-
fined above, but for backward arcs we use infinite weight. These
infinity arcs impose the monotonicity constraint as follows:

The optimal cut must pass all rows: This follows directly from the
definition of a cut and from the construction. As S is connected to
all pixels in the leftmost column, and every pixel in the rightmost
column is connected to T , every row has to be cut in some place in
order to create disjoint subsets.

The optimal cut passes each row only once: W.l.g. assume that
there exists a row j in the grid in which the cut passes twice (in fact
it must then cut the row an odd number of times). Let us examine
two consecutive cuts in row j. Let node pi,j be labeled S, the
nodes pi+1,j to pk−1,j will be labeled T and the nodes pk,j will
be labeled S again. However, this also means that the arc pk,j →
pk−1,j , which is an infinite weight arc, must be included in the cut
(figure 14(a)). This makes it an infinite cost cut, which contradicts
optimality since it is always possible to cut only horizontal arcs at
some column of the grid and achieve a finite cost cut.

The main difference between this graph cut construction and the
original dynamic programming approach is that there is no ex-
plicit constraint on the cut to create a connected path. The cut can
pass through several consecutive vertical arcs, in effect creating a
piecewise-connected seam. Although this behavior is penalized as
more vertical arcs are cut, it does happen in practice. Our empirical
results show that connected seams are important to preserve both

spatial and temporal continuity and to minimize visual artifacts.
To constrain cuts to be connected we use infinite weight diagonal
arcs going “backwards”. Using similar arguments as above, we can
show that this construction also imposes the connectivity constraint
(see Figure 14(b-c)).

(a)

(b) (c)

Figure 14: Using infinity edges (red) in the graph construction
maintains the seam constraints. Horizontal infinity arcs maintain
monotonicity (a) - see details in text. Diagonal infinity arcs main-
tain connectivity. If the cut skips more than one pixel to the left (b)
or right (c) - a diagonal infinity arc from a source node (white) to a
target node (black) must be cut.

In fact, by combining the weights of the vertical and horizontal arcs
together, we can create a graph whose cut will define a seam that
is equivalent to the one found by the original dynamic program-
ming algorithm. For example, we assign the weight E1(i, j) =
∂x(i, j) + ∂y(i, j) to the horizontal forward arc and remove the
vertical arc altogether (Figure 13(c)). A cut in this graph is mono-
tonic and connected. It consists of only horizontal forward arcs (the
rest are infinite weight arcs that pose the constraints and cannot be
cut), hence its cost is the sum of E1(i, j) for all seam pixels, which
is exactly the cost of the seam in the original seam carving operator.
Because both algorithms guarantee optimality, they must have the
same cost, and (assuming all seams have different costs) the seams
must be the same.

This suggests we can use any energy function defined on the pixels
as the weight of the forward horizontal arcs and achieve the same
results as the original dynamic programming based seam carving.
Moreover, high level functions such as a face detector, or a weight
mask scribbled by the user, can be used in any of the graph con-
structions we present. We simply add the pixel’s energy to the hor-
izontal arc going out of the pixel.

To define the forward energy cost (Section 7.2) in a graph, we
need to create a graph whose arc weights will define the cost of
the pixel removal according to the three possible seam directions.
Figure 13(d) illustrates this construction. A new horizontal pixel-
edge pi,j−1pi,j+1 is created in all three cases because pi,j is re-
moved. Hence, we assign the difference between the Left and Right
neighbors +LR = |I(i, j − 1) − I(i, j + 1)| to the graph arc be-
tween the nodes representing pi,j and pi,j+1. To maintain the seam
monotonicity constraint as before, we connect pi,j+1 and pi,j with
a (backward) infinite weight arc. We also add diagonal backward
infinite arcs to preserve connectivity.

Next, we need to account for the energy inserted by the new vertical
pixel-edges. In the case of a vertical seam step (Figure 9(b)), there
are no new vertical edges so no energy is inserted. Remember that
all nodes to the left of the cut must be labeled S and all nodes on

Figure 15: Top: the construction of a graph on a video cube guar-
antees the graph-cut will find a connected and monotonic manifold
in the volume. Bottom: The intersection of the manifold with each
video frame defines the seams on the frame.

the right of the cut must be labeled T . By definition, the cost of a
cut will only consider arcs directed from nodes labeled S to nodes
labeled T . It therefore follows that only upward vertical arcs will be
counted in a right-oriented cuts (Figure 9(a)), and only downward
vertical arcs will be counted in a left-oriented cuts (Figure 9(c)).
Hence, we assign the difference between the Left and Up neighbors
+LU = |I(i−1, j)−I(i, j+1)| to the upward vertical arc between
pi,j and pi−1,j , and the weight −LU = |I(i− 1, j)− I(i, j − 1)|
to the downward vertical arc between pi−1,j and pi,j (−LU means
the difference between the Left and Up neighbors with respect to
the end point of the arrow).

8.3 Graph Cut on Video

The extension to video is straightforward. Assuming we are search-
ing for a vertical seam, we consider the X × T planes in the video
cube and use the same graph construction as in X × Y including
backward diagonal infinity arcs for connectivity. We connect the
source and sink nodes to all left and right (top/bottom in the hori-
zontal case) columns of all frames respectively. A partitioning of
the 3D video volume to source and sink using graph cut will de-
fine a manifold inside the 3D domain (Figure 15). Such a cut will
also be monotonic in time because of the horizontal constraints in
each frame that are already in place. This cut is globally optimal in
the cube both in space and time. Restricted to each frame, the cut
defines a 1D connected seam.

The graph cut algorithm runs in polynomial time, but in practice
was observed to have linear running time on average [Boykov and
Jolly 2001]. For the full video volume, the computation time de-
pends on the number of nodes times the number of arcs in the graph,
which is quadratic in the number of voxels. Solving minimal cut on
a graph in which every voxel is represented by a node is simply not
feasible. In fact, performance issues are encountered already for
high resolution images. To improve efficiency, we employ a banded
multiresolution method, similar to the one described in [Lombaert
et al. 2005]. An approximate minimal cut is first computed on the
coarsest graph, and then iteratively refined at higher resolutions.
Coarsening is performed by sampling the graph both spatially and
temporally, while refinement is done by computing graph cut on a
narrow band induced by the cut that was computed at the coarser
level. The band in our case takes the form of a “sleeve” cutting
through the spatiotemporal volume.

9 Warping

Image warping views the image as a continuous domain and per-
forms a continuous geometric deformation to fit the image into the
new desired shape (an n∗ ×m∗ rectangle). The image content (the
signal) conceptually undergoes a continuous transformation and is
eventually discretized by sampling the continuous model (typically
the model uses bi-cubic or bi-linear interpolation). Homogeneous
scaling discussed before is a simple example of image warping for
retargeting purposes: it is called homogeneous because every point
within the image domain undergoes the same transformation (scal-
ing by some factor along the x and y axes). This kind of warp
does not regard the image content at all, however, and all the ob-
jects in the image are thus equally distorted. Recent image warp-
ing approaches suggest designing non-homogeneous warps that are
adapted to the image content. More specifically, non-homogeneous
warps take the image importance map as input and attempt to pre-
serve the shape of the salient parts while allowing more distortion
in regions of low importance. To obtain such a warping function,
all recent methods employ variational formulations, namely: an ob-
jective functional is designed, which measures, roughly speaking,
how well the warp preserves the image content, and then the warp-
ing function that minimizes the objective functional is found by a
numerical optimization process.

We adopt the notation from [Krähenbühl et al. 2009] and [Wang
et al. 2008] and define the concrete setup of the variational opti-
mization, and then discuss the details of the various warping ap-
proaches.

Setup and notation. Let us denote the image importance map
by S : I → [0, 1] (see Section 4). We are looking for a warping
function F : R2 → R2 that transforms our input image I into the
desired output image I∗ with the desired dimensions n∗ ×m∗. We
denote the horizontal component of F by Fx and the vertical one
by Fy such that F (x, y) = (Fx(x, y), Fy(x, y)). The warp should
transform the boundary rectangle of the input image into the new
dimensions, so assuming that we attach the coordinate (0, 0) to the
bottom left corner of the image and the coordinate (m,n) to the top
right corner, F should satisfy

Fx(0, ·) = 0, Fx(m, ·) = m∗, Fy(·, 0) = 0, Fy(·, n) = n∗.

The above equations are the so-called boundary constraints; the op-
timization will search for the best possible F that satisfies those
constraints. The “best” behavior is typically defined in terms of the
local behavior of F , i.e., its Jacobian

JF (x, y) =

(
∂F

∂x

∂F

∂y

)
=

(
∂Fx/∂x ∂Fx/∂y
∂Fy/∂x ∂Fy/∂y

)
.

The Jacobian JF (x, y) is essentially a linear transformation (scal-
ing, shearing, etc.) that best approximates F in a small neighbor-
hood around the point (x, y). Ideally, the Jacobian would equal
the identity matrix everywhere, which would mean that F does not
distort the image at all. However, this is of course impossible if
the size of the image is to be changed, so a more flexible objective
functional needs to be defined. For example, one would like the re-
gions of high importance to be distorted the least while sacrificing
other regions. This means we could ask the Jacobian of each point
(x, y) to be as close as possible to the identity matrix I in the least
squares sense, weighted by the importance S(x, y). This results in
the following objective functional:

E(F) =

∫ m

x=0

∫ n

y=0

S(x, y) ‖JF (x, y)− I‖2 dxdy , (8)

where ‖ · ‖ is the Frobenius matrix norm. Written out more explic-
itly:

‖JF (x, y)− I‖2 =

(
∂Fx
∂x

(x, y)− 1

)2

+

(
∂Fy
∂x

(x, y))

)2

+(
∂Fx
∂y

(x, y)

)2

+

(
∂Fy
∂y

(x, y)− 1

)2

.

There exist many variations on the particular terms used in the ob-
jective functional, as we will see below, but they all typically in-
volve the partial derivatives of F . The goal is to find the optimal
F :

F = argmin
F

E(F) subject to the boundary constraints.

Discretization. So far we have formulated everything in a con-
tinuous manner, but in order to compute the optimal warp F it is
usually necessary to discretize the problem so that standard numer-
ical optimization methods can be applied. This is fairly easy thanks
to the regular structure of the image domain. Typically a grid (quad)
mesh is superimposed against the image and the discrete objective
functional is defined using the mesh vertices. The mesh can have
arbitrary resolution: it can coincide with the pixel grid (or even be
finer), but often for the sake of efficiency a coarser grid is used.
Let us denote the grid mesh by M = (V,E,Q) with vertices
V, edges E and quad faces Q, where V = [vT0 ,v

T
1 , ...v

T
end] and

vi ∈ R2 denote the initial vertex positions. The vertices and edges
form horizontal and vertical grid lines partitioning the image into
quads. The problem is then to find the deformed mesh geometry
V′ = [v

′T
0 ,v

′T
1 , ...v

′T
end], i.e., F (vi) = v′i for each i. Once the

discrete F is computed for the vertices, the image content within
each face of the mesh can be reconstructed by interpolation.

It is generally assumed that all the faces of the mesh are square with
fixed unit edge length; therefore the partial derivatives of F can be
easily discretized using finite differences:

∂F

∂x
(vi) = v′j − v′i ,

where vertex j is the right-hand horizontal neighbor of vertex i, and
similarly for the vertical direction:

∂F

∂y
(vi) = v′k − v′i ,

where vertex k is the top vertical neighbor of vertex i.

The importance map S is also discretized and lumped to the mesh
vertices. Since usually S is defined on the discrete digital image
domain to begin with, if the grid mesh does not coincide with the
pixel grid (e.g., the mesh is coarser than the image resolution), then
one can take the average of the pixels’ importance values in some
fixed-size neighborhood of each mesh vertex vi to define S(vi).

Using such discretization, and replacing integrals with sums, the
example objective functional we saw earlier in Eq. (8) would be-
come

E(F) =
∑
{i,j}∈E

S(vi)‖(v′j − v′i)− (vj − vi)‖2.

Explanation: the objective functional would like to keep all the hor-
izontal derivatives equal to (1, 0)T and all the vertical derivatives
equal to (0, 1)T ; of course all the original horizontal neighbor ver-
tices vi,vj satisfy vj − vi = (1, 0)T , and the vertical neighbors

 original image and mesh grid scale-and-stretch [Wang et al. 2008] result without line bending energy scale-and-stretch with added line bending term

Figure 16: Demonstration of the effect of the line bending energy term in the scale-and-stretch warping technique of [Wang et al. 2008].
Note how adding the energy term prevents strong grid line bending and produces a less distorted retargeting result.

have vj − vi = (0, 1)T , so it is convenient to compactly write
the energy as above, without distinguishing vertical and horizontal
cases, simply as (v′j − v′i)− (vj − vi).

In the functional above, the unknowns are the warped vertex lo-
cations v′i; note that the functional in this case is quadratic in the
unknowns, and thus we can find the warp by solving a system of
sparse linear equations (for more details, see [Gal et al. 2006]).
This can be done robustly and quite efficiently with modern numer-
ical solvers; all warp-based retargeting methods try to avoid more
involved, nonlinear functionals when possible to keep the compu-
tational costs low and the implementation simple.

9.1 Warp-based Image Retargeting

Given the basics described above, let us now detail the various
warp-based retargeting methods. Most techniques fall into the gen-
eral optimization framework described above and differ by the par-
ticular objective functionals they formulate.

Gal et al. [2006] were among the first to propose non-homogeneous
warps for images. They used a simple binary, hand-drawn impor-
tance map S, and the objective functional for the warping function
was accordingly divided into two parts: the Jacobian of “impor-
tant” points should be as close as possible to scaled identity, and
the Jacobian of “unimportant” points is allowed to be the standard
homogeneous (non-uniform) scalingA that fits the new dimensions
of the image. The objective functional can be written as∫∫

S(x, y)‖JF (x, y)− sI‖2 + (1− S(x, y))‖JF (x, y)−A‖2.

Gal et al. [2006] noted that uniform scaling of important regions
may be beneficial, as it preserves the shape, and thus the image
content, yet allows more flexibility in the warp. They simply de-
fined the uniform scaling factor s to be the minimum between the
horizontal and vertical scaling induced by the new dimensions of
the image (so for instance, if the image is stretched or shrunk just
along one dimension, the uniform scaling factor would be 1).

The idea of taking advantage of local scaling was taken further by
Wang et al. [2008]. They suggested to use varying uniform scal-
ing factors for each point in the image and find those by optimiza-
tion (hence naming the technique “optimized scale-and-stretch”).

In discrete form, the initial objective functional then has the form∑
i

S(vi)
∑

j s.t. {i,j}∈E

‖(v′j − v′i)− si(vj − vi)‖2.

Both the new mesh vertices v′i and the uniform scaling factors si are
unknowns; they are computed by alternating optimization. Fixing
si allows to find the optimal warped vertex positions v′i by solving a
sparse linear system; given the current v′i the scaling factors si can
be then updated, and the iterations repeat until convergence (see the
paper [Wang et al. 2008] for details).

In addition to this energy functional, Wang et al. [2008] also suggest
adding a grid line bending energy: only having the scaling func-
tional above may cause the grid lines to arbitrary bend, so to limit
the “wild” behavior it is necessary to encourage the grid lines to
keep their original orientation while allowing the length to change
(see Figure 16). The bending energy is∑

{i,j}∈E

‖(v′j − v′i)− lij(vj − vi)‖2. (9)

Here, again, the length factors lij are unknowns and are iteratively
found during the alternating optimization. In fact, the lengths lij
can be written as nonlinear expressions in v′i:

lij = ‖v′i − v′j‖/‖vi − vj‖.

By employing the alternating optimization strategy, i.e., fixing the
length factors, solving for the vertex positions and then updating
the length factors by simply applying the formula above with the
current vertex positions v′i, it is possible to avoid a complex non-
linear optimization, and robustly reach a reasonable solution within
just a few iterations.

In the work of Wolf et al. [2007], scaling is performed along one di-
mension only (i.e., the image points are encouraged to move in the
direction of the stretch but not orthogonal to it); this is achieved by
formulating an objective functional that asks w.l.o.g. the horizon-
tal derivatives of the warp to equal 1 while smoothing the vertical
derivatives. Their objective functional thus has the form∫∫

S(x, y)

(
∂Fx
∂x

(x, y)− 1

)2

+ w

(
∂Fy
∂x

(x, y)

)2

dxdy.

original image [Rubinstein et al. 2008] [Wolf et al. 2007] [Wang et al. 2008]

Figure 17: Comparison of warp-based and discrete retargeting techniques.

Wang et al. [2008] note, however, that this formulation may often
lead to self-intersections and is sometimes sub-optimal in terms of
effective use of the image domain, because it does not allow fea-
tures to scale down in both directions.

In a recent work, Krähenbühl and colleagues [2009] note that al-
lowing different parts of the image to scale differently can often
lead to significant changes of proportions, so they opt to replace
the local scaling factors si by one global scaling factor s, which
is also found by alternating optimization. They also propose two
additional energy terms that improve the appearance of edges:∫∫

Se(x, y)

((
∂Fx
∂y

)2

+

(
∂Fy
∂x

)2
)
dxdy,

∫∫
Se(x, y)

((
∂Fx
∂x
− 1

)2

+

(
∂Fy
∂y
− 1

)2
)
dxdy.

Here, Se(x, y) is an edge saliency map (computed by running, e.g.,
a Sobel operator); the first term prevents bending of features (simi-
lar to [Wolf et al. 2007]) and the second term prevents edge blurring
by enforcing similar image gradients on feature edges.

In addition to the automatic warping, the work by Krähenbühl
et al. [2009] explores various interactive control mechanisms for
the retargeting process, allowing users to interactively mark ob-
jects in the image (or video) and influencing their location, as
well as manual markup of lines and edges, which are then con-
strained to remain straight. Note that automatic edge bending en-
ergies (like in Eq. (9) or above) can only prevent local bending of
features, but do not prevent global distortion of feature lines. A
manual line constraint is created by drawing a line represented as
l : sin(α)x + cos(α)y + b = 0. Each image point is then associ-
ated with a value c(x, y) that indicates the coverage percentage by
the line; line preservation energy term can be simply formulated as∫∫

c(x, y) (sin(α)Fx(x, y) + cos(α)Fy(x, y) + b)2 dxdy.

(a) (b) (c)

Figure 18: Demonstration of feature edges retargeting. The top
row shows the original frame (left) and the edge saliency map Se
(right) used in [Krähenbühl et al. 2009]. Manually added global
line constraints are marked in white. The bottom row shows dif-
ferent retargeting results: (a) Wang et al. [2008], (b) Krähenbühl
et al. [2009] with automatic line bending energy terms only,
(c) Krähenbühl et al. [2009] using the additional manual line con-
straints. Images taken from [Krähenbühl et al. 2009].

Note that initially the line parameters α and b are set as in the origi-
nal image, but they are updated after each iteration in an alternative
optimization manner, just like the scaling parameter. See Figure 18
that shows the effect of the automatic and manual line constraints.

Some warp-based image retargeting results are shown in Figure 17.
It is interesting to compare the results of the different warping tech-
niques, and the discrete methods as well: generally, warp-based
retargeting does not suffer from discontinuity artifacts typical for
seam carving, but the trade-off may be more significant distortion of

Figure 19: A video retargeting example from [Wang et al. 2009]. First, the video frames are aligned into one common coordinate system,
eliminating camera motion. The video cube is then warped while respecting object motion.

image objects, smearing artifacts and, when spatially-varying scal-
ing is involved, also change in relative proportions.

9.2 Warp-based Video Retargeting

As mentioned before, video retargeting can be viewed as a general-
ization of image retargeting, where all the video frames are stacked
in a space-time cube. Warp-based video retargeting methods will
thus warp the cube to obtain the video of the desired dimensions.
We will denote the warping function by F (x, y, t), adding the third
(time) dimension. As with images, video warping should satisfy
some boundary constraints: spatial constraints on the boundary of
each frame ensure the proper output size, and in addition, the time
should not be warped at all, so each frame retains its time stamp
Ft(x, y, t) = t (or in other words, the warp does not affect the
temporal dimension).

As we have seen, most recent image warping techniques employ
global optimization to obtain the warping function. Direct gener-
alization of this to video is impractical for several reasons: first,
global optimization on the space-time cube is very expensive, since
it requires solving linear or nonlinear systems for n ×m × t vari-
ables, where n×m is the resolution of each video frame (or the su-
perimposed grid mesh) and t is the number of frames. Secondly, a
global optimization that involves all the video frames at once might
not even make sense, since temporally distant frames have little to
no effect on each other and thus should not be tied in one common
objective functional. Therefore, at least scene-cut detection is per-
formed to break the video into individual scenes. This can be done
either manually or using an automatic method such as [Zabih et al.
1995].

To retarget an individual video sequence in a meaningful way, one
must consider temporal coherence in addition to the spatial behav-
ior of each individual frame. Initially, temporal coherence was
dealt with by simply asking temporally-adjacent image points to be
warped (or transformed) similarly, i.e., F (x, y, t) should be close
to F (x, y, t ± 1). Wolf et al. [2007] formulate a temporal energy
term for the global optimization simply as∫∫∫ ∥∥∥∥∂F∂t (x, y, t)

∥∥∥∥2

dxdydt.

However, for videos with object and/or camera motion, this type of
objective functional does not work well, since the same spatial loca-
tion in adjacent frames is not necessarily occupied by the same ob-
ject, so that constraining temporally adjacent pixels to undergo sim-
ilar transformations might actually distort the video. Krähenbühl et
al. [2009], aiming at a real-time restargeting system that works in
a streaming setting, propose to deal with the problem by tempo-
rally filtering the importance maps using a small look-ahead win-
dow (of approximately five frames). Temporally “smearing” the
importance map helps predicting the future appearance of salient
objects, and indirectly temporally smoothes the retargeting result.

Yet, in this approach each video frame is still resized individually;
if more computationally-intensive video processing is allowed (off-
line or in a preprocess), temporal coherence can be more substan-
tially handled by looking at the entire scene.

Such global processing was recently suggested by Wang and col-
leagues [2009]: they first align all the video frames (in a given
scene) in a common coordinate system by extracting and match-
ing SIFT features, which effectively removes camera motion (see
Figure 19, left). Then, individual moving objects are roughly de-
tected and a motion saliency map is built. The warp is applied
to the aligned video frames using the scale-and-stretch framework
of [Wang et al. 2008], but with additional temporal coherence en-
ergy terms: the scaling factors of moving objects are constrained to
be similar across frames, and generally the warp of the space-time
cube is governed by a combination of the motion saliency map and
spatial importance map, blended across several neighboring frames.
Wang et al. [2009] show that it is possible to solve for the warping
function using a sliding window approach, such that the optimiza-
tion is relatively efficient (about 5 frames per second for a 480×240
video). As a final step, each video frame is transformed back to its
original coordinate frame.

10 Summary

In this course, we attempt to summarize the recent advances in vi-
sual media retargeting, while classifying the existing body of work
into two rough categories: discrete and continuous approaches.
While the concepts and the algorithms used in both categories are
quite different, clear common grounds and parallels exist: both
types of methods try to achieve the best possible retargeting re-
sult by optimizing an appropriate energy functional, and they do
this by removing (or shrinking) unimportant visual content in or-
der to leave room for well-preserved salient visual information.
Both types of approaches have their advantages and disadvantages:
roughly speaking, discrete methods generalize cropping and thus
handle removal of unnecessary content well, which is especially ev-
ident for high-frequency, textured image content (such as foliage,
sand, water, etc.). Continuous approaches tend to avoid disconti-
nuity artifacts and typically preserve the overall shapes of image
objects more coherently. Interestingly, some continuous methods
do not heavily penalize extreme shrinking of unimportant image
regions, in which case these regions may shrink to nearly vanishing
width, effectively resulting in complete content removal, just like
in the discrete methods.

Future research in visual media retargeting will certainly continue
to focus on video content, as this area has extremely high impact
in terms of applications and still remains a challenge. Additionally,
perceptual studies of media retargeting with human subjects should
play an important role in further progress. A few recent works at-
tempted some limited experiments of this kind [Rubinstein et al.
2009; Krähenbühl et al. 2009], and there remains a considerable
amount of questions to be asked. These include: what do people

like and dislike in transformed images and videos? which artifacts
affect this judgement, and which factors contribute to the overall
perception of the retargeting results? An important avenue for fu-
ture research would be to come up with a perceptually significant
and validated visual metric, suitable for the evaluation of retarget-
ing methods.

Acknowledgments

We would like to thank all our co-authors for the years of inspir-
ing and fruitful collaborations on the subject of media retargeting.
Ariel Shamir’s research is funded by the Israel Science Foundation
grant 315/07 and the Israel Ministry of Science grant 3-3421. Olga
Sorkine’s research is supported in part by an NYU URCF grant and
an NSF award IIS-0905502.

References

AVIDAN, S., AND SHAMIR, A. 2007. Seam carving for content-
aware image resizing. ACM Trans. Graph. 26, 3, 10.

BOYKOV, Y., AND JOLLY, M.-P. 2001. Interactive graph cuts for
optimal boundary & region segmentation of objects in n-d im-
ages. In International Conference on Computer Vision, (ICCV),
vol. I, 105–112.

DALAL, N., AND TRIGGS, B. 2005. Histograms of oriented gradi-
ents for human detection. In International Conference on Com-
puter Vision & Pattern Recognition, vol. 2, 886–893.

DECARLO, D., AND SANTELLA, A. 2002. Stylization and ab-
straction of photographs. In Proceedings of SIGGRAPH, 769–
776.

FAN, X., XIE, X., ZHOU, H.-Q., AND MA, W.-Y. 2003. Looking
into video frames on small displays. In Multimedia ’03, ACM,
New York, NY, USA, 247–250.

GAL, R., SORKINE, O., AND COHEN-OR, D. 2006. Feature-
aware texturing. In Eurographics Symposium on Rendering,
297–303.

HARRIS, C., AND STEPHENS, M. 1988. A combined corner and
edge detector. In Proceedings of the 4th Alvey Vision Conference,
147–151.

ITTI, L., KOCH, C., AND NIEBUR, E. 1998. A model of saliency-
based visual attention for rapid scene analysis. IEEE Trans. Pat-
tern Anal. Mach. Intell. 20, 11, 1254–1259.

KRÄHENBÜHL, P., LANG, M., HORNUNG, A., AND GROSS, M.
2009. A system for retargeting of streaming video. ACM Trans.
Graph. 28, 5.

KWATRA, V., SCHÖDL, A., ESSA, I., TURK, G., AND BOBICK,
A. 2003. Graphcut textures: image and video synthesis using
graph cuts. ACM Trans. Graph. 22, 3, 277–286.

LOMBAERT, H., SUN, Y., GRADY, L., AND XU, C. 2005. A mul-
tilevel banded graph cuts method for fast image segmentation.
In Proceedings of the Tenth IEEE International Conference on
Computer Vision (ICCV), vol. 1, 259–265.

RODITTY, L., AND ZWICK, U. 2004. On dynamic shortest paths
problems. In In Proceedings of 12th Annual European Sympo-
sium on Algorithms (ESA), 580–591.

RUBINSTEIN, M., SHAMIR, A., AND AVIDAN, S. 2008. Improved
seam carving for video retargeting. ACM Trans. Graph. 27, 3.

RUBINSTEIN, M., SHAMIR, A., AND AVIDAN, S. 2009. Multi-
operator media retargeting. ACM Trans. Graph. 28, 3.

SANTELLA, A., AGRAWALA, M., DECARLO, D., SALESIN, D.,
AND COHEN, M. 2006. Gaze-based interaction for semi-
automatic photo cropping. In Proceedings of CHI, 771–780.

SCHÖDL, A., SZELISKI, R., SALESIN, D. H., AND ESSA, I.
2000. Video textures. In SIGGRAPH ’00: Proceedings of the
27th annual conference on Computer graphics and interactive
techniques, ACM Press/Addison-Wesley Publishing Co., 489–
498.

SHAMIR, A., AND AVIDAN, S. 2009. Seam carving for media
retargeting. Communications of the ACM 52, 1, 77–85.

VIOLA, P., AND JONES, M. J. 2004. Robust real-time face detec-
tion. Int. J. Comput. Vision 57, 2, 137–154.

WANG, J., XU, Y., SHUM, H.-Y., AND COHEN, M. F. 2004.
Video tooning. ACM Trans. Graph. 23, 3, 574–583.

WANG, J., BHAT, P., COLBURN, R. A., AGRAWALA, M., AND
COHEN, M. F. 2005. Interactive video cutout. ACM Trans.
Graph. 24, 3, 585–594.

WANG, Y.-S., TAI, C.-L., SORKINE, O., AND LEE, T.-Y. 2008.
Optimized scale-and-stretch for image resizing. ACM Trans.
Graph. 27, 5.

WANG, Y.-S., FU, H., SORKINE, O., LEE, T.-Y., AND SEIDEL,
H.-P. 2009. Motion-aware temporal coherence for video re-
sizing. ACM Trans. Graph. (Proceedings of ACM SIGGRAPH
ASIA) 28, 5.

WOLF, L., GUTTMANN, M., AND COHEN-OR, D. 2007. Non-
homogeneous content-driven video-retargeting. In IEEE Inter-
national Conference on Computer Vision (ICCV).

ZABIH, R., MILLER, J., AND MAI, K. 1995. A feature-based
algorithm for detecting and classifying scene breaks. In ACM
Multimedia, 189–200.

ZHANG, Y.-F., HU, S.-M., AND MARTIN, R. R. 2008. Shrinka-
bility maps for content-aware video resizing. Computer Graph-
ics Forum 27, 7, 1797–1804.

