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Figure 1: Our unifying representation of image warping supports efficient adaptive meshing, high order basis functions, and
more. a) Original image, b) automatic saliency map, c) uniform scaling, d) retargeting using existing methods (6767 degrees of
freedom (DOF)), e) retargeting using an adaptive mesh supported by our FEM framework (1325 DOF).

Abstract
We introduce a single unifying framework for a wide range of content-aware image warping tasks using a finite
element method (FEM). Existing approaches commonly define error terms over vertex finite differences and can be
expressed as a special case of our general FEM model. In this work, we exploit the full generality of FEMs, gaining
important advantages over prior methods. These advantages include arbitrary mesh connectivity allowing for
adaptive meshing and efficient large-scale solutions, a well-defined continuous problem formulation that enables
clear analysis of existing warping error functions and allows us to propose improved ones, and higher order basis
functions that allow for smoother warps with fewer degrees of freedom. To support per-element basis functions of
varying degree and complex mesh connectivity with hanging nodes, we also introduce a novel use of discontinuous
Galerkin FEM. We demonstrate the utility of our method by showing examples in video retargeting and camera
stabilization applications, and compare our results with previous state of the art methods.

1. Introduction

Content-aware image warping has recently been shown to be
a powerful tool in a wide range of editing applications. Such
methods modify images by overlaying a mesh and solving
for an optimal, locally-varying deformation that minimizes
some application-specific set of constraints. In traditional so-
lutions, the constraints are defined in terms of vertex finite
differences computed on a regular grid, or by discretizing
the image into a quad mesh and computing per-quad ener-
gies from the distortion of grid edges. The error function is
then minimized, generally by formulating it as a large sparse
system of equations.

While finite difference based metrics such as these are a
straightforward representation of pixel-based image data,
they tightly couple error terms with the mesh structure, mak-
ing it difficult to extend the problem formulation into new
domains. Instead, we introduce a unifying representation for
a wide range of image editing tasks by using a finite ele-
ment method (FEM) that includes existing finite difference
metrics as a special case. Our approach constructs a single
robust mathematical formulation of the general continuous
image warping problem, and allows us to leverage deforma-
tion knowledge from mechanics and geometry communities.

Since its invention over half a century ago, the finite element
method has become one of the most popular means for solv-
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ing partial differential equations. Its main strength over al-
ternative methods is that it supports irregular discretizations
of the problem domain (resulting in better approximations
of the boundary geometry) and allows refinement of the dis-
cretization in important areas of the domain. The FEM finds
wide application in computer graphics, predominantly in the
field of physically-based simulation where it is used for the
realistic simulation of deformable objects or fluids. How-
ever, except for a few cases, this method has been largely
ignored in the image processing domain.

The FEM owes its success to a rigorous mathematical foun-
dation; for certain types of problems, error estimates and
convergence properties can be derived, justifying a high con-
fidence in the computed results. Moreover, assuming certain
bounds on element size, the computed solutions are largely
independent of the actual element mesh. These facts justify
the use of locally adaptive meshes, which is an extremely im-
portant requirement for large scale solutions (enabling stable
video warping), but one that has been largely ignored due to
difficulties in formulation.

Furthermore, given our continuous framework, it becomes
easier to validate and justify the use of specific energy func-
tions that drive the warping. We discuss how existing energy
functions can be phrased in a continuous sense, and propose
simple novel energy functions with added benefits, such as
effective prevention of warp inversions (a significant issue
with finite-difference based approaches) without resorting
to nonlinear workarounds or incorporating inequality con-
straints that require quadratic programming to solve.

Another added benefit of our general formulation is that our
approach allows for higher order basis functions at element
vertices. Unlike prior work that simply averages per-quad
information, this allows us to sample high-resolution image
information within elements, while still performing a low
degree of freedom minimization.

We present a novel discontinuous Galerkin FEM (DG FEM)
formulation that allows working with meshes of arbitrary
connectivity, with support for hanging nodes (edge nodes
that do not belong to all elements that share the edge) that
traditional FEMs cannot support.

We demonstrate our FEM image warping in the domain of
media retargeting, where the aspect ratio of images or videos
is modified such that the shape of important content is pre-
served, as well as video stabilization, where a smooth recon-
struction of hand-held shaky videos is computed. We show
adaptive solutions that allow us to solve a whole sequence of
frames at once; a task that previously would be either com-
putationally intractable, or have only low resolution control
due to excessive subsampling.

To summarize, our contribution is a novel, general repre-
sentation for continuous locally-varying image warping that
models deformation using an FEM. We enumerate advan-
tages of this approach, and demonstrate them in high-quality,

temporally consistent video resizing and video stabilization
applications.

2. Related Work

The FEM has a long history in computer graphics. It has
been commonly used in domains such as physically based
animation [TF88], and remains the method of choice for the
simulation of deformable objects. Recent applications in-
clude geometric modeling [JTSZ10] and surface parameter-
ization [SLS∗07]. One can distinguish between linear FEM
where the corresponding error function is quadratic in the
unknowns and its minimum can be found by solving a sparse
linear system, and the more general case of nonlinear FEM
leading to a nonlinear minimization problem [BW97]. Next
to the “standard textbook” FEM, a number of variants exist,
including discontinuous Galerkin FEM (DG FEM), mixed
FEM, and extended FEM (X-FEM). An FEM based image
warping framework opens up all of these possibilities, and
we make particular use of DG FEM [Coc03] which, thanks
to its less strict continuity requirements, allows for combin-
ing elements in ways that would not be possible with stan-
dard FEM. DG FEM has already found applications in com-
puter graphics [KMBG08], where its support for arbitrary
non-convex polyhedral elements allows for the efficient sim-
ulation of deformable object cutting. We are mainly inter-
ested in DG FEM because it allows for easy meshing and
combining elements of different polynomial degree.

These successes motivate our use of the FEM in the image
warping domain, where with the exception of a few methods
it has largely been ignored. One such method proposes the
use of finite elements in medical image warping for regis-
tration [Gee94]. However, in this case, a simple linear finite
element model is used. We provide a higher order model,
and take advantage of numerous other benefits of the FEM
for our warping solution.

Traditional image-based warping is on the other hand, a long
running and large area of research within computer graph-
ics. Beier et al. [BN92] present a classic example of mesh-
based image warping that morphs between images by map-
ping features. More recently, advances in computing power
have allowed for content-aware image warping techniques
that compute globally optimal distortions of images. These
methods have been successful in a wide range of applica-
tions, such as: media retargeting [SS09], video stabiliza-
tion [LGJA09], fish-eye lens distortion correction [CAA09],
perspective modification [CAA10], and stereoscopic edit-
ing [LHW∗10]. Our novel representation of image warp-
ing encompasses all of these solutions and gains advantages
from the more generalized formulation, such as support for
adaptive meshes, higher order basis functions, temporal sta-
bility and a continuous formulation. We will address each of
these advantages in the context of related work.
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Support for adaptive meshes of arbitrary connectivity is a
significant benefit of our FEM approach and is required for
high-quality temporally consistent results. Previous methods
that compute solutions for full video sequences have had
to choose between two options: representing videos with
a sparsely sampled mesh, which gives insufficient control
over regions that require high-frequency changes in dis-
tortion [WLSL10], or using a dense representation, which
quickly scales beyond reasonable computation for video se-
quences (For 1080p HD resolution, this results in about 2
million free variables per frame. Given a short sequence
of 200 frames, that leads to roughly 400 million free vari-
ables). As a result, many methods have attempted to reduce
the effects of temporal artifacts while solving for local de-
formations by enforcing neighboring frame consistency on
a frame-by-frame or windowed basis [GWCO09,KLHG09],
or by introducing motion-aware importance maps [WFS∗09,
NLLG10]. Recent work reduces the complexity of the prob-
lem by only allowing for axis-aligned warps [PWS12],
which however can be too restrictive, especially when the
image contains larger areas of homogeneous color. In con-
trast to previous methods, our method can solve a full se-
quence of frames at once without sacrificing accuracy. This
is possible thanks to an adaptive FEM mesh, which substan-
tially reduces the total number of degrees of freedom of the
problem without harming visual quality.

Meshes with multiple levels of refinement have been used
for a content-aware zooming application [LJW∗10]. In this
case, a Delaunay triangulation creates an initial mesh with
denser mesh levels created by triangle subdivision. However,
this method can only use a combination of several fixed-
resolution meshes. We express our error formulation inde-
pendently of mesh connectivity, which lets us use any mesh
subdivision technique.

Furthermore, our general representation also allows for
higher order basis functions at element vertices. This is in
contrast to prior finite difference image warping methods,
which use a piecewise-linear approximation, resulting in an
averaging of high-resolution image content within mesh el-
ements.

3. FEM for Image Warping

In order to derive an FEM for image warping, we begin
by formulating the general image warping problem in the
continuous case, and then in Section 4 we will discuss ap-
plication specific decisions. While previous approaches first
set up the discretization using finite differences, regularly
spaced grids, or triangle meshes, computing ad-hoc energy
functions from the resulting primitives (vertices, edges), a
continuous formulation allows us to study and compare the
properties of various image warping energies independently
of their discretization. We then perform the actual discretiza-
tion by means of finite elements as a second, independent
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Figure 2: Continuous mapping from the undeformed domain
to the warped image using a simple nonuniform scale warp.

step, where we are presented with a multitude of choices, al-
lowing us for example to trade accuracy (how well the con-
tinuous solution is approximated) for performance.

3.1. Continuous Warping

Consider the rectangular domain Ω = [0,1]× [0,h] ⊂ IR2

of an undeformed image. The warping function ϕ : Ω →
IR2 maps a point X = (X1,X2)

T ∈ Ω to a warped point
x = (x1,x2)

T = (ϕ1(X1,X2),ϕ2(X1,X2))
T = ϕ(X) (see Fig-

ure 2). Following the notation used in the mechanics com-
munity, we define the deformation gradient as the 2×2 ma-
trix F(X) with entries:

Fi j(X) =
∂ϕi

∂X j

∣∣∣∣
X

In order to define the cost of performing a certain warp ϕ, we
introduce a function Ψ that computes the deformation energy
density (per undeformed area) at any point X ∈ Ω. The total
deformation energy of a warp ϕ can then be computed as:

E[ϕ] =
∫

Ω

Ψ(F(X)) dX

The optimal warp is the one that minimizes E, and respects
a number of problem-specific boundary constraints defined
in Section 4.

3.2. FEM Discretization

Now that we have defined the continuous image warping
problem, we discretize the problem using the FEM in order
to numerically compute the optimal warp.

Basis Functions As a first step, the warping function ϕ

is discretized into a linear combination of n basis functions
Na : Ω→ IR with associated weights xa = (xa

1,x
a
2)

T ∈ IR2:

ϕ(X) =
n

∑
a=1

Na(X)xa (1)

Once the shapes of the individual basis functions have been
defined, the warping function ϕ is fully determined through
the values xa. The continuous problem of finding a function
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ϕ reduces to finding the vectors x1, . . . ,xn that minimize E.
The xa are thus the degrees of freedom (DOF) of our opti-
mization problem.

Mesh Representation The domain Ω is represented as a
mesh consisting of m elements K1, . . . ,Km, and q nodes at
positions X1, . . . ,Xq. Computing the derivative of Eq. (1)
with respect to X gives us F as a linear combination of xa.
The energy E can now be formulated as a sum over element
integrals:

E =
m

∑
k=1

∫
Kk

Ψ

(
n

∑
a=1

xa ∂Na

∂X

∣∣∣∣ T

X

)
dX (2)

The per-element integrals can be approximated using a nu-
merical quadrature rule. For implementation details, we refer
to Hughes [Hug00]. What makes this computation efficient
is the fact that basis functions Na are local: inside any ele-
ment Kk, only a constant number of basis functions can be
non-zero, and the sum over a can be reduced to a sum over
those basis functions.

If we treat each pixel of an image as an element with a sin-
gle constant basis function, and introduce some additional
terms to handle the resulting discontinuities between ele-
ments, we are in fact able to recover the standard finite differ-
ence scheme that is used in existing image warping methods.

Numerical Minimization For general Ψ(F), Eq. (2) is a
non-linear equation in xa, and we can minimize it using a
Newton method [NW00]. For this, we need the first and sec-
ond derivatives of E with respect to the xa, which we com-
pute using either a code generation tool or automatic dif-
ferentiation (AD). The second derivatives of E result in a
sparse, symmetric matrix H. Merging all the vector DOFs
xa into one big vector d of length 2n and denoting the first
derivative of E with respect to d by f, a single Newton step
computes the increment ∆d of d by solving the linear system

H∆d =−f (3)

using a direct solver for sparse positive definite systems
[SGFS01]. We refer to Appendix A for pseudocode imple-
mentation details.

4. Application Specifics

We have now defined image warping in the continuous sense
and presented the generic framework of non-linear FEM. At
this point we describe choices for the basis functions Na,
the mesh connectivity K1, . . . ,Km, and the energy density
function Ψ based on the application.

4.1. Deformation Energy Densities

In image retargeting, one of the main differences between
approaches comes down to what deformation energy func-
tion Ψ is used. We look at several different possible choices

for Ψ and show how our continuous formulation allows us to
not only reproduce existing warping energies used in earlier
work, but also more clearly understand their limitations and
design new, improved energy densities.

First we define some useful terms. Most of the commonly
used deformation energy densities for image warping can be
computed from a combination of quantities derived from the
deformation gradient F(X). F is also used, as it tells us how
an infinitesimal line segment dX at position X gets deformed
under ϕ. The deformed line segment dx can be computed as
dx = FdX. The Jacobian determinant J is also useful, as it
tells us how an infinitesimal area changes under the defor-
mation ϕ. This is defined as:

J(X) = det(F(X)) (4)

The right Cauchy-Green tensor C, defined as

C(X) = F(X)T F(X), (5)

is invariant under rotation and thus any energy density that
can be expressed in terms of C will inherit its rotational in-
variance. Analyzing the eigenvalues λ1,λ2 of C(X), one can
see that

√
λ1 and

√
λ2 are the principal stretches of the de-

formation at X, i.e. the minimum and maximum values for
the stretch that can be achieved for any direction dX at posi-
tion X [SSGH01].

Defining and Improving Existing Choices of Ψ

Shamir and Sorkine [SS09] described a simple energy den-
sity for image warping that penalizes all deformations except
for translations

ΨF = ‖F− I‖2, (6)

where I denotes the 2×2 identity matrix and ‖·‖ denotes the
Frobenius norm of a matrix. ΨF is only quadratic in deriva-
tives of ϕ, so when using this energy density, the minimum
of a discretized deformation energy E can by found in a sin-
gle Newton step. For energies that result in more complex
optimization problems, existing methods usually employ al-
ternating iterative methods [SS09] that solve a linear least-
squares problem while fixing the values of some quantities,
like a uniform scale. On the other hand, once we have found
the corresponding continuous formulation of such energies,
our FEM framework can then solve the resulting non-linear
problem in a consistent way, taking all variables and all con-
straints into account in each Newton step.

Wang et al. [WTSL08] and Laffont et al. [LJW∗10] both
use a deformation energy that penalizes all transformations
other than translation and uniform scaling. The correspond-
ing continuous energy density can be written as:

ΨF̄ = ‖F− J
1
2 I‖2 (7)

The right Cauchy-Green tensor C is equal to the identity ma-
trix for pure rotations, a fact we can use to find a rotation-
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Input and saliency Linear scaling ΨF (T) ΨF̄ (T, S) ΨC (T, R) ΨS (T, S, R) ΨC̄ (T, S, R)

Figure 3: Comparison between different deformation energy density functions used in image retargeting, with indicated in-
variance to translation (T), scaling (S), and rotation (R). Our novel deformation energy ΨC̄ allows for T,S,R invariance while
inherently preventing self-intersections (visible in the lower left half of the ΨS image).

invariant energy density [WLSL10]:

ΨC = ‖C− I‖2 (8)

The distortion energy used in Zhang et al. [ZCHM09] also
adds to this, scale invariance, permitting elements to undergo
a similarity transform (quadratic in derivatives of ϕ). Its cor-
responding energy density is:

ΨS = tr(C)−2J (9)

While this allows for an efficient minimization of E in a
single Newton step, this energy density has the drawback of
tolerating inversions. This is a significant problem in image
retargeting, as it creates visible artifacts after warping (as
shown in Figure 3). Existing solutions to this problem usu-
ally involve iteratively enforcing expensive non-linear con-
straints [KLHG09, WTSL08].

Using our continuous formulation, we can design an im-
proved energy density ΨC̄ that increases the penalty to in-
finity as the horizontal scaling factor s approaches zero:

ΨC̄ = J−2‖C‖2 (10)

This prevents the Newton solver from ever taking a step that
would invert an element, and instead results in the line search
finding an increment ∆d such that J remains positive at every

Figure 4: Comparison between the energy densities ΨC̄− 2
(green) and ΨS (red) for non-uniform scaling with F=

(
s 0
0 1
)
.
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Figure 5: Values of nodal basis function Na in a triangle
mesh (left) and a quad mesh (middle), and the six basis func-
tions used for quadratic DG FEM elements (right).

quadrature point. Inversions are thus prevented by the defor-
mation energy itself, instead of requiring the addition of new
constraints. Figure 4 shows a comparison between these two
energy densities.

Using ‖C‖2 = λ
2
1 + λ

2
2 and J2 = λ1λ2, one can derive an

alternative representation of ΨC̄,

ΨC̄ =
(λ1−λ2)

2

λ1λ2
+2, (11)

showing that this energy density measures the ‘non-
uniformity’ of the scaling.

A key component of many content-aware image warping
methods is the inclusion of a visual saliency term. The higher
the saliency of a region, the better it should be ‘preserved’
in the warp. This can be easily included in our formulation
by multiplying the energy density by some spatially varying
saliency function γ(X) > 0. For the results in this paper, we
find γ using the method of Goferman et al. [GZMT10].

4.2. Basis Functions

In standard FEM, nodal DOFs are used, meaning that q = n
and every DOF is associated with a node: the DOF xa di-
rectly represents the solution of the warp at node a. This im-
plies that for all a, the basis function Na(X) assumes a value
of 1 at position Xa, and a value of 0 at all Xb with b 6= a.
The natural choice for basis functions for simple triangle and

c© 2013 The Author(s)
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quad elements are the linear and bi-linear basis functions, re-
spectively (see Figure 5). These basis functions are used in
most prior work, and restrict the methods to averaging con-
tent (such as image saliency) within elements. We propose
the use of discontinuous Galerkin (DG) FEM to allow each
element to be endowed with its own set of basis functions.
The big advantage of the method is that we are no longer re-
stricted to nodal basis function but we can use simple poly-
nomials of arbitrary order, where the order of polynomials
can be chosen independently for each element. Such higher
order basis functions are not only able to better represent the
solution to the continuous problem, they also take more of
the underlying saliency information into account during nu-
merical integration. While higher order basis functions can
also be realized in standard FEM, they are almost trivial to
implement in DG FEM as they do not depend on the element
shapes or mesh connectivity.

For example, the basis functions 1,X1,X2,X
2
1 ,X1X2,X

2
2 al-

low an element to approximate the solution quadratically
(see Figure 5).

To restore the coupling between elements (i.e. introducing
“glue”), some additional terms are necessary. To accomplish
this using DG FEM, we replace the bi-valued function ϕ

by the so-called numerical flux ϕ̂ on the edges between ele-
ments. This method is based on a DG formulation for non-
linear elasticity [TEL06], using the numerical flux of Bassi
and Rebay [BR97].

For rendering elements with higher-order basis functions, we
triangulate each element using a fine triangulation and com-
pute the new positions of the triangle mesh vertices by eval-
uating ϕ inside the element.

By allowing for higher order basis functions, we are able
to achieve smoother warps, more efficiently using the high
resolution saliency information even with a small number
of elements. Figure 6 shows an example where the exist-
ing approach results in visible ‘kinks’ between elements, but
our higher order basis functions yield smooth transitions be-
tween elements.

4.3. Adaptive Meshes

Unlike finite-difference approaches, the mesh-independent
continuous formulation provided by our FEM approach al-
lows us to trivially extend our method to arbitrary content-
adapted meshes. This allows us to drastically reduce the
number of DOFs without noticeable degradation of warp-
ing quality, enabling among other things, temporally stable
solutions for video examples.

We present two content-aware meshing techniques, one for
standard FEM approaches, and the other for DG FEM imple-
mentations. In the first, we computing a Delaunay triangula-
tion [She96] of a point set distributed according to variance
in saliency. This creates increased resolution in areas that

(a) FD (b) ours (c) cubic mesh

(d) FD (e) ours (f) FD (g) ours

Figure 6: Retargeting using finite differences (FD) with 81
bilinear quads (100 DOFs) vs. our FEM warping using 9
quads with cubic bases (90 DOFs), and the corresponding
deformed mesh (c). Our method allows for smoother warp-
ing even with fewer DOF.

Figure 7: Error-based adaptivity for DG FEM with linear,
quadratic and cubic quad elements (approx. 1024 DOFs
each).

are most likely to contain changes in local deformation. An
example of this mesh is visible in the teaser.

However, using DG FEM again allows for some additional
freedom in mesh construction. In particular, the edges of
neighboring elements are not required to coincide, it al-
lows for hanging nodes, and therefore also adaptive quadtree
meshes. As the amount of discontinuities between elements
is a direct indicator of the local error of the solution, we
refine elements with the highest discontinuities, reducing
global error in a greedy fashion. This results in a mesh where
the function values on edges can safely be averaged for ren-
dering. See Figure 7 for an example.

The advantage of the subdivisions becomes clear in the
teaser. Where we get a similar result as the finite-difference
approach, but using far fewer degrees of freedom.

We have presented three ways that our approach can improve
the quality of existing methods. However, for completeness,

c© 2013 The Author(s)
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Figure 8: Line constraints controlling the appearance of ob-
jects in a modified perspective. Input image with triangle
mesh and constrained lines shown in red (left), warp without
line constraints (middle), warp with line constraints (right).

there remain some additional commonly used constraints in
image retargeting that need to be described, which we dis-
cuss next.

4.4. Addressing Additional Constraints

For image retargeting, prior work often constrains all nodes
on the boundary of Ω such that (xa

1,x
a
2)

T = (Xa
1 s1,X

a
2 s2)

T if
the image is stretched by (s1,s2)

T , or allows nodes to slide
on the boundary, by constraining xa

1 = Xa
1 s1 for nodes with

Xa
1 = 0 or Xa

1 = 1 and similarly for the X2 direction. These
constraints are implemented as hard constraints by modify-
ing the first and second derivatives of E such that the con-
strained DOFs do not get modified during a Newton step.

For certain applications like camera stabilization [LGJA09]
and stereoscopic disparity editing [LHW∗10], weakly en-
forced point constraints are used (i.e. PW gets warped to a
specific position pW ). Such constraints can be realized by
adding an energy term for each point constraint:

EW = γW
1
2
‖ϕ(PW )−pW‖

2 (12)

We can also impose line constraints on the warp to
weakly enforce straight lines to remain straight after the
warp [KLHG09], or to warp initially curved lines to straight
ones [CAA09]. Similar to previous approaches, we parame-
terize the best-fitting straight line as sin(α)x1 + cos(α)x2 +
b = 0. For each line constraint, an additional energy term is
added to our minimization problem, computed as the inte-
gral of the squared distance between the warped curve and
the closest point on the fitted straight line, weighted by a
penalty γL:

EL =
1
2

γL

∫ l

0
(sin(α)p1(s)+ cos(α)p2(s)+b)2ds (13)

We use per-element quadrature to evaluate this integral.
These kind of constraints can be incorporated seamlessly
into our method: the two new unknowns α and b parameter-
izing the fitted straight line simply become two new scalar
DOFs of our non-linear problem, and no further special
treatment is necessary. The result of these line constraints
is shown in Figure 8.

Figure 9: Frames from retargeted video sequences. Showing
the input frame, linear scaling, FEM warping, and the corre-
sponding mesh.

(a) original (b) [KLHG09] (c) ours

Figure 10: Comparison of temporal stability in video re-
targeting. Windowed approaches to stability cannot predict
the position of future salient objects. By retargeting entire
videos, our method produces more stable output.

5. Results

We show the results from this general framework on two im-
age warping applications. Please refer to the supplementary
video for full examples of these methods.

Video Retargeting We use our proposed inversion prevent-
ing energy density function ΨC̄ for retargeting examples. To
solve over a whole sequence of frames and still keep the
problem at a tractable size, we have used an adaptive tri-
angle mesh with the standard FEM method. See Figure 9 for
examples.

We compare the temporal stability of our method to prior
work by Krähenbühl et al. [KLHG09] in Figure 10, which
is restricted to enforcing only local smoothness between
frames. Please refer to the supplemental video to see the full
sequence, where differences are more apparent.

Video Stabilization Warping-based video stabilization
methods [LGJA09] consist of tracking feature points over
time, reconstructing their positions and the camera in 3D
space, then reprojecting feature points into a new, stabilized
camera path. The input to the image warp consists of a set of
weighted feature points with source and (reprojected) target
positions, which guide the warp as weak point constraints.
There is no direct influence between the warps computed
for individual frames, so each frame can be warped indepen-
dently and a regular mesh of size 64× 36 as used in Liu et
al. [LGJA09] provides a good quality-vs-performance trade-
off. See Figure 11 for examples.

c© 2013 The Author(s)
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Figure 11: Our image warping method applied to camera
stabilization. Input frame with detected features (left), sta-
bilized frame with FEM mesh (right).

5.1. Timing

We show the timing of our method on several examples pre-
sented in this paper in Table 1. These results were generated
on an Intel Core i7 3.2 GHz computer, in a single-threaded
application.

Example #Els #Frames #Newton tpre tHf tsolve

Fig. 1, right 2612 1 7 60 2 19
Fig. 9, top 111124 234 1 27820 600 6311
Fig. 9, bottom 54249 117 1 14634 273 2537
Fig. 11 1152 1 2 31 2 4

Table 1: Problem complexity and timings (in ms) for pre-
computation (including mesh generation), computation of H,
f, and solving the linear system.

6. Discussion

In conclusion, we have presented a novel, general represen-
tation for image warping that unifies a wide range of existing
solutions. Our approach provides a well defined continuous
mathematical formulation that has multiple real-world ad-
vantages. For one, a mathematical basis allows for energy
densities to be clearly defined and analyzed, allowing for
improved understanding and design. Our representation is
independent of mesh formulation, which allows for simple
extensions for adaptive meshing and temporally stable solu-
tions. Additionally, a method based on DG FEM is presented
which simplifies adaptive meshing and the use of higher or-
der basis functions for smoother warps. It comes at the cost
of a more complex implementation and the need to aver-
age displacements at edges in order to avoid discontinuous
warps. However, probably most significantly, there is a wide
range of literature and ongoing research about FEM tech-
niques in the mechanics and geometry communities, and by
phrasing the image warping problem in the same context,
both areas of research have the potential to benefit tremen-
dously from their combined research efforts.

One of the main limitations of our FEM approach is that it
can be more complex to implement than traditional finite-
difference methods. However, this is a one-time cost, and
when completed, the framework is very flexible, making ap-
plication to novel problems and domains a much simpler

task than before. Furthermore, many FEM implementations
exist for mesh deformation, and could be easily extended to
image-warping problems.

In this paper, we have only scratched the surface of what the
FEM could be used for in the context of image editing appli-
cations. Further insight into FEM and related methods could
provide additional capabilities, such as using X-FEM for dis-
continuous warping methods. Our representation is also not
restricted to 2D elements, and one extension could be a mesh
subdivision with 3D elements, such as a video cube oct-tree,
that may provide stability for temporal solutions. In addi-
tion, it is possible that energies with higher order derivatives
could be useful, e.g. for the spherical distortion application.
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Appendix A: Implementation Notes

The function ComputeE shown below computes the energy
E for given DOF values d. It calls ComputePsi to evaluate
the energy density Ψ for the given deformation gradient F.
ComputeBFunDeriv computes the derivative of a basis func-
tion at a given position. EC computes the energy of constraint
C for the given DOF values.

1 E = ComputeE( d = (x1T
, . . . ,xnT )T )

2 E← 0
3 for each element Kk:
4 for each quad. point qi with weight wi of Kk:
5 F← 0
6 for each basis function Na of Kk:
7 b← ComputeBFunDeriv(a, qi)
8 F+= xa bT

9 end
10 E+= ComputePsi(F) wi
11 end
12 end

13 for each soft constraint C:
14 E+= EC(d)
15 end
16 end

Given initial values for the DOFs dinit that satisfy the hard
constraints, the function Solve shown below finds a local
minimum of the energy E. LinSolve solves a system of linear
equations. ApplyHardConstraints modifies H and f such that
for all constrained DOFs i, fi = 0, Hii = I and Hi j = H ji = 0
for j 6= i. ComputeHf computes the first and second deriva-
tives of E with respect to the DOFs, which similarly to Com-
puteE can be evaluated on a per-element basis.

1 E = Solve(dinit)
2 d← dinit
3 do
4 E← ComputeE(d)
5 H, f← ComputeHf(d)
6 H, f← ApplyHardConstraints(H, f)
7 Find small β≥ 0 s.t. H+βI is pos. def.
8 ∆d← LinSolve((H+βI)∆d =−f)
9 Find large α≤ 1 s.t. ComputeE(d+α∆d) < E

10 d+= α∆d
11 while ‖f‖2 > tol
12 end
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