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Motivation
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Page layout

From Wikipedia, the free encyclopedia

WIKIPEDIA For the Wikipedia policy about articles layout, see
The Free Encyclopedia Wikipedia:Guide to layout.
navigation

Page layout is the part of graphic design that deals in

= Main page the arrangement and style treatment of elements

= Contents (content) on a page. Beginning from early illuminated

Featured content pages in hand-copied books of the Middle Ages and

Current events : S .

« Random article proceeding down to intricate modern magazine and
catalog layouts. proper page design has long been a

interaction | consideration in printed material. With print media,

= About Wikipedia elements usually consist of type (text), images

= Community portal (pictures), and occasionally place-holder graphics for

= Recentchanges elements that are not printed with ink such as die/laser \ <

® Upload file wizard cutting, foil stamping or blind embossing. — : -

= Contactus Consumer magazine sponsored advertisements and &
= Make a donation Since the advent of personal computing, page layout covers rely heavily on professional page layout skills to

= Help skills have expanded to electronic media as well as compete for visual attention.

= PR f 4 a1 v
<] »

|
[ [T [ @ mntemet H100% ~ »
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Motivation
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Retargeting

* Given the original media in size mxn resize

it to size m’xn” wherem’ #morn’ #nor
both.
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What is an image?

[llumination (energy)

/'7/ l\ source

Digital Camer;

(Internal) image plane

Scene element
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A Grid of Intensity Values

(common to use one byte per value: 0 = black, 255 = white)
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Image as Grid of Values




Images As Samples

e All images can in fact be seen as point
sample representation of some function,
but they are mostly defined on planar
regular grids and we can assume some
blending function which defines some
function on the whole space.
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An Image as a 2D Function

Sponsored by ACM SIGGRAPH @ '




Basic Distinction:
Discrete vs. Continuous

* Pixels are treated as discrete entities

* Pixels are treated as sample of a continuous
function

* Following this we will see two major
approaches for retargeting that we term
“discrete” vs. “continuous”




Content Scale (continuous) Crop (discrete)
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Enlarging?
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Key Idea: Content Aware

 Remove (or Insert) “less important” parts and
preserve more important ones

* |n effect this means we are creating ... content
aware resizing

* Key questions: what is important?




Resizing?




A Seam
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Seam Carving
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Finding the Seam?
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The Optimal Seam

%k
E(I)=|§I|+|§I| = s =argmin E(s)




Naive Approach

* Loop over all seams and
check their energy E(s).

‘_

Choose the one with
smallest energy. o
s
* How many seams? rd P

* Exponential (~3" for
wxh image)
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However... Pixel Attributes 2
Dynamic Programming

M(, j) = e(i, j) + min(M(i—1, j—1), M(i—1, j), M(i — 1, j+1))
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Dynamic Programming

M(, j) = e(i, j) + min(M(i—1, j—1), M(i—1, j), M(i — 1, j+1))
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Dynamic Programming

M(, j) = e(i, j) + min(M(i—1, j—1), M(i—1, j), M(i — 1, j+1))
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Dynamic Programming

M(, j) = e(i, j) + min(M(i—1, j—1), M(i—1, j), M(i — 1, j+1))

5 8 12| 3

9 |7 | 6 |12

14| 9 10 8

N
15 | 14 | 15 ‘8L8




Searching for Minimum

M(, j) = e(i, j) + min(M(i—1, j—1), M(i—1, j), M(i — 1, j+1))
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Backtracking the Seam

M(, j) = e(i, j) + min(M(i—1, j—1), M(i—1, j), M(i — 1, j+1))

5 8 12| 3
9 |7 | 6 |12
14| 9 10 8
15 114 15 | 16




Backtracking the Seam

M(, j) = e(i, j) + min(M(i—1, j—1), M(i—1, j), M(i — 1, j+1))
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Backtracking the Seam

M(, j) = e(i, j) + min(M(i—1, j—1), M(i—1, j), M(i — 1, j+1))
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H & V Cost Maps

High
cost

Low

g cost

Horizontal Cost Vertical Cost
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A Local Operator!
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Aspect Ratio Change
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Aspect Ratio Change

Original - =
Scaling
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Aspect Ratio Change

Scaling
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Two Step Approach

1. Define what is important
2. Change the size by applying an operator

1. Define an energy function E(1) [> 2. Use some operator(s) to
(interest, importance, saliency...) change the image |




General Scheme

Setlur et al.
[2005]

: : » Gal et al.
TS0 [2006]

Santella et al.
[20006]
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Papers

e 2003: Suh et al. — Thumbnail creation
e 2003: Chen et al. — Cropping for Mobile

e 2007: Avidan & Shamir — Seam carving
e 2007: Wolf et al. — Video
e 2008: Wang et al. — Scale & stretch

* 2010: Rubinstein et al. — RetargetMe benchmark

 2012: Panozzo et al. — Axis-Aligned Deformation

Sponsored by ACM SIGGRAPH @ ' ',




-
555; SIGCRAPH
p R ASIACGIC
Yo'%
Embracing
the - >
digital
convergence

CONFERENCE 28 Nov - 1 Dec
EXHIBITION 29 Nov - 1 Dec

Singapore EXPO

www.SIGGRAPH.org/ASIA2012



Visual Importance Measures

Alexander Sorkine-Hornung
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Visual saliency

* Content-aware rescaling

— Preserve visually important
parts of an image

* |Importance map

— Indicate how salient a pixel or area is

* Content-aware operators
— Protect important areas

— Allow deformations on less important parts

&
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How to quantify visual importance?

 Dependent on many factors
e Subjective judgment
* Image semantics & context
* Application!

— Image segmentation

— Medical applications
— Driving assistance systems

— Advertising
— Retargeting
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How to quantify visual importance?

* Eye tracking to measure attention
— Few examples for retargeting

— “Hot spots” only...
important structures?

— Does not tell us which regions to

protect in order to avoid noticeable
artifacts

* Need (preferably automatically and
easily) computable measures

“Learning to predict where humans look”, Judd et al., ICCV 2009
“Using Eye-Tracking to Assess Different Image Retargeting Methods”, Castillo et al., APGV 2011
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High- or low-level?

 Top-down, high level models

— Need to be founded on neurosciences,
biology, computer vision, ...

— Recent results combining learning and
object detection for saliency
* Bottom-up, low-level stimuli driven

— Successful / useful in many
application scenarios
(including retargeting)
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Low-level visual saliency

* Low level visual system processes basic features
— Color, orientation of edges, direction of movement

* Perceptual research indicates that
contrast is most influential factor

* Define various contrast measures

— Intensity gradient, histograms,
spectral properties, ...

 Combine into saliency map
— Winner-take-all, thresholds, nonlinear operations, ...

* Simple definitions and efficient to compute
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Intensity gradients

* Assumption: humans are sensitive to edges

e Saliency is simply the magnitude of gradients

oIl |oI aI\> [oI\’
| T : - | T+

Ox

A
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lmage entropy

e Statistical measure of the intensity histogram

* For each pixel compute entropy — Zplog2(p) around
itina k x k window

* Measures how “busy” |
or textured the image is £&

* Gradients and entropy
sensitive to noise and
small scale detail

A
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Low-level attention model

* Target application: rapid scene analysis
* React to basic stimuli

— Inspired by neuronal architecture of early
primate visual system

 Multi-scale image features
— Color

— Intensity
— Orientations

“A model of saliency-based visual attention for rapid scene analysis”, Itti et al., PAMI 1998

A
Sponsored by ACM SIGGRAPH @ ’



Low-level attention model

 Compute multi-res pyramid
of the image

Cortical Representation

* On and between levels compute e
local filters like color differences,
edges, etc.

* Combine response in saliency map

“A model of saliency-based visual attention for rapid scene analysis”, Itti et al., PAMI 1998
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Color contrast




Intensity and orientations




Low-level attention model

* Combine intermediate results for final saliency

* Very efficient to compute

* Considers a more global scale
(multi-res image pyramid)

* Quite coarse, blurry saliency maps
* No clear objects or structures
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Spectral approaches

* Frequency spectra of natural images

1 image 10 images 100 images
15 15 15
. i |
g 10 \ g1 g 10 \
8 ' 8 8
S " & £
g s S g s g s

0 0
20 40 60 80 100120 20 40 60 80 100120 20 40 60 80 100120
frequency frequency frequency

e Separate statistically redundant components from
those carrying information

e Spectral singularities represent salient regions

“Saliency Detection: A spectral residual approach”, Hou and Zhang, CVPR 2007
“Spatio-temporal Saliency Detection using Phase Spectrum [...]”, Guo et al., CVPR 2008
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Spectral approaches

e Compute log spectrum and averaged log
spectrum by convolution

» Saliency as spectral residual R(f) = L(f) — A(f)

Log spectrum curve Spectral average curve Specitral residual curve

Input image 4r 4 4

> 31 > 3 > 3

V- @ 7] 7]
— g 2 & 2 S 2
- S’ 1 \/\‘\/\V\_ g 1 o : _8 1 "
0 0 0V "~
10 20 30 10 20 30 10 20 30
frequency frequency frequency
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Spectral approaches

. o, e W
e Often more “intuitive” -

response than Itti et al. Spectral Ittietal.  User sel.

(at least for retargeting)

[ (2 ()
L E)
== et
=

“Saliency Detection: A spectral residual approach”, Hou and Zhang, CVPR 2007
“Spatio-temporal Saliency Detection using Phase Spectrum [...]”, Guo et al., CVPR 2008
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* Generally blurry and
low resolution




Learning combinations of features

* Large image database with ground truth labeling

 Compute set of features

— Multi-scale contrast
(edges at various scales)

— Center surround histogram
— Color spatial distribution
— Captures local to global

* CRF to learn optimal

linear combination of features
“Learning to detect a salient object”, Liu et al., CVPR 2007
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Learning combinations of features

* Large image database with ground truth labeling

 Compute set of features
— Multi-scale contrast |
(edges at various scales) | ’(g . 1
\ [ 8

— Center surround histogram

— Color spatial distribution
— Captures local to global

* CRF to learn optimal

linear combination of features
“Learning to detect a salient object”, Liu et al., CVPR 2007
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Learning combinations of features

* Large image database with ground truth labeling

 Compute set of features

— Multi-scale contrast
(edges at various scales)

— Center surround histogram
— Color spatial distribution

— Captures local to global

* CRF to learn optimal

linear combination of features
“Learning to detect a salient object”, Liu et al., CVPR 2007

&
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Learning combinations of features

* Large image database with ground truth labeling

 Compute set of features

— Multi-scale contrast
(edges at various scales)

— Center surround histogram
— Color spatial distribution
— Captures local to global

* CRF to learn optimal

linear combination of features
“Learning to detect a salient object”, Liu et al., CVPR 2007
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Learning combinations of features

e Ground truth data

* Object segmentation g
rather than blurry '
attention maps

* Single salient object

e Sensitivity to high
frequency content
like edges or noise

“Learning to detect a salient object”, Liu et al., CVPR 2007
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Patch based approaches

* Consider also global image structures
— Local: low-level contrast
— Global: suppress frequently occuring content
— Visual organziation: take context into account

* For each pixel, compare surrounding patch to K most similar
patches at different scales

Input | Itti et al. Spectral Learning Patch-based

“Context-Aware Saliency Detection”, Goferman et al., CVPR 2010
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Patch based approaches

* No training required, context useful for retargeting

e Suffers from involved combinatorial complexity
— Low resolution, may loose details

Spectral Patch-based
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... and many more

 Definition and estimation of contrast based on various
types of image features

— Color variation of individual pixels

— Histograms

— Edges and gradients

— Frequency spectra

— Structure and distribution of image patches
— Multi-scale descriptors

— Combinations thereof

e Significance of those features unclear, similar
approaches with considerably varying performance
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Which one is best?
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Saliency Filters
Contrast from basic image elements

 Reconsider relevance of individual contrast measures
— Sensitivity to detail and noise
— Larger-scale edges & global relations

e Abstraction

— Decompose image into structurally
representative elements

* Contrast
— Uniqueness of elements
— Spatial distribution of elements

* Up-sample to pixel-level

“Saliency Filters: Contrast Based Filtering for Salient Region Detection”, Perazzi et al., CVPR 2012
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Abstraction

* Decompose image into elements that
— Preserve relevant structure
— Abstract undesirable detail

* Cluster pixels (e.g. based on color) into
perceptually homogeneous regions

* Discontinuities between those regions
should be preserved

* Constraints on shape and size

* Superpixel segmentation

— k-means clustering in 5D space (CIE colors and position)

* Content-adaptive scale space
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Element uniqueness

 Measure the “rarity” of an element
* Element color and position c; p;
* Local/global control w()

— Radius of uniqueness operator

 Element uniqueness

N
Ui =" llei — ¢ * - w(pi py)
j=1

* Problem: quadratic complexity
* Implemented as high dimensional Gaussian blurring
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Element distribution

* Unigue elements not always salient
— Background colors distributed

— Foreground colors more compact

e Spatial variance of the color of a

segment N ,
D; =Y |y — pallPw(es, c)

j=1
 Weighted mean of similar elements

N
i = 2y W(Ci, C5)P;

* Again evaluated by Gaussian blurring
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Saliency assignment

* Combined element saliency
SZ' — UZ' . exp(—k . DZ)
* Segmentation-based techniques
often limited to elements
* Upsample to pixel resolution
— Recover abstracted detail
— Weighted combination of elements

— Does not carry over segmentation
errors

* Again, Gaussian filtering
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Evaluation

* Closest to user segmentation

* Comparably simple algorithm
— Abstraction

— Two contrast measures
— Up-sampling

* How to evaluate saliency maps?

— Precision and Recall
— Mean absolute error

“A database of human segmented images”, Martin et al., ICCV 2001 Input  SF User

“Frequency-tuned salient region detection”, Achanta et al., CVPR 2009

Sponsored by ACM SIGGRAPH 0\ ' 7




Precision and Recall
e Precision 0l |

— How many of computed salient ..
pixels are actually salient?

Precision
Lo o

* Recall =
— How many of actually salient ll =
pixels were computed? o gy

Recall

* For attention detection precision
IS most important

* For retargeting we need both
* Adaptive thresholds and F-measure
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Mean Absolute Error

 Precision and Recall does not consider the true
negative saliency assignments

e P&R favors methods that are
— Successful with salient pixels

— May fail to correctly identify
non-salient regions

* Evaluate mean absoluteerror =.. J H B8 FHH H B HH
between continuous saliency
map and binary ground truth

e Different results than P&R!

Sponsored by ACM SIGGRAPH @ '

0.25

Mean Absolute Error

SF HC IT FT AC SR LC GB Mz CA RC



Limitations

e Low-level measures do not
necessarily correspond to
human attention

YO THAI

g

g
%

X o8 - 14_:

* |s segmentation of the most
salient object best choice for
retargeting?

“Learning to predict where humans look”, Judd et al., ICCV 2009
“Using Eye-Tracking to Assess Different Image Retargeting Methods”, Castillo et al., APGV 2011
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High level saliency

* Global / semantic / structural information
about image content

— Line detection

— Symmetries

— Face / object detection
— User input o\ —N.

x
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Line detection

* Lines are prominent features, especially when
man-made objects are present in the image

* Local measure of line strength

e Similarity transforms for lines

~ 4 ‘.J 5 s 3 A -.‘—7‘.

“A system for retargeting of streaming video”, Krahenbihl et al., SIGGRAPH Asia 2009
“A line structure preserving approach to image retargeting”, Chang and Chuang, CVPR 2012
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Symmetry detection

* Regular repeating structures become very “salient”
when broken

* Analyze translational symmetries and detect
underlying lattice structures

“Resizing by symmetry- summarlzatlon Wu et al., SIGGRAPH Asia 2010




Face detection

* Predefined class of objects like faces

] A

* Object detection using
machine learning
— Classifiers trained on a dataset

— OpenCV

e Simply “protect” detected
faces in the output saliency map
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Saliency based on object detection

e Cluttered scenes with occlusions and various objects

 Combine feature learning and saliency computation
— For each target object class learn a dictionary of patches

— CRF for spatial consistency

Input Itti et al. Spectral “Bike” “Person”

“Top-Down Visual Saliency via Joint CRF and Dictionary Learning”, Yang and Yang, CVPR 2012

x
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Saliency based on object detection
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Saliency based on object detection

* Boundary / differences
between object detection

and saliency?

 Hard to learn everything

— What objects are important
to be preserved?

— Still no global structures

A
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User Input

e |If all else fails — brush interface to mark
important areas, lines, structures, etc.

* |n video: key framing to propagate

time

key frame  interpolated constraints  key frame

A
Sponsored by ACM SIGGRAPH @ ’




Combining saliency measures

e Several importance maps can be combined
e Strongly dependent on input and desired result

* Optimal combinations are hard to learn automatically

™ Ma 2

saliency map combined importance map
[Itti et al. 98]

combined importance map

4

from [Wang et al. 2008]

4 & y S o P ".l
AL R RETED (i W S e e
RS i e
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Video: temporal coherence

* Temporal coherence is key

* Blending and propagation (e.g., using optical
flow) of saliency maps over several frames

from [Wang et al. 2009]

e A' L L) N »
. ‘- Wl 3
x
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Video: motion saliency

* Moving objects are important

from [Wang et al. 2009]

x
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Saliency summary

* Low-level vs high-level importance measures

— Low-level measures are easy and fast to compute, but
may miss actually important content

— High-level capture semantics, but are more difficult to
define and compute

* How to combine different measures?
— Requires deeper understanding of our perception

* |Interaction between importance map and the
actual retargeting method

— What type of saliency is optimal for retargeting?
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Discrete Retargeting
Operators




Overview

More Seam carving
Graph cut

Video carving
Shift Maps
Multi-Operator



Seam Carving

M(i, j) = e(i, j) + min(M(i—1, j—1), M(i—1, j), M(i — 1, j+1))
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Both Dimensions?

* Remove horizontal seam first?

 Remove vertical seams first?

* Alternate between the two?

* The optimal order can be found! = Dynamic Prog.
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Optimal Order Map

Removal of vertical seams

16 19

16 1

19 31 25 3

24 28 29 | 777?

32 35 33

Removal of horizontal seams

41 33 35

o
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Optimal?

* Greedy in iterative sense we assume the cost
function is monotonic!

* |n fact there are many (exponential) ways to
get to the desired size (m x n) — we must check
all of them but we store only the best of two:

— (m+1 x n) + (row seam cost)
— (m x n+1) + (col seam cost)

e Key idea: ratio (of row & column) is more
important than order
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Example

 We find best path: RCR by checking RCR against
RRC.

* but maybe CRR is better than RCR? — we didn’t check
it because we chose RC over CR in the previous stage
—and we are bound to this choice!

&

RR

R
RC 4‘ <€FRCR?

CC

o
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Seam Insertion?

@
:
2
&
=
8
;
3




Seam Insertion

Duplicate seams in removal order

]
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Seam Insertion
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Two Ways to Change Aspect Ratio

Seam Removal Seam Insertion




Two Ways to Change Aspect Ratio

Seam Removal Seam Insertion




Combine Insert & Remove

Scaling
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Enlarged or Reduced?

Sponsored by ACM SIGGRAPH




Multi-Size Images

F irgt to be removed

Last to be removed

&
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Multi-Size Images & Demo

Il iSeam Image Application

File Image Lines Seams Help size:

Marking

v Show Erase!

Mode:
|None % 3

A5 W 2

Region Weight
Alternate w| Retarget!
|1UU 100

Width  Height

Row Seams

Find |Remove| insert |

counter: €44 1 W

Column Seams
Find |Remove| msert |

counter: 44| 1 kW

Enlarge Factor:

44
Grayscale Conversion:
[Luminance  w

Derivative:

| Central Different v

Errar Function::
|L1 N
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Not Always a Success
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Pixel Energy Preservation

While resizing: remove as many low energy
pixels and as few high energy pixels!
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Energy Preservation

If we measure the average energy of pixels in
the image after applying a resizing operator...

...the average should increase!

Average

ove as many low energy

Wikliger
. . :
pixelga s few high enegyl%c)z(géSReduction

o
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Reduce Width

column

Average
Pixel
Energy

25
seam
24} column
pixel
23r optimal
crop
22+
21+
20+
19F
181
17
16 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180

200

Image Reduction ——>

pixel

optimal



More Problems...

&
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Change in Energy

0 10 20 30 40 50 60 70 80
seam

A
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Tracking Inserted Energy

Pi-1j1 | Pia1j | Pia,j+1

Pij-1 Pi,; Pij+1




Pixel P, ; : Left Seam

Pi-1,j+1

Pi j+1

A ’
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Pixel P; . : Right Seam

Cr(i,3) = [1(3,5 +1) = (3,5 — 1) + |I(i —1,5) —I(i,j +1)]
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Pixel P; . : Vertical Seam

Pi-1,j-1 Pi-1,j+1

Pi,j-1 Pi,j+1

CV(i}j) — |I(i1j + ]-) —I(i,5 — 1)|




Old “Backward” Energy Function

M(i =1, —1)
M(i,j) = E(i,j) + min{ M(i—1,)

M(i—1,j+1)




New Forward Looking Energy

M(i,7) = min¢ M(i—1,7)+ Cu(1,7)
M= 154 1) ¢ Crli )

Pi1j | Pi1j+1 Pi.1.1 Pi1j+1

Pij.1 Pjj+1
Pi1j | Pi1jr1 Pi1j1 | Pi1jer Pi1j1| Pi1j
piJ-1 pi,j+1 p,;j.1 P,-J-+1 pi,j-1 pi,j+1
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Adding “Pixel Energy”

M(i—1,j — 1) + Cp(i. )
M(i,j) = P(i,§) + min { M(i —1,5) + Cu(i, ),
M(i —1.j+1) + Cr(i. )

Pi1j1 Pi.1j+1

Pij.1 Pjj+1
Pi1j | Pi1jr1 Pi1j1 | Pi1jer Pi1j1| Pi1j
pi,j-1 pi,j+1 P,;H P,;j+1 pi,j-1 pi,j+1

A
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Backward Energy Forward Energy

A
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Backward Energy Forward Energy
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Backward

A
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Forward

A

Sponsored by ACM SIGGRAPH @ '




Backward
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Backward
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Forward
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Expand
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Expand

Sponsored by ACM SIGGRAPH G‘ ' 7
L



Video?

" Naive... every frame by itself

a
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Jittery Results




Global Projection (Naive #2)

* Reduction of the video problem to image
seam carving by using projection of maximum
energy through time:




Global Projection (Naive #2)

* Reduction of the video problem to image
seam carving by using projection of maximum
energy through time:

g
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Problems

= Camera movement
" Object movement
= Seams should adapt and change through time!

- Maybe adapt per frame?







Video Cube

= Video Cubes:

= Schodl et al. Siggraph 2000,
Video Textures

= Kwatra et al. Siggraph 2003,
Graph cut textures
Problem:
Ob-e av-Acha et al. CVPR 2005,

Dynami€sP¥sggramming no
longerorks f 310>

terac out

= Chen and Sen EG 2008 (short
papers), Video Carving

-
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Use Graph Cut

= Kwatra et al. Siggraph 2003,
Graph cut textures:
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Labeling as Energy Minimization

E(L) = aEE (L(p))+ EE (L(P),L(9))

J\\

_/

Data

E,(L;(p))=P(pEtorground)
E,(L,(p)) = P(p&Ebackground)

-
Smoothness

E (L(p),L(q))=d(p,q)o(p,q)

5(p.9) 1 if L(p)= L(q)
L= 0 otherwise




Building a Graph

terminal
@ nodes

O pixel nodes
— t-links

— n-links

 Node weights = data term
 Edge weights = smoothness term




Solution as a Graph Cut

ter;nina[ ANS
?pixel nodes G'\\\\\:\\s 0

— t-links
—_— n-links

MUY TST o
VAW YNY,
R ST
R /
* Find the minimal cut

— Cut is a set of edges disconnecting F from B

— Minimum cut is the one with minimize sum of edge
weight
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Algorithm

Max-Flow = Min Cut (Ford-Fulkerson)

Set flow to zero everywhere

Big loop
compute residual graph (capacity - flow)

Find path (shortest path) from source to
sink in residual graph

If path exist
add corresponding flow
Else

Return Min cut = {vertices reachable
from source; other vertices}
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What Is the Challenge for Seams?

= How to Define a Seam from a Cut?
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Constraints

1. Seams should be monotonic!

(i.e. one pixel in each row)

|
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Constraints

1. Seams should be monotonic!
2. Seams should be connected!

Piecewise Connected
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Piecewise vs. Connected




Standard Graph Construction?

aX pl,j+1

j+1,j+1




Simple Graph Cut
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Monotonic (Function) Constraint

* Add “backward” infinity edges

e Proof:
— All target nodes must be on the right of the cut
— |If a cut cuts more than once — it must cut an even number

— Hence it must cut infinity edge — contradicting its minimal
assumption
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Monotonic (not connected)
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Add Diagonal Edges (No Jumps)

Proof:




Backward Energy Construction

®» This construction
guarantees monotonic
and connected seams

* This construction
creates seams that are
equivalent to the
dynamic programming
approach

-
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Forward Energy Construction
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3D Graph Construction

Frame t+2 Time

Frame t+1

Frame t

Video Cube




3D Graph Cut










Dynamic Seams
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RC,\C;llcd Rct;lr'rctcd

—
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Shift-Map

« Shift-Maps represent a mapping for each pixel in the output
image into the input image
Muy)=(tt,)

The color of the output pixel is copied from corresponding input pixel
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Output as a Composition of Input
Parts

Shift-Map
Output Image
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Shift-Map Approach

Horizontal Shifts . Vertical Shifts

Ty =0 * Minimal distortion
Tx =400

Tx =50

e Adaptive boundaries
* Fast optimization

Ty =10

A
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The Energy Minimization

The optimal mapping - can be described as an
Energy Minimization problem

E(M) =

Compute For Each Pixel Compute For Each Pair
of Neighboring pixels

e Unified representation for geometric editing applications

e Solved using a graph labeling algorithm
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The Smoothness Term

* Assigns a penalty to a discontinuity introduced
to the output image by a discontinuity in the
Shift-Map
This term will minimize editing artifacts and create good
stitching in the output image

Discontinuities are computed based on color

differences and gradient differences
(preserve image structure)

Sponsored by ACM SIGGRAPH /G\ ’ y
-



The Smoothness Term

M(p)=M(q)= E (M(p),M(q))=0




The Smoothness Term

M(p)=M(q)= E . (M(p),M(gq))=0
M(p)=M(q)= E,(M(p),M(q)) =

([(npv)—[(Q'))z + ([(nq,)—](p'))2 + color
(VIi(n,)—- VI(g"))| + (Vi(n,) - VI(p'))] grodient

(Kwatra SEO’E al. bﬁ?ﬁ? SAeg?aAFwa@ et<al. 05)



The Data Term: Retargeting

Data term varies between different application

e Use picture borders

* Can incorporate importance mask
— Order constraint on mapping is applied to prevent
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Shift-Map as Graph Labeling

. LaBd1e raiatin@kRmergy | s solved by graph

labeling where the}
selected label for E/ﬁ,cﬁl_tﬁut_géeﬁ'

Output image pixels ~ Inputimage

s s s s o g o]
SGoooaet . 4 G 6863 61 61 67 ¢
nanaaae SnUtMap: B ‘
SGoaBaat assign Bg-63- 346363 0P O
@LPE  alabel to §
each pixel
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Shift-Map as Graph Labeling

* The minimal energy is solved by graph labeling
where the Shift-Map value is the selected label for
each output pixel

* In this case — a multi-way graph cut (many labels)
* Implementation:

— Boykov, Y., and Kolmogorov, V. An experimental comparison of min-
cut/max-ow algorithms for energy minimization in vision. In Energy
Minimization Methods in Computer Vision and Pattern Recognition,
359-374. 2001

— Boykov, Y., and Veksler, O. Graph Cuts in Vision and Graphics: Theories
and Applications. Handbook of Mathematical Models in Computer
Vision, Springer, 2006.
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Which Method to Use?

* Seam Carving
e Shift Map
* More Later...




Simple Scale is Better

Homo. scaling Non-homo. Scale&Stretch
warping
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Simple Crop is Better

Cropping Seam-CarvinAg Scale&Stretch

|
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The ‘Ugly Face’ of Content-aware
Retargeting




The Multi-operator Approach




Multiple Operators Resizing Space

Seams-Width




Multi-operator Sequence

Seams-width

A Seams-height

>
Scale-width

a
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Multi-operator Sequence

Seams-width

A Seams-height

>
Scale-width
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Multi-operator Sequence

Seams-width

A Seams-height

>
Scale-width
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Multi-operator Sequence

Seams-width

A Seams-height

>
Scale-width
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Multi-operator Sequence

Seams-width

A Seams-height

>
Scale-width
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Different Paths = Different Results

a
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The Resizing Space

v v

A
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Which Path is Better?
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General Optimization Procedure

A

* Loop over paths

— Measure distance
between result and
origlnal 1mage

* Choose best
result

s Problem: infinite number of paths!
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Limit the Search Space

 Restrictions: 0

— Remove Non Monotonic
(infinite)
— Remove Mixed (exponential)

Regular

J
A

Mixed

— Leave Regular (polynomial)

Non-monotonic
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Optimal Regular Path
* Order of operators is 1
predetermined

— How much does each
operator contribute?

Regular

Mixed
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Optimal 3-operator Regular
Path

Multi-op Mean of users
results
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Optimal 3-operator Regular
Path




Optimal 3-operator Regular
Paths
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Optimal mixed path

 Exponential (in size change) possible A
paths Regular
: . | Mi
e Using an assumption, can be / ‘ xed
calculated in polynomial time using |
dynamic programming

(Algorithm is detailed in the paper)
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Multi-operator Video Retargeting

* Optimal multi-operator sequence in one
frame need not be optimal in another

* Keyframes + interpolation

A4 ALA

=S




Multi-operator Video Retargeting

B vdr: waterski (video project)




Summary

* Images as graphs * Operators:
* Pixels are discrete — Scale
entities — Crop
* Algorithms: — Seam carving
— Shift map

— Dynamic programming

— Graph cut * Multiple Operators
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I q L Eidgendssische Technische Hochschule Ziirich

Swiss Federal Institute of Technology Zurich

INTERACTIVE GEOMETRY LAB

Retargeting by Warping

Olga Sorkine-Hornung
ETH Zurich

Ehs’
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Problem definition

* Image resizing as a continuous problem:
— Deform (a portion of) the 2D plane

« The deformation should respect:
— Desired target resolution (image size)
— Content preservation

A

November 28, 2012 Olga Sorkine-Hornung, ETH Zurich Sponsored by ACM SIGGRAPH @ ’



Problem definition

* Image resizing as a continuous problem:
— Deform (a portion of) the 2D plane
« The deformation should respect:

— Desired target resolution (image size)
— Content preservation

T i isoparametric lines
e A of a warping function

November 28, 2012

A
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What is a warp?
« Function that deforms space
F:R? = R?

« Components of F':

F(x,y) = (Fp(z,y), Fy(z,y))

isoparametric lines
of a warping function

A\
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Warps for image retargeting

» [ should be continuous and at least piecewise C'-smooth
— Prevents discontinuities and artifacts in the warped images
« Boundary conditions:
— Target resolution
— Keep rectangular shape

F,(0,)=0 (m* 1%
EF,(m,-) =m* o)

Fy('a O) =0 >

Fy(om)=n" % (0,0)

November 28, 2012 Olga Sorkine-Hornung, ETH Zurich Sponsored by ACM SIGGRAPH g '




Designing content-aware warps

« Variational formulation — find /" by optimization
— Use derivatives of F to describe desired properties

OF (@, 9) oF, OF,\'  OF - OF, OF,\"

- — —I\Z p—

gz Y or Oz Oy Y oy Oy
— Use the importance map We don’t care about the

values of F' themselves
S(Z, y) S:-I— [07 1] but about their local
relationships.
Derivatives characterize

* Define an energy functional and minimize it! | 5car behavior of .

F = argmin E(F)
F

November 28, 2012 Olga Sorkine-Hornung, ETH Zurich Sponsored by ACM SIGGRAPH é '




Partial derivatives and Jacobian

Jacobian: best local linear approximation of F’

(. y) — OF OF\ (0F,/0x OF,/0y
FUGLY) = Ox Oy 6‘Fy/8x 6’Fy/8y

A
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Partial derivatives and Jacobian

« Jacobian: best local linear approximation of F

OF 8F>

oF,/0x OF,/0

= (orion o, /00)

non-uniform scale and shear

A
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Partial derivatives and Jacobian

« Example: if F'is non-uniform scaling:

F(x,y) = (1.5x, 3y)

I.o 0
 If the Jacobian is shape-preserving then F'is locally shape-
preserving!

— shape preserving = uniform scale only
— rotations are not included
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Example: trivial variational warp

 We wish that /' is shape-preserving everywhere:

//||JF—IH2dxdy — min
=0 y=0

|Je — I = ||0F/0z — (1 0)|* + ||0F /0y — (0 DT

* We also have boundary conditions:
F:(0,-)=0, Fy(m,-)=m", F,(-0) =0, F,(-,n)=n"

* Result: /'is homogeneous scaling

F(z,y) = ((m"/m)z, (n"/n)y)
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Employing the importance map

« Weight the energy by the importance map:

// (z,y) ||Jr — I||°dzdy — min

=0 y=
— Non- |mportant parts are allowed to distort

&
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Discretization

 To obtain the numerical solution we need to discretize

// (2,9) | — T|2 dz dy

=0 y=

« Meaning, we will find discrete values of /' on some grid mesh
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Discretization

 To obtain the numerical solution we need to discretize

// (2,9) | — T|2 dz dy

=0 y=

« Meaning, we will find discrete values of /' on some grid mesh

l i F(VZ) — V;

&
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Discretization

 To obtain the numerical solution we need to discretize

/ / Sz, y) |1Jr — I\ da dy
=0 y=0

» Meaning, we will find discrete values of /' on some grid mesh
— The mesh can have pixel resolution, quad grid
— Or coarser grid — for better efficiency

— Adaptive meshes — hasn’t been fully explored yet,
but see [Laffont et al., Graphics Interface 2010]
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Discretization

« Between the computed discrete values of F', we will
interpolate F
— per-element interpolation
— bi-linear (like texture mapping)
— bi-cubic, splatting...

A

November 28, 2012 Olga Sorkine-Hornung, ETH Zurich Sponsored by ACM SIGGRAPH @ ’




Discretization

 Discretization of the derivatives of F :

/

F Vi
/
/ V .
\' J

assuming each edge length in the original grid is 1:

OF[0x = Vv — v;
/

OF /0y = v, — Vv,

A
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Discretization

 Discretization of the derivatives of F :

/
F Vi
= /
/ V.
|Jp —I||* = ||0F/0z — (1 0) H + ||oF /0y — (0 1 )TH2% «— Jacobian energy
~ (v — v/} — (1 )= (0 1)
(v =vi) = (10) ” +2H Vi =vi) = 0 H , discretized term:
= ||(vj = vi) = (vj = vi)||" + (v, = Vi) = (vi = Vi) “~ look at edges

A
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Discretization

« Discretization of the importance map — lump values at each
grid mesh vertex

S(v;) - average value

* The simple energy we saw earlier will look like this:

2
B(F) = / / S@.y) | Jp—1[Pdedy =~ 3" S |[(v) = vi) — (v; —vi)|
=0 y=0 (i,7)€E&
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Solving the optimization problem

« After discretization we get a system of equations to solve

Z S(vi) [|(vj —vi) — (vj = Vi)||2 — min
(¢,5)€€

88 Z ZS (Vi —vi) — (Vj—vi));0

' (4,5)€E T T ¢

unknowns

constants (depend only on the original image)
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Solving the optimization problem

« After discretization we get a system of equations to solve

Z S(vi) [|(vj —vi) — (vj = Vi)||2 — min
(¢,5)€€

88 Z 25(vs) (V) — v;) — (Vj—vi));0
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A few words about numerics

» Depending on the energy functional, the equations could be
linear or nonlinear
* Linear equations are simple to solve
— Sparsity
— Direct solvers (libraries exist, plug-and-play)
— Multigrid solvers — fast GPU implementation

 Nonlinear is harder to solve — need to be careful about the
energy design
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Solving sparse linear systems

» Direct solvers can be used:
— Easy to code — just use library, no parameters

— Efficient especially when matrix is fixed, only right-hand side
changes

A

t )

depends on input image only: depends boundary conditions
mesh and importance map
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Matrix factorization: LU decomposition

Av'=Db
LUV =b
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Matrix factorization: LU decomposition

A

Av' =D
L(Uv')=Db
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Matrix factorization: LU decomposition

A =

r — — This is backsubstitution.
AV b — Lw=b — IfL, U are sparse, it is very
L(UV’) = b Uv' =w fast. The hard work is

— computing L and U.
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Matrix factorization: Cholesky decomposition

A

Cholesky factor exists if A is positive definite. It is
even better than LU because we save memory.

A is positive definite in our case since we are
solving least-squares problems.
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Multigrid solvers

* Progressively coarsen the grid mesh

« Solve on the coarse level, then interpolate solution
to the finer level

 lterate till error ||[Av’' —b|| is small enough

Image from [Botsch, Bommes, Kobbelt 2005]
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Solvers — discussion

» Direct solvers — easy to implement (use existing library)

« (Can factor a 1M x 1M matrix in seconds; solve takes
milliseconds

» High memory cost (need to store the factor)

« Multigrid is very efficiently implemented on the GPU
* Low memory consumption

* However, requires setting problem-dependent parameters
(number of iterations, hierarchy depth...)
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[Gal et al. 06] — feature-aware warp

* Binary importance map
* sis a preset scaling factor, A is homogeneous scaling
m n

E(F) = / / S, y) [ Jr — ST + (1 — S(x,y)) | Jr — A dady

=0 y=0
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[Gal et al. 06] — feature-aware warp

* Binary importance map
* sis a preset scaling factor, A is homogeneous scaling
m n

E(F) = / / S, y) [ Jr — ST + (1 — S(x,y)) | Jr — A dady

=0 y=0
homogeneous scaling (just 4)
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[Gal et al. 06] — feature-aware warp

* Binary importance map
* s is a preset scaling factor, 4 is homogeneous scaling

E(F) = / / S, y) [ Tr — sTI + (1 — S(x,9)) |5 — A de dy

z=0y=0 o
feature-aware warp (energy minimization)
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Feature-aware warp: scale factor

n- | / (@:9) 1T = I+ (1= S ) [T — Al ddy

=0 y=

« [Gal et al. 06] defined s as

k % .
A _(m n homogeneous scaling
(CB’ y) o Ly — Y " required to get the new
m n image dimensions
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Results [Gal et al. 2006]

See video at
http://igl.ethz.ch/projects/retargeting/feature-aware-texturing/

A
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[Wang et al. 08]: optimizing the scale

» Scale s, becomes variable per quad f

/
V .
V; v
) J
vV

Du(f)= ) vi=v)) —sp(vi— vyl

(4,7)€E(S)
s, — uniform scaling factor
B = = Sf = — 5
Sf Z(”)eg(f) [vi — v
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[Wang et al. 08]: optimizing the scale

« Total energy E(F) — sum up for all the quads

/
V .
V; v
) J
vV

Du(f)= ) vi=v)) —sp(vi— vyl

(4,7)€E(S)
s, — uniform scaling factor
B = = Sf = — 5
Sf Z(”)eg(f) [vi — v
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[Wang et al. 08]: optimizing the scale

* Problem: scaling factors are independent of each other so
they vary a lot. Grid lines bend as a result!
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[Wang et al. 08]: line bending

* Add another energy term to prevent line bending:
» Keep original edge orientations but allow length scaling

D; = Z (v —V mnotethe

T nonlinear
(i,7)€€ factor

lig = Vi = v;ll/Ilvi = v;l

/
A
V; ¢
.u V,
) J
\(7
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[Wang et al. 08]: line bending

* Result with the bending term added:

L1

!
[
1
1
I

|
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[Wang et al. 08]: line bending

- Total energy is nonlinear in v’ D.(f)= Y |I(vi—v}) —s¢(vi —v))|?

(i.1)EE(f)
D= > I(vi=v;) = l(vi—vy)?

(i,j)€€&
 |terative minimization with tricks: Lij = Vi = V5 |/llvi = v

— Keep Sfand ll-j as additional variables

— Do alternating minimization steps (global-local)
* Fix s and /; and optimize v’
» Compute new s,and /;

« Sparse direct solver for the linear system and reuse the
matrix factorization to gain speed.
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Results [Wang et al. 08]

See video at
http://igl.ethz.ch/projects/retargeting/scale-and-stretch/ImageResizing final.mp4

A
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[Wolf et al. 07]: one-directional scaling

* One-directional energy
— for resizing horizontally:

0= [ [sen(5;

7\ 2
> —I—w(a y) drdy — min

Ox
=0 y= T T
important pixels should keep columns should keep
horizontal distance of 1 smooth mapping
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[Wolf et al
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[Wolf et al. 07]: one-directional scaling

« Crop or self-intersections may occur
« Space less effectively used due to single direction
« Advantage — linear solve only

original image [Wolf et al. 07] [Wang et al. 08]
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[Zhang et al. 09]: conformal energy —
“as similar as possible”

« Jacobian should be as close to similarity as possible

/ / S(@.y) |Tr(x,y) — s(z, ) R@,)|? dzdy — min

r 1

varying scaling factor 2D rotation

JF
- wj:\!:
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[Zhang et al. 09]: conformal energy —
“as similar as possible”

« Jacobian should be as close to similarity as possible

/ / S(@.y) |Tr(x,y) — s(z, ) R@,)|? dzdy — min

r 1

varying scaling factor 2D rotation

SR -
T ==
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[Zhang et al. 09]: conformal energy —
“as similar as possible”

« Jacobian should be as close to similarity as possible

/ / S(@.y) |Tr(x,y) — s(z, ) R@,)|? dzdy — min

r 1

varying scaling factor 2D rotation

SR -
T =&

 Linear formulation, coupling of x and y
— system matrix size grows x 2 in both dimensions

* Less control over scaling
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[Krahenbuhl et al. 09]: single optimized scaling
factor for entire image

« They note that spatially-varying scaling factor may unnaturally
change proportions

« Use single scaling for all pixels and optimize it

E(F / /S:z: ) | Jr — sel||® + ||Jr — All? dz dy

SR

important pixels to obtain the right size, all pixels

scale uniformly should scale according to boundary
conditions (4 is the homogeneous
scaling function)

similar to [Gal et al. 06]
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[Krahenbuhl et al. 09]: single optimized scaling
factor for entire image

« They note that spatially-varying scaling factor may unnaturally
change proportions

« Use single scaling for all pixels and optimize it

/ / x,y) ||JF—8FIH2—|—HJF—A||2d£L'dy
20

- t
initialized as s, = 1; iteratively

updated after solving for
(again, global-local optimization)

x
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Comparison: local vs. global scaling

[Krahenbuhl et al. 09]
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Scaling — discussion

e Two extremes:

— allow uniform scaling to vary everywhere; the scaling factor
value is not directly object- or importance-dependent [Wang et
al. 08, Zhang et al. 09]

— same scaling factor for entire image [Krahenbihl et al. 09]

* Is there something in the middle?
— one scaling factor per object?

— scaling size depends on
importance?

A
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[Karni et al. 09]: variation on the local
transformation set

 Remember [Gal et al. 06]? Vary the local transformation
according to the importance map

m n

B(F) = [ [ ) 1e = TP + (1= S(.9) | Jp — AJP dwdy

o 1
() (" )

« In[Gal et al. 06], importance S(x,y) was binary
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[Karni et al. 09]: variation on the local
transformation set

« [Karni et al. 09] use arbitrary importance map and interpolate
between s/ and A accordingly

n

E(F) = / / |75 — interp(s, A, S(z, y))|? dz dy

=0 y=0 interp. parameter
larger — closer to uniform scaling

» More granular than a global weighted least-squares
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Results [Karni et al. 09]

original [Wang et al. 08] [Karni et al. 09]
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Results [Karni et al. 09]

original [Wang et al. 08]
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Results [Karni et al. 09]

= // N

[Karni et al. 09]

original

PN
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Results [Karni et al. 09]

original [Wang et al. 08] [Karni et al. 09]
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Some comparisons

PN
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Some comparisons

original

[Wang et al. 08]
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Some comparisons

original

[Wang et al. 08]
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Discussion

« Scaling allows more flexibility in the warp

« Too much scaling freedom may lead to unintuitive changes in
proportions

* The line problem
— Edges and especially straight lines bend
— Lines are prominent in images of man-made objects

« Automatic importance maps do not always work
— No choice but to add user control
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Line constraints [Krahenbiihl et al. 09]

« Automatic edge detection
— Sobol filters

— Augment the importance map by
edge importance S,(x,))

« Additional energy terms:

2 2
prevent 23 %
bending // Se(@:y) (( Oy ) " ( i d dy
prevent oF, 2 oF 2
smearing//Se(l’,y) (( 9y 1) + (8—; - ) )

A
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Line constraints [Krahenbiihl et al. 09]

» Effect on the line bending
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Line constraints [Krahenbiihl et al. 09]

See video at
http://ahornung.net/files/pub/Hornung SIGAsia09.mov

A
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Line constraints [Krahenbiihl et al. 09]

« Effect of the line smearing term:
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Line constraints [Krahenbiihl et al. 09]

* Manual marking of prominent lines
* Placing global line constraints
— original line:
cos(a) x + sin(a)y+b =10

— energy term:

n

E(F) = / / c(x,y) (cos(a)Fp(x,y) + sin(a’) Fy (z,y) + b’)2 dx dy

=0 y=0 T

coverage of pixel (x,y) by
the line in the original image
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Line constraints [Krahenbiihl et al. 09]

* Manual marking of prominent lines
* Placing global line constraints
— original line:
cos(a) x + sin(a)y+b =10

— energy term:

n

At first seta’ = a, b" = b, but then iteratively optimize

November 28, 2012 Olga Sorkine-Hornung, ETH Zurich Sponsored by ACM SIGGRAPH é ' 66




Line constraints [Krahenbiihl et al. 09]

 Effect of global line constraints:
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Line constraints [Krahenbiihl et al. 09]

See video at
http://ahornung.net/files/pub/Hornung SIGAsia09.mov

A
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Position constraints [Krahenbuhl et al. 09]

« User marks polygon around an object

« Constrain the position of center of mass using baricentric
coordinates
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Position constraints [Krahenbuhl et al. 09]

See video at
http://ahornung.net/files/pub/Hornung SIGAsia09.mov

PN
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[Panozzo et al. 12] Axis-alighed warping

* Minimize any warping energy
in the subspace of axis-aligned warps N

« Convert into optimization of < >
column widths w; and row heights 72,!

min F(F)

w,h

 Disallow self-intersections:
w;, h; >0
« Boundary conditions:

Y w;=m*, Y h;=n"

« For quadratic E(F) we end up with a small, dense QP
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[Panozzo et al. 12] Axis-alighed warping

« Reduce problem dimensionality from O(mn) to O(m+n)
« Discretization can be very coarse
— we use 25x25

» Very fast, realtime saliency changing!
— 3ms per solve

e Demo!

See video and demo software at
http://igl.ethz.ch/projects/retargeting/aa-retargeting/
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Summary - image warping

Importance map | Energy type Solver
Gal et al. 06 binary Linear LS, Sparse direct
coarse grid
Wolf et al. 07 L2 gradients + Linear LS, Sparse direct
face detection pixel grid
Wang et al. 08 L2 gradients + Nonlinear LS, Sparse direct, local-
ltty’s saliency coarse grid global iterations
Krahenbuhl et al. 09 | Guo’s saliency + | Nonlinear LS, GPU multigrid, local-
line detection + pixel grid global iterations
user marking
Karni et al. 09 L2 gradients Nonlinear LS, Sparse direct, local-
coarse grid global iterations
Panozzo et al. 12 any, manual Any, efficient QP solver (CVXGEN)
for linear LS
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Summary - image warping

Scaling Line constraints | User manipulation

Gal et al. 06 Single global — Mark importance,
factor, fixed position constraints

Wolf et al. 07 — Grid bending, —
linear

Wang et al. 08 Local factors, Grid bending, Mark importance,
optimized nonlinear position constraints

Krahenbuhl et al. 09 Single global Edge bending, Mark importance,

factor, optimized edge blurring, mark global lines,
nonlinear position constraints

Karni et al. 09

Local factors,
optimized

Panozzo et al. 12

Local factors, or
forced to = 1

Mark importance
(realtime response)
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Evaluation framework [Rubinstein et al. 10]
http://people.csail.mit.edu/mrub/retargetme/

» Best energy to minimize should be based on user preference!
» Very hard to quantify, hence saliency and geometric energies

« Distance between images?

— Automatic measures like bi-directional distance do not correlate
with user preferences

 Benchmark and user study framework of retargetlng results
— Adiverse set of images R s § j

— Gathered results of
many methods

— Methodology for online
user study (paired comparisons)

— Now people compare!

PN
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Warping video

« Space-time cube — warping
function has 3 variables

F(x,y,t)

« Boundary constraints per frame

— fit target size — same as with
Image retargeting

« Time stays the same
Fi(x,y,t) =1t
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Temporal coherence

« Temporal coherence is key

« Earlier works [Wolf et al. 07], [Rubinstein et al. 08]:
— Temporally adjacent pixels should change similarly

M5

* Problem: this energy is motion-oblivious!

— min
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Temporal coherence

« Temporal coherence is key

« Earlier works [Wolf et al. 07], [Rubinstein et al. 08]:
— Temporally adjacent pixels should change similarly

 Motion-oblivious!
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Taking motion into account

« Use motion importance maps
[Krahenbuhl et al. 09],
[Wang et al. 09-11]:

— Average per-frame importance
maps over several frames
such that motion is taken into
account

— Add optical flow estimation,
such that moving objects get
higher importance

©MAMMOTH HD
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Taking motion into account

« [Krahenbuhl et al. 09]: compute the warp per-frame

« Temporal coherence constraint between consecutive frames
only (use previous frame as reference for current frame)

/ |F(z,y,t) — F(z,y,t —1)]° — min

previously
computed

 Detect scene cuts
— The above term is not used over scene cuts
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Results [Krahenbuhl et al. 09]

See video at
http://ahornung.net/files/pub/Hornung SIGAsia09.mov

A
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Taking motion into account [Wang et al. 09]

« Solve for the entire space-time cube simultaneously (up to
scene cuts)

« Two types of motion of content:
— Due to camera movement
— Due to object movement
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Taking motion into account [Wang et al. 09]

« [Wang et al. 09] pre-register all frames in one coordinate
system to eliminate camera motion

— detect SIFT features
— estimate camera matrix
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Taking motion into account [Wang et al. 09]

« Segment moving objects

« Each moving object is resized consistently (its scaling factor
should be smooth)

A
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Taking motion into account [Wang et al. 09]

See video at
http://igl.ethz.ch/projects/retargeting/motion-aware-video-retargeting/VideoResize09.mp4

PN
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Results and comparisons [Wang et al. 09]

See video at
http://igl.ethz.ch/projects/retargeting/motion-aware-video-retargeting/VideoResize09.mp4

PN
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Optimized crop-and-warp [Wang et al. 10]

« [Wang et al. 09] cannot handle parallax
— registration to global coordinate frame fails

» All methods degrade to homogeneous scaling
when scene too crowded

« Crop-and-warp: introduce
automated cropping to enable
the warp to better utilize

the available space
See video at

http://igl.ethz.ch/projects/retargeting/
crop-and-warp/
CropAndWarp SI1G2010.mp4
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Optimized crop-and-warp [Wang et al. 10]

» Determine critical region in each frame
— using optical flow [Werlberger et al. 09]

temporal persistence - actively moving objects
(left side is about to disappear)

« Warp with inequality constraints, such that critical regions stay
inside the target cube
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Optimized crop-and-warp [Wang et al. 10]

* Results and comparisons

See videos at
http://igl.ethz.ch/projects/retargeting/
crop-and-warp/
CropAndWarp S1G2010.mp4
http://igl.ethz.ch/projects/retargeting/
SVR/SVR_supp.wmv
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Summary - video warping

Temporal
importance map

Energy type

Temporal coherence
constraints

Wolf et al. 07

Motion saliency

Per-frame, linear

Temporally-adjacent
pixels smoothness

Krahenbuhl et al. 09 Motion saliency, Per-frame, Temporally-adjacent
image importance nonlinear pixels smoothness
averaging
Wang et al. 09 Motion saliency, Entire video Camera alignment,
image importance | cube, nonlinear | consistent resizing of
averaging moving objects
Wang et al. 10 Motion saliency, Entire video Consistent resizing of
minimal temporal | cube, nonlinear, moving objects,
persistence inequalities smoothly varying crop
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Discussion

- Performance/quality tradeoff:

— Per-frame video retargeting can be done in real time, but has
difficulty with temporal coherence

— Temporal coherence requires processing of longer sequences —
offline process

— Some recent papers showed scalable performance, still not
realtime as entire video cube needs to be processed at once.
See e.g. [Wang et al. 11]

« Motion saliency relies on reliable optical flow estimation
— Difficult when motion is fast or no trackable features (cartoons)
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Conclusions

« Warp-based methods take a continuous view on the image
retargeting problem.

« Generic variational approach: define an energy functional

depending on importance map and find a warping function
that optimizes it.

A
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Conclusions

- Advantages:

— Flexibility w.r.t. energy design

— Tend to smoothly distort image content

— Efficiency can be controlled by discretization resolution
- Disadvantages:

— (sometimes) costly optimization

— Local descriptors — hard to maintain global structures like
symmetry, straight lines, proportions, perspective...

— Weighting of different energy terms is content-dependent
— In some cases cropping/carving makes more sense than
squeezing
- Bottom line ©
— Multi-operator approaches are probably unavoidable!
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Thank You!
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