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Figure 1: Manifold mesh models created using RodMesh on Oculus Rift, with and without the deformable control rods visualized. Users can
define and manipulate these control rods to edit the mesh surface.

Abstract
User interfaces for 3D shape modeling in Virtual Reality (VR), unlike basic tasks such as text input and item selection, have
been less explored in research so far. Shape modeling in 3D lends itself very well to VR, since the 3D immersion provides the
user with richer spatial feedback and depth perception when compared to traditional 2D displays. That said, currently existing
3D modeling applications do not focus on optimizing the modeling interaction techniques for VR, but instead mostly merely port
standard interaction paradigms. Our approach utilizes a popular sketch-based surface modeling algorithm in VR by rethinking
the user interface in order to benefit from the 3D immersive environment and its inherent support of two-handed input. We
propose a bimanual interaction technique that allows users to create 3D models via virtual deformable rods. These rods are
bendable into outline shapes that are automatically inflated into manifold mesh surfaces, and can then be incrementally edited
to further refine the shape.

CCS Concepts
• Human-centered computing → Virtual reality; • Computing methodologies → Shape modeling;

1. Introduction

Digital modeling of freeform 3D shapes is a challenging task for ca-
sual users and remains time consuming even for experts. The tradi-
tionally cited chief reasons for this are the required mentally taxing
translation between the imagined 3D shape and its 2D rendering on
a 2D display, as well as the 2D input devices (mouse, stylus, touch-
pad), which cannot directly provide 3D spatial information to the
modeling system. Virtual reality enables convincing immersion of
the user in the digital 3D space and hence holds the promise to alle-
viate the aforementioned limitations. However, new challenges and
open questions emerge with regards to input modalities and inter-
action techniques in VR to facilitate efficient and at the same time
precise user control of the 3D shape. In the traditional 2D desk-
top setup, sketch based 3D modeling systems [IMT99, NISA07]
capitalize on commonly possessed 2D drawing skills of users and
provide an intuitive and very economical way to specify 3D shapes:

they enable users to span a whole surface in 3D by drawing and ma-
nipulating a sparse set of 2D curves with the mouse or the stylus.
However, because drawing 3D curves in space is not a commonly
practiced skill, and because it is imprecise along the z (depth) di-
rection, a one-to-one translation to drawing 3D curves in VR is
unsuitable.

We propose a solution to this problem by benefiting both from
the 3D immersion advantages of VR and the economical, sparse in-
put of traditional curve-based surface modeling systems. Our core
idea is to exploit the unique availability of two-handed spatial in-
put modality in VR for this purpose. We take FiberMesh [NISA07],
an algorithm for modeling a manifold mesh surface from a set of
curves in 3D, as the basis, and we propose to replace the drawing
of the curves by two-handed bending and stretching of virtual rods
that represent the curves. In the physical reality, the user holds a
tracked 6 DOF controller in each hand, while in VR a curve is ren-
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dered as a rod, and the user appears to grasp the rod at its ends
with the virtual hands. The rod can hence be bent and stretched
by movements of the hands, and users are given the tactile im-
pression of actually holding the rod’s ends, since in reality they
are holding the controllers. The backbone algorithm, taken from
FiberMesh, then spawns the surface mesh that interpolates the 3D
curve(s) with a plausible, smooth geometry. We describe additional
tools to facilitate the editing and incremental updating of the mod-
eled shape.These tools are inspired by FiberMesh but have been
adapted for more intuitive control in VR. We demonstrate that our
RodMesh system enables users to quickly and intuitively create a
variety of high quality surfaces in VR.

Similarly to the FiberMesh system [NISA07], RodMesh is not
intended for producing intricately detailed surfaces, but rather aims
at enabling quick drafts and experimentation with 3D shape ideas.
The output of RodMesh is a manifold triangle mesh that can serve
as the starting point for adding geometry and raster textures, creat-
ing subdivision surfaces and other advanced modeling operations.

2. Related work

A significant amount of professional software for the purpose of
3D modeling is available; some of the most known mesh modeling
packages include Autodesk 3ds MAX [3ds19], AutoCAD [Aut19],
Blender [Ble19] and Maya [May19]. Typically these programs pro-
vide the user with very fine-grained control over the final mesh by
providing a plethora of editing tools and even allowing to modify
the mesh geometry and topology on a vertex, edge or face level.
Although this makes these programs very powerful and versatile,
using the programs demands a steep learning curve and requires
the user to specify accurate and detailed input. A common obser-
vation from users is that one must already have a precise idea of
the desired shape in mind, developed previously by other means,
and then using these professional tools one can input this idea into
the computer [NISA07]. By contrast, the aim of our work is to em-
power non-expert users to quickly create 3D models and experi-
ment with various shape ideas directly in the digital modeling ap-
plication. Therefore in this section we focus on reviewing the more
intuitive and easy-to-use 3D modeling paradigms meant for rough
drafts, as well as methods for creating 3D models specifically in
VR.

2.1. Two-handed input

Bimanual input has been adressed in various research works in the
context of computer graphics and geometric modeling in particular.
Grossman et al. [GBS03] study two-handed input specifically for
manipulating 3D curves. They propose a physical interaction de-
vice called ShapeTape, a fixed-length tape-like construct that con-
tains fiber optic sensors that can reconstruct the shape of the tape
in 3D space. They employ it for specifying deformations of 3D
curves: Users can bend and twist the physical tape to control a dig-
ital representation of the curve. In addition to purely specifying the
shape of a curve, ShapeTape can also be used to specify gestures
that are mapped to specific editing actions. The modular physical
articulation device by Glauser et al. [GMP∗16] can also be used to
construct an input device for capturing a 3D curve shape by con-
necting their multiple universal joints into a chain.

Subsequent research by Grossman et al. [GBK∗01] employs the
ShapeTape device to create wireframe models. Their study shows
that bimanual input for working with curves is a successful interac-
tion technique, and that defining curves with ShapeTape is signif-
icantly less complicated than the traditional methods for creating
curves. This approach shares similarities with our work in the sense
that the tool presents the user with a direct mapping between the
sensory feedback and the behavior of the digital curve. Although
RodMesh merely equips the user with a virtual deformable rod
instead of a physical one, the two hand-held controllers do elicit
the sensation of holding a rod-like object. An advantage of our
approach is that users do not have to work against gravity that is
pulling on the physical rod, and they are in general nearly uncon-
strained by the physics of the real world and the physical input
device. In RodMesh, users can “let go” of the virtual rod without it
falling to the floor; the middle portion of our virtual rod does not
fall downwards when holding the rod by its endpoints, and the rod
can be stretched to various lengths, unlike the physical ShapeTape.

Two-handed touch input for 3D modeling or deformation opera-
tions has been studied in multiple works. Igarashi et al. [IMH05]
use multitouch input on a SmartSkin touchpad to deform ex-
isting 2D shapes in an as-rigid-as-possible manner. Palleis et
al. [PWH16] apply two-handed touch input to CAD-like edge-loop
scaling and extrusion operations, which users perceive as easy to
learn and some find it comparable to modeling with clay. Kang
et al. [KKSH15] develop a multitouch 3D modeling system that
converts sketch input to CAD-like surfaces. With simple gestures,
users can quickly prototype 3D models that can be then further
refined on a PC. All these works utilize 2D touch interfaces. Ex-
panding on the purely touch-based input space, Mockup builder
[DACJ12] allows bimanual input from both multitouch interaction
on a flat surface as well as 3D positional finger tracking above the
surface for a set of 3D modeling operations (e.g., extrusion along a
curve, scaling, offsetting planes).

Llamas et al. [LKG∗03] develop an approach for two-handed
6 DOF editing of 3D shapes by means of space warping, called
Twister. Their approach allows users to use both hands simultane-
ously to define positional and orientation constraints on rigid han-
dles, which are converted to a space warp that decays proportion-
ally to the distance from the handles. This results in a real-time
interaction technique that is very straightforward to use. Our ap-
proach also allows the user to define both positional and orientation
constraints with both hands. The difference is that we restrict the
handles to be on the control rods that define the surface via an en-
ergy optimization, whereas Twister [LKG∗03] is an FFD, or space
warp deformation that controls the surface shape in an indirect way,
leading to different effects.

A study by Buxton and Meyers [BM86] suggests that two-
handed input provides most advantage for tasks that would re-
quire a lot of movement or “travelling” when performed with one
hand. This applies to our application scenario, since (symmetri-
cally) bending a rod with one hand would require a sequence of
deformations performed on different parts of the rod.

Besançon et al. [BIAI17] discover that mouse-based, touch-
based and tangible input devices are all equally well suited for pre-
cise 3D positioning tasks (docking a virtual 3D object at a prede-
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fined position). They also find that the tangible input device results
in the fastest completion times and has the most intuitive mapping.
However, compared to mouse- and touch-based input, physical fa-
tigue is more prevalent.

2.2. Sketch-based 3D shape modeling

Sketch-based 3D modeling is a technique that aims to transfer the
way that people draw shapes with pen and paper to a method of
modeling 3D shapes on the computer using a 2D mouse or stylus.
The user draws 2D curves on the screen, which are then processed
and inflated into 3D meshes using automatic surface creation algo-
rithms. Typically the user then has the option to further edit this
initial mesh by adding further sketched lines.

Teddy [IMT99] is a milestone work on interfaces for sketch-
based 3D design that allows the user to sketch 2D input strokes,
which are then automatically translated into 3D shapes. Fiber-
Mesh [NISA07] generalizes Teddy by additionally keeping the
user-defined curves visible after the initial inflation, allowing the
curves to be used for further shape editing, such as stretching the
mesh by pulling on one of the curves. ShapeShop [SWSJ06] ex-
tends these sketch-based modeling tools with the usage of Blob-
Trees and CSG operations, allowing users to create combinations
of smooth freeform and CAD-style 3D models, with a high level
of detail. As stated earlier, we opt to employ the surface modeling
algorithm of FiberMesh [NISA07] in our system due to its versatil-
ity and encapsulation of 3D curved based modeling, but we replace
the sketch-based input modality, since it is less intuitive in 3D VR.

Shtof et al. [SAG∗13] show another approach, where the user
defines the basic outlines of a 3D shape by sketching, and the ac-
tual 3D model is created by assigning predefined 3D primitives to
the different semantic parts of the model. Although the initial in-
put is sketch-based and sparse, the required subsequent refinement
demands a lot of input from the user. Additionally, the user is re-
stricted to models that can be composed of the predefined primitive
shapes, and occluded parts cannot be generated since the modeling
only occurs from one viewpoint.

More recently, sketch-based 3D modeling has also been com-
bined with deep neural networks in an attempt to create more ac-
curate 3D models from 2D inputs that are provided from a sin-
gle viewpoint [LPL∗18]. However, this method requires various
amounts of additional input from the user in order to provide the
system with information about the relative depth in the model to be
constructed.

2.3. 3D Modeling in VR

Recently, a number of VR applications for creating digital 3D con-
tent have appeared [Goo19,Til19,Gra18,Ocu19,PIA10]. These ap-
plications can roughly be split into two categories: creating 3D
“paintings” and creating 3D models, assembled from a structure
of vertices, edges and faces. We focus on the latter category, since
the former typically does not result in manifold surface objects.

Commercially available apps for 3D modeling in head mounted
VR are for example Google Blocks [Goo19], Gravity Sketch VR
[Gra18] and Oculus Medium [Ocu19]. Their concepts vary from

playful modeling [Goo19] to allowing high-detail modeling with
a very extensive tool set [Gra18, Ocu19]. Google Blocks [Goo19]
is the simplest of the three, allowing users to assemble different
primitives (cubes, cones, spheres) into a new model. Gravity Sketch
[Gra18] and Oculus Medium [Ocu19] provide a wider variety of
modeling tools, with Gravity Sketch focusing more on a CAD-like
approach, whereas Oculus Medium mimics modeling with clay and
employs implicit surfaces.

In addition to the commercial apps, in academia Perkunder et
al. [PIA10] created a version of FiberMesh [NISA07] for an im-
mersive 3D environment, a CAVE with five rear-projection walls
and active stereo LCD shutter glasses. Their user study shows that
users find modeling in an immersive 3D environment more sup-
portive of the creative process compared to performing the same
modeling task in a non-immersive environment. At the same time,
their work is a direct one-to-one adaptation of FiberMesh and its
original user interface [NISA07] to a CAVE setting, without ex-
ploiting the unique benefits of VR and optimizing the interface to
3D immersion.

In concurrent work to our own, Rosales et al. present Surface-
Brush [RRS19], a VR application that has an interaction paradigm
very similar to Google TiltBrush [Til19]. Whereas TiltBrush gener-
ates 3D paintings only, SurfaceBrush is capable of creating actual
manifold surfaces from the 3D strokes. Users can create surfaces
by drawing ribbon strokes in the shape of the intended surface. The
center line positions and normal orientations (as determined by the
orientation of the VR controller) of these ribbon strokes are used
to compute the corresponding surface. The application is shown to
be useful for both amateurs and artists to effectively communicate
shapes.

Although Google Blocks is very accessible to novice users, the
iterative process can be lengthy and tedious, and the resulting
meshes have low polygonal count and resemble 3D pixel art style.
In comparison, our application enables the user to quickly create
mesh models with a smooth appearance. Oculus Medium and Grav-
ity Sketch require much more (precise) user input compared to our
solution. Although this gives the user more control over the final
appearance of the models, it also makes it difficult to learn how to
use the tools.

3. Method

We implement RodMesh for the Oculus Rift with Oculus Touch
controllers (see Figure 2). The controllers are tracked by the Ocu-
lus Rift system, such that the position and orientation of each con-
troller is known and can be mapped to the position and pose of the
hand in the virtual 3D environment. The base of each controller
fits entirely in the palm of an average human hand, which gives a
realistic experience of holding a rod.

We employ the surface modeling algorithm from Fiber-
Mesh [NISA07], with some adjustments for our setting. Smooth
surfaces are created by interpolating the control curves via non-
linear functional optimization. Deformation of curves (and the at-
tached mesh) leads to sequentially performed curve deformation
and surface optimization steps, in which the resulting positions
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Image source: cbaSamwalton9 on WikiMedia Commons

Figure 2: Oculus Touch controllers used for RodMesh.

from the curve deformation step are fed into the surface optimiza-
tion as positional constraints. Surface mesh optimization consists in
numerically solving a 6-th order partial differential equation, and is
performed by iteratively solving two sparse linear systems. Their
size is on the order of the number of vertices of the mesh, and
both systems have constant system matrices (only the right hand
side varies). This allows for one-time factorization in a short pre-
processing step and facilitates realtime updates of the mesh surface
when curve constraints are modified. For further details on the sur-
face optimization algorithm we refer the reader to [NISA07].

Our curve deformation step differs in its details from Fiber-
Mesh [NISA07] in order to make the curve feel more rod-like. In-
ternally, we represent the rods as piecewise linear curves that cor-
respond to the midlines of the virtual rods. We store a rod thickness
parameter for rendering purposes. Users have the option to either
pinch the rod with thumb and index finger, or to grab a part of the
rod by making a fist. Pinching and moving the pinched hand con-
strains the position of the selected vertex and one adjacent edge,
while grabbing the rod constrains all vertices and edges that are in-
side the fist. By twisting their hands, users can specify the desired
orientation of the selected edge(s), enabling bending of the rod.
This way, the orientation of the controller is implicitly mapped to
the local frame of the constrained part of the curve. Note that we do
not implement local twisting of the curve about its tangent direc-
tion; this could be added as an easy extension by using e.g. Cosserat
rod representation of the local frame [SMSH18]. The twisting of
the rod based on hand orientation is not present in the original
FiberMesh work and would also be hard to operate in a 2D setting.

The deformation of the 3D curve representing the rod is com-
puted by solving Equation (2) in the FiberMesh paper [NISA07].
For completeness and to facilitate our explanation of the implemen-
tation, we reproduce the equation here. The vertices of the piece-
wise linear curve are denoted as v1, . . . ,vn and the set of the curve’s
edges as E. The optimization problem to solve in each iteration is

argmin
v,r

{ n

∑
i=1
‖L(vi)− riRiδi‖2 + ∑

i∈C1

‖vi−v′i‖2+

∑
(i, j)∈E

‖riRi− r jR j‖2
F + ∑

i∈C2

‖riRi−R
′

i‖2
F

}
,

Figure 3: The menu for selecting the editing tool. From left to right,
top to bottom: new starting rod (requires a reset of the scene); de-
formation tool; add rod tool; cutting tool; extrusion tool; erase rod
tool; save scene; reset to empty scene; load scene from file.

where C1, C2 are the sets of constrained vertices and edges, re-
spectively; L is the discrete differential operator on the curve; Ri
is the gross rotation obtained from the previous iteration step and
fixed in each minimization step; R′i are the orientation constraints;
δi is the differential coordinate of vertex i in the original (under-
formed) curve, obtained by applying the operator L to the original
vertex positions; v′i are the constrained vertex positions, and ri is
a linearized incremental rotation represented as a skew symmetric
matrix with three unknowns:

ri =

 1 −riz riy
riz 1 −rix
−riy rix 1

 .
Solving the above sparse linear system provides optimal ver-
tex positions and incremental rotations ri. The target gross rota-
tions Ri are updated with these incremental rotations and then re-
normalized via polar decomposition. The iterations are repeated a
fixed number of times (twice in our implementation), depending on
the required interactive performance and available computational
resources. In our prototype the curve deformation runs at an inter-
active rate of 60 fps.

In our setting, we define the region-of-interest (ROI) to contain
all vertices of the rod that the user is deforming, instead of applying
the “peeling” approach in [NISA07], since deforming the entire rod
appears closer to physically realistic behavior and feels more intu-
itive. As the set of fixed vertices C1 we define the handle vertices
(or single handle vertex in the case of one-handed deformation);
in case the rod is not attached to a mesh yet, we also add the end-
points of the rod as positional constraints. The set of constrained
edges C2 always contains the edge(s) adjacent to the handle(s), and
in the case of a grabbing deformation we also add the other edges
that fall within the grip of the hand(s). Once a mesh is in place, the
rod becomes attached to the mesh (essentially becoming a chain of
mesh edges), and we define extra positional constraints for single-
handed deformation, because the endpoints of the rod are no longer
fixed in place. For this purpose, we fix the rod-vertex that is furthest
away from the current handle, giving the user a kind of anchor point
to pull against. In the case of two-handed deformation this is not
necessary, and we instead simply constrain the two handle vertices,
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initial rod bending the rod into a loop initial inflated mesh deforming the mesh via the rod

Figure 4: Creation of the initial mesh and deforming it.

starting model pulling a rod deforms connected rods two-handed deform the connected rod moves along

Figure 5: Examples of pulling on a rod hierarchy.

and depending on the pulling gesture we fix one or more edges per
hand.

As soon as the user releases the rod with the two endpoints of
the rod sufficiently close to each other, we sample the gap be-
tween the two endpoints and create a double-faced triangulation
of the resulting closed polygon, as required for the inflation algo-
rithm [NISA07]. The rod remains open just as it was, and becomes
logically attached to the mesh. Keeping the rod open gives the user
the possibility to manipulate two points of the rod more indepen-
dently from each other.

Based on this initial surface mesh, the user can perform further
editing operations, such as adding further rods on the mesh sur-
face, which can then again be deformed. Several editing tools can
be selected from a menu (Figure 3), as described below and demon-
strated in the accompanying video.

Deformation tool. The deformation tool allows the user to deform
the control rods and the attached mesh parts by grabbing a part of
the rod and pulling it to a new position, possibly also rotating the
wrist to specify a new orientation of the rod. The user can either
use a grabbing motion (making a fist) to constrain a small segment
of the rod, or make a pinching motion with the index finger and
thumb to constrain only a single vertex and an adjacent edge. The
change in orientation of the controller is transferred to an orienta-
tion change of the adjacent edge. In case of a grabbing motion, the
orientation change is propagated from the handle vertex outwards
over the edges that appear to be in the hand. The existing edges
are rotated according to the orientation change, and a translation
is applied from the handle vertex outwards. Direct manipulation of
the curve in 3D space is possible thanks to the tracking of the VR
controllers, whilst FiberMesh only allows 2D manipulations of the
curve per view. Figure 4 shows the simplest example of a rod de-
formation, where the initially straight rod is bent into a U-shape
and subsequently meshed. This resulting mesh is then reshaped by
deforming the control rod.

When there are multiple control rods defined on the mesh sur-
face, performing a deformation action on one of them by grabbing
or pinching propagates to other rods that are attached to it. When
propagating down a hierarchy from the rod that is actively being de-
formed, any connecting vertices are constrained to the position that
is computed in the optimization of the parent curve. Figure 5 shows
examples of this hierarchical propagation of rod deformation.

In some cases we enforce extra constraints in addition to the con-
strained vertex and edge(s) at the handles, to ensure deterministic
and intuitive behavior. For example, when pulling on a closed rod
using only one hand, we constrain the position of the vertex that
is furthest away from the handle vertex, to prevent translation of
the entire rod and the attached mesh, which automatically happens
when only one vertex of a closed rod is fixed. For any closed rod
that is (indirectly) attached to the rod that is being deformed, if it
has fewer than three constrained vertices, we fix one of its edges
that is incident on the vertex that intersects a closed rod higher up
in the hierarchy. If none of the rods higher up in the hierarchy are
closed, we simply fix all of the current rod’s edges that are incident
on any of the intersection points with any open rod higher up in the
hierarchy. Finally, for all open rods that are (indirectly) attached to
the rod at the top of the hierarchy (the one that the handle belongs
to), we constrain all edges of the rod that are incident on the con-
nection point to another rod higher up in the hierarchy. The fixing
of vertices down the the rod hierarchy is necessary to avoid under-
determined linear systems in the rod deformation optimization (i.e.,
to prevent situations with too many degrees of freedom).

Cutting tool. The cutting tool is rendered like a laser beam em-
anating from the pointed forefinger. It can be used to cut away a
part of the mesh, see an example in Figure 7 and the video. The
user “draws” the cut over the mesh surface, and our system tries to
wrap it around on the backside of the mesh based on the direction
at which the cutting ray hit the front side of the mesh. Because we
use the orientation of the 6-DOF controllers to define a direction
on the cutting ray, the user can perform this cutting action with-
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defining the base of extrusion defining the silhouette rod result, frontal view result, side view

Figure 6: An example of an extrusion operation.

Figure 7: An example of a cutting operation. Please see the accom-
panying video for a better visibility of the laser knife.

out having to frontally face the mesh, which would be required by
a traditional 2D cutting input paradigm, where the cutting curve
is projected along the viewing direction. The cut curve becomes a
rod, and the user points at and clicks on the part of the mesh that
is to be removed. The resulting smooth cut surface is variable in
two directions, since it is defined both by the position of the cutting
curve on the mesh as well as the direction of the laser being used.
This creates more interesting surface than what would be possible
in a 2D setting.

Extrusion tool. We implement the extrusion tool with the same
paradigm as in FiberMesh [NISA07], which works slightly differ-
ently from traditional CAD extrusion tools, where the user first
defines a cross-section outline and then sweeps the cross-section
along a curved path to create a volume. In the FiberMesh surface
definition, the surface geometry is entirely determined by interpo-
lating the rods, hence the user defines the base rod for the extrusion
on the existing mesh surface with the laser beam interface and then
specifies a silhouette rod for the extrusion, drawn from the index
finger, such that the silhouette rod attaches to the base at two points.
Both sides of the silhouette rod, along with matching parts of the
base rod, are triangulated, and their mesh geometry is optimized as
usual. Compared to the interface for extrusion silhouette input in
FiberMesh, our adapted version does not require the silhouette to
be defined from a viewpoint that is orthogonal to the extrusion base,
since the 3D position of the curve does not need to be computed –

it can be directly read from the VR controllers. See Figure 6 and
the video for an illustration.

Rod addition and removal tools. The rod addition and removal
tools are also ported from FiberMesh in a straightforward manner.
These may be necessary to enable finer control of the 3D shape.
Using the laser beam interface, the user can either define new con-
straint rods that wrap around the entire existing shape (similar to
the rod that is generated by a cutting operation) or open rods that
lie on the mesh surface. Figure 8 shows examples of both kinds of
added rods.

Rods can also be removed again, by simply clicking on the rod
that should be removed twice. After a rod is removed, the surface
is optimized using the remaining rods. Figure 9 shows an example
of removing a rod and the subsequent surface optimization.

4. Results

We have evaluated our prototype with an informal user study. Test
users were given instructions on how to use the application and then
requested to provide oral feedback while trying it out.

From our observations, we noticed that users utilize two-handed
rod deformation particularly often for bending the initial rod into a
closeable shape by grabbing or pinching the endpoints of the rod.
Stretching an existing mesh (such as in Figure 5) was also mostly
done with two-handed deformation. When working on smaller de-
tails (such as small extrusions like the ears, legs and tail of the
fantasy animal in the top row of Figure 11), users resorted to one-
handed deformation. The main reason for this was that the size of
the relevant details was too small for the two Oculus Touch con-
trollers to operate on them simultaneously, because the tracking
rings attached to the controllers (see Figure 2) collide.

Similarly to the user study of FiberMesh [NISA07], test users
commented that it would be useful to be able to merge model parts
that have been created separately from each other. Users suggested
that this could simplify the extrusion process, which some of them
found difficult to control when performed directly on the mesh sur-
face. Another suggestion was to remove the fixation of the initial
rod’s endpoints, as they described this as “feeling unnatural”.

Our prototype implementation is written in C++ using the Ocu-
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adding a closed rod resulting rod side view adding an open rod resulting rod

Figure 8: Example of adding constraint rods.

Figure 9: Removing a constraint rod.

lus SDK and libigl [JPO17], and runs on Windows. Mesh pro-
cessing operations and linear system solvers come from libigl.
The rendering and mesh operations run on two separate threads,
so that rendering continues during costlier operations like trian-
gulation. Curve deformation and surface optimization run at inter-
active rates on the examples shown here (3000 to 4000 vertices).
Some slowdown is noticeable as more rods are added, which is due
to the fact that the rods are rendered as chains of actual cylinder
and sphere meshes. This slowdown could be alleviated by imple-
menting a cylinder/sphere shader to give the illusion of volumet-
ric rods instead. Curve deformation does not show any significant
slowdown, since the linear systems only need to be factorized after
operations that change the mesh topology.

Figure 11 shows eight examples of models created with
RodMesh by novice users with no artistic design experience. The
gummi bear model took approximately 15 minutes to create and
consists of the main body, four extrusions for the legs and arms
and an extrusion for the head. Two extra open control rods were
added on the head to create the effect of a nose and to provide extra
control over the shape of the ears. The fantasy animal in the same
figure consists of the main body with an extra control rod to create
a waist, an extrusion for the head, which in turn has two extrusions
for the ears, plus four extrusions for the feet and one for the tail.
The extra control rod in the middle of the body of the animal gives
the effect of a transition from upper to lower body. Modeling this
fantasy animal took approximately 7 minutes, and the modeling
process is shown in the accompanying video. The airplane in Fig-
ure 11 was made in an 8 minute modeling session. The initial mesh

was stretched to form the body of the airplane. Three extrusions
were added to create the wings and rudder of the plane. In order to
make these parts thinner, the extrusions have been deflated using
bimanual deformation on the looped control rods that are wrapped
around them. The flower model was made by adding five extrusions
to the flower heart as petals, and deforming the control rods of each
of the petals into the desired shape. The modeling time of 4 minutes
shows that our application can be used to very quickly create model
prototypes. Creating the bird model took approximately 8 minutes
and consisted of a series of extrusions and rod deformations. The
boat and mushroom models took between 1 and 2 minutes to com-
plete. Both use a cut surface as a flat base for an extrusion (the sail
and the mushroom stem). The lamp was incrementally designed
starting from the mushroom model, cutting the top to be flat and
adding control rods to define the shape of the lamp shade. The base
of the lamp was deformed to resemble an ellipse shape.

Figure 10 shows a comparison between 3 models created with
FiberMesh and RodMesh. The models created with the origi-
nal non-VR application and our adapted two-handed VR version
show high correspondence. Creation times for the models using
RodMesh were significantly shorter than with FiberMesh. The
models created with RodMesh have somewhat less smooth curves
in some locations due to a decreased rod resolution, which is nec-
essary for the interactive rates required for VR.

5. Discussion, Limitations and Future Work

In this work we attempt to intelligently port a powerful 3D mod-
eling paradigm developed for a keyboard, mouse and 2D display
setup into immersive VR. In 2D, we can rather precisely sketch
and manipulate objects by clicking and dragging the mouse or sty-
lus when using the dominant hand, but two-handed input in this
setting suffers from asymmetry because the non-dominant hand is
less precise. Conversely, in 3D VR, sketching in the air is tiring
and imprecise, all the more so with the non-dominant hand. Our
idea to use rods as control primitives enables a more symmetric
and natural usage of both hands, bridging the dexterity gap. We no
longer require accurate input, but rather the more coarse “holding
and moving” of the held rod parts, which is what people normally

c© 2019 The Author(s)
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Figure 10: Comparison of models created with FiberMesh
[NISA07] (left) and RodMesh (right). Creation times from top to
bottom: for FiberMesh: 10 min., 10 min., 20 min.; for RodMesh: 7
min., 6 min., 12 min.

do in daily life using two hands. We delegate determining the ge-
ometry of the full rod to the curve deformation algorithm and gain
the rather efficient, economical and intuitive two-handed manipu-
lation.

The participants of our informal user study pointed out some
limitations and suggestions for future improvements. One recurring
remark was the desire to add some physical characteristics to the
rods, such as limiting the maximal possible stretch, or providing
some kind of haptic feedback to simulate the feeling of exerting
an increasing amount of power to bend the rod. In future work, we
would also like to explore a deformation model for the rods that
takes thickness into account and allows twisting along the rod; the
Frenet frames along the rod could then be incorporated and inform
the surface optimization.

Some users commented that the current restriction to deform
one rod at the time was limiting their actions. An example they
gave was not being able to quickly bend connecting control rods
towards each other (because their hierarchical attachment propa-
gates the movement of the parent rod onto the child rod, which
then moves in a similar manner as the parent). In our current im-
plementation this restriction is present because of the hierarchical
sequential processing of the deformations of the individual rods. A

future implementation might explore solutions that avoid this se-
quential processing.

Although users found the laser beam easy to work with for the
cutting and rod addition tools, they experienced more challenges
when using it for the extrusion tool. Drawing a closed curve on the
mesh surface requires more precision than drawing an open curve
over the mesh surface in a sweeping motion. In addition, partic-
ipants had difficulties sensing depth when defining the extrusion
silhouette. One possible solution could be to allow the user to cre-
ate the extrusion separately from the main model using the same
mechanisms for rod based surface creation and editing, and then
attach the part at the desired location on the main model.

Finally, our two-handed rod-based interaction technique could
also be applied to other methods of surface definition and opti-
mization. For example the current application could be adapted to
use a thin film surface optimization, or to define outlines of Coons
patches.

6. Conclusion

In this paper we presented RodMesh, an application that makes
3D modeling easier and more accessible for novice users by utiliz-
ing the advantages of immersive 3D VR. The usage of both hands
for deformation of control structures allows users to complete vari-
ous modeling tasks. Compared to traditional mouse and 2D display
approaches, our application allows users to generate more inter-
esting spawned surfaces and provides a faster method for creating
extrusions. Compared to previous 3D modeling tools for VR, our
application requires less (precise) user input and uses two-handed
input for an interaction technique that closer resembles modeling
techniques in real life. We hope that this work motivates further
research into adapting existing 3D modeling paradigms for two-
handed 6 DOF input and virtual reality.
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