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Fig. 1. SD-𝜋XL specializes in creating pixel art, characterized by its intentionally low resolution and limited color palette. Our method enables varying
degrees of control: the input is a text prompt, and optionally a reference (high-resolution) image for initialization or spatial control. SD-𝜋XL’s output style
can be adjusted using fine-tuned diffusion models. In this example, the full prompt reads “Embroidery of a Chinese dragon flying through the air on a dark
background with smoke coming out of its mouth and tail.”. The output pixel art can be used for crafted fabrications, such as the shown cross-stitch embroidery.

Low-resolution quantized imagery, such as pixel art, is seeing a revival in
modern applications ranging from video game graphics to digital design
and fabrication, where creativity is often bound by a limited palette of
elemental units. Despite their growing popularity, the automated generation
of quantized images from raw inputs remains a significant challenge, often
necessitating intensive manual input. We introduce SD-𝜋XL, an approach
for producing quantized images that employs score distillation sampling
in conjunction with a differentiable image generator. Our method enables
users to input a prompt and optionally an image for spatial conditioning,
set any desired output size 𝐻 × 𝑊 , and choose a palette of 𝑛 colors or
elements. Each color corresponds to a distinct class for our generator, which
operates on an𝐻 ×𝑊 × 𝑛 tensor. We adopt a softmax approach, computing
a convex sum of elements, thus rendering the process differentiable and
amenable to backpropagation. We show that employing Gumbel-softmax
reparameterization allows for crisp pixel art effects. Unique to our method is
the ability to transform input images into low-resolution, quantized versions
while retaining their key semantic features. Our experiments validate SD-
𝜋XL’s performance in creating visually pleasing and faithful representations,
consistently outperforming the current state-of-the-art. Furthermore, we
showcase SD-𝜋XL’s practical utility in fabrication through its applications
in interlocking brick mosaic, beading and embroidery design.

CCS Concepts: • Computing methodologies→ Image processing; Image
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1 INTRODUCTION
Pixel art is a common form of low-resolution, quantized images,
characterized by its minimalist aesthetic and distinctive use of color.
Each pixel is clearly visible, and even a single pixel modification
can have a significant perceptual impact. This art style has gained
widespread popularity in various applications, such as video games
and contemporary artistic design. Its charm lies not only in its visual
appeal but also in its historical significance, as it evokes the early
days of video games, when hardware limitations necessitated the
use of simple, low-dimensional representations with a restricted
amount of colors. Pixel art continues to be employed in numerous
indie games and artistic creations, capitalizing on its unique visual
style and lower memory footprint.

As illustrated in Fig. 2, quantized images can reflect essential fab-
rication constraints or rationalization e.g. for embroidery [Igarashi
and Igarashi 2022] or interlocking brick games [Zhou et al. 2023],
where the production is constrained by a finite (usually small)
amount of thread or brick colors. Creating pixel art from input
images is a complex task, often requiring laborious manual effort.
The challenges are compounded by the scarcity of suitable large,
open datasets. Some common data augmentation techniques, such
as rotation, color jitter, or blurring, may produce undesirable arti-
facts for pixel art style, worsening the dataset limitations. Due to
its fabrication opportunities, a pixel art generation method should
respect the following properties:

(1) Hard constraints: strict adherence to predefined constraints,
such as input color palettes.

(2) Resolution independence: ability to produce crisp images of
various resolutions without anti-aliasing.
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SD-𝜋XL Embroidery Fuse beads Interlocking bricks

Fig. 2. SD-𝜋XL generates low-resolution quantized images that are suitable
for many fabrication applications, such as cross-stitch embroidery, fuse
beads, or interlocking brick designs. The result image size is 48 × 48 pixels,
generated without an initialization image, and only conditioned on the
prompt “A rose flower. The branch and leaves are visible.”

(3) Flexible generation and conditioning: ability to base generation
on an input prompt or image, with adjustable semantic and
geometric conditioning.

(4) Style independence: adaptability to different styles, such as
realistic input to embroidery output as shown in Fig. 1.

As detailed in Table 1, current methods do not fully satisfy the
established criteria. Existing classic and neural pixelization tech-
niques fall short in semantic conditioning, which is crucial for pixel
art to effectively communicate at low resolutions, and no method
strictly adheres to specific color palettes. Fig. 3 shows limitations of
current diffusion methods, as they cannot enforce strict color palette
and resolution constraints, whether through prompt engineering,
low-rank adaptation (LoRA) fine-tuning [Hu et al. 2021], or existing
score distillation approaches [Jain et al. 2023; Poole et al. 2022].

Our paper introduces SD-𝜋XL, a method that leverages pretrained
diffusionmodels to generate low-resolution, quantized imageswithin
specific constraints. SD-𝜋XL offers a versatile approach: users can
input a collection of visual elements (color palettes for pixel art or
sets of images for mosaics), a prompt, and optionally, an image. To
create an output image of size 𝐻 ×𝑊 using a palette of 𝑛 elements,
we parameterize an image generator with a tensor of dimensions
𝐻 ×𝑊 × 𝑛. This tensor encodes the significance of each element at
every pixel position. We use Gumbel-softmax reparameterization
(Sec. 3.3) to sample elements from the palette, leading to a stochastic
optimization process that efficiently produces crisp pixel art while
still allowing for backpropagation. We then employ diffusion net-
works with score distillation sampling for optimizing the parameters
of the generator based on the input prompt, offering semantic un-
derstanding to the pixelization process. We also integrate spatial
fidelity to the input image through conditioning on depth maps
and edge detection via ControlNet [Zhang et al. 2023]. Because our
approach optimizes within a predefined constraint set, adherence
to the input palette is guaranteed. Our main contributions are:

(1) A differentiable image generator that strictly adheres to given
constraints and works at any resolution.

(2) Evidence showing that stochastic optimization via Gumbel-
softmax reparameterization produces sharp, crisp pixel art.

(3) Versatile generation capabilities from text or images, includ-
ing semantic and spatial conditioning.

(4) Elimination of dataset dependency via an optimization-based
method that works with any input style.

(5) State-of-the-art results in quantized image generation.

(1) (2) (3) (4)

(5) (6) (7) (8)

Fig. 3. Diffusion models allow for the generation of high-resolution images
(1). While using a diffusion-based image translation [Podell et al. 2023;
Saharia et al. 2022] with prompt-guided style is ineffective (2), fine-tuning
the model for pixelized effects [Neri 2023] (3) is not generalizable across
styles and requires retraining for different resolutions. VectorFusion [Jain
et al. 2023] solves the resolution issue, but does not follow closely the input
image (4). Our method supports outputs in any size and applies constraints
to a finite palette (5), which can be enforced through either soft (6) or hard
constraints (7). Color quantization further emphasizes the pixel art effect
and is crucial for some fabrication applications, such as embroidery (8).

Through our experiments, we demonstrate SD-𝜋XL’s effectiveness
in creating visually pleasing and accurate pixel art, surpassing ex-
isting methods. We also discuss the limitations of our approach
and its potential for future work. Our supplementary material fur-
ther includes ablation studies and details of our comparative eval-
uations. The source code is made available at https://github.com/
AlexandreBinninger/SD-piXL.

2 RELATED WORK
In this work, we focus on generating imagerywith a highly restricted
number of pixels and colors. This task, requiring both semantic
understanding and abstraction, is closely related to established re-
search in color quantization and image downsampling. We review
key studies in these areas to provide context and background for
our approach, and refer to the survey by Kumar et al. [2019] for a
comprehensive overview of the large topic of image abstraction.

Image quantization. Since SD-𝜋XL utilizes image palettes with
a finite discrete set of elements and operates at low spatial resolu-
tion, we discuss relevant research in the fields of color quantiza-
tion and image downscaling. Content-adaptive image downscaling
[Kopf et al. 2013] optimizes the shapes and locations of downsam-
pling kernels to align with local image features, resulting in crisper
output without ringing artifacts and effectively creating pixel art
from vector graphics inputs. Perceptually based image downscaling
[Öztireli and Gross 2015] introduces an optimization method for
image downscaling that retains perceptually important features.
Color manipulation is a well-studied field, often relying on layer
decomposition [Aksoy et al. 2017] and manipulation via geometric
tools like convex hull [Tan et al. 2016] or non-linear triads [Shug-
rina et al. 2020]. Colour quantization often relies on the use of a
color palette. Dynamic closest color warping [Kim and Choi 2021]
assesses color palette similarity by sorting and aligning colors to
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share a common color tendency. Floyd-Steinberg dithering [Floyd
and Steinberg 1976] is an error-diffusion method that minimizes
color quantization artifacts. It distributes each pixel’s quantization
error to adjacent pixels, creating smoother images with a defined
color palette. Ozturk et al. [2014] present a brief review of color
quantization and propose a method based on the artificial bee colony
algorithm. Several quantization algorithms propose to abstract the
input image with a non-grid clustering, to produce for instance
mosaic effects [Faustino and de Figueiredo 2005], low-polygon art
[Ng et al. 2018], or posterization [Chao et al. 2021]. Superpixels are
groups of connected pixels that share similar characteristics, such
as color or texture, forming a coherent region within an image [Ren
and Malik 2003]. They can be used to segment the target image prior
to clustering the color space for color quantization [Frackiewicz and
Palus 2022].

Classic pixelization methods. Pixelated image abstraction [Ger-
stner et al. 2012, 2013] also relies on superpixels with a modified
version of simple linear iterative clustering (SLIC) [Achanta et al.
2012] to generate pixel art-style images by simultaneously solving
for feature mapping and a reduced color palette. While faithful to
the input image, it lacks a semantics-aware mechanism. Automatic
portrait image pixelization [Shang and Wong 2021] also relies on
SLIC to introduce a pixelization algorithm for portrait images. The
art-oriented pixelation (AOP) method [Lei et al. 2023] converts car-
toon images into pixel art through an iterative procedure involving
gridding the image, extracting its content, and separately pixelating
the contour and non-contour parts of the image. Kuo et al. [2016]
develop a method to animate pixel art by optimizing feature lines on
each frame. Vector graphics is also present in the context of pixel-
art creation. Inglis and Kaplan [2012] devise a pixelation algorithm
for rasterizing vector line art while maintaining pixel art conven-
tions. Conversely, Kopf and Lischinski [2011] address the problem of
depixelation in generating vector representations from pixel art im-
ages by resolving pixel-scale feature ambiguities to produce smooth,
connected features. This research has led to further works about

Table 1. Comparison of pixelization techniques. Unlike other methods, ours
allows users to enforce hard constraints on resolution and palette without
additional post-processing. Classical methods provide flexibility across var-
ious resolutions or scales, whereas neural methods are typically limited
to a finite set of resolutions or downscaling factors. Non-diffusion deep
learning methods, albeit trainable or fine-tunable for different styles, often
heavily rely on their training datasets due to a lack of semantic conditioning.
VectorFusion [Jain et al. 2023] also relies on score distillation (SD) [Poole
et al. 2022] to optimize the parameters of a differentiable image generator,
but does not constrain the image generation to an input palette.

Hard Resolution Semantic Style
constraints independence conditioning flexibility

cl
as
si
c PIA [Gerstner et al. 2012] ✓ ✓ ✗ ✓

APIP [Shang and Wong 2021] ✗ ✓ ✗ ✗
AOP [Lei et al. 2023] ✗ ✓ ✗ ✗

ne
ur
al DUP [Han et al. 2018] ✗ finite ✗ dataset

MYOS [Wu et al. 2022] ✗ finite ✗ dataset

SD

VectorFusion [Jain et al. 2023] ✗ ✓ ✓ ✓
SD-𝜋XL ✓ ✓ ✓ ✓

pixel art depixelation via vectorization [Alberto Dominici et al. 2020;
Hoshyari et al. 2018; Matusovic et al. 2023].
Neural pixelization methods. Neural techniques to generate pix-

elized images are not new. Current neural techniques for domain
transfer often use unsupervised methods like CycleGAN [Zhu et al.
2017]. These rely on generative adversarial networks (GANs) [Good-
fellow et al. 2014] to transform images between different style do-
mains. Deep unsupervised pixelization [Han et al. 2018] generates
pixel art without paired training data by using several networks
dedicated to different tasks, namely transforming the input image
into grid-structured images, generating pixel art with sharp edges,
and recovering back the original image from the pixelized result
for cyclic consistency. Kuang et al. [2021] present a pixel image
generation algorithm based on CycleGAN, utilizing a nested U-Net
generator structure for multi-scale feature fusion, and introduc-
ing a structure combination loss to ensure the integrity of linear
structures like contours in pixel images. The Make Your Own Sprites
method [Wu et al. 2022] produces cell-controllable pixel art by using
a reference pixel art for regularizing the cell structure, and disen-
tangling the pixelization process into cell-aware and aliasing-aware
stages. Jiang and Sweetser [2022] also propose a GAN-based model
for pixel art generation using the YUV color encoding system.

Generating sprites is an important aspect of pixel art creation, e.g.
for game assets [Karp and Swiderska-Chadaj 2021]. Rebouças Serpa
and Formico Rodrigues [2019] use deep neural networks to gen-
erate pixel art sprites from line art sketches. Their work is based
on Pix2Pix [Isola et al. 2017], a general method that translates an
image to a different domain. Also based on Pix2Pix, GAN-based
sprites generation [Coutinho and Chaimowicz 2022a] expedites the
process of creating pixel art character sprite sheets by generating
target side poses based on source poses. Subsequently, Coutinho
and Chaimowicz [2022b] propose two modifications, namely a color
palette representation and a histogram loss, and discuss the dif-
ficulties of pixel-art sprite generation using GANs. These neural
methods take the stance of considering pixelization as a domain
transfer problem, while we incorporate semantic conditioning for
low-resolution, style-agnostic generation. This adaptability allows
SD-𝜋XL to be effective across various styles and applications.
VectorFusion [Jain et al. 2023], and concurrently to our work,

SVGDreamer [Xing et al. 2024], leverage a diffusion model for
semantics-aware optimization of the parameters of a differentiable
vector rasterizer [Li et al. 2020] via score distillation sampling [Poole
et al. 2022]. They can force the generation to a grid, producing low-
resolution images, but the lack of color quantization makes their
results saturated and noisy. Prior to score distillation, some meth-
ods used CLIP [Radford et al. 2021] for image abstraction, such as
CLIPDraw [Frans et al. 2022] or CLIPasso [Vinker et al. 2022].
Fabrication with quantized images. Low-resolution and color-

quantized images have various fabrication applications. Embroidery
is limited by the number of thread colors. While image conver-
sion methods exist for directionality-aware embroidery patterns
[Zhenyuan et al. 2023], low-resolution pixel art is particularly adapted
for cross-stitching. Though cross-stitching can be automatically per-
formed bymodern sewingmachines, e.g. [PFAFF® 2020], techniques
to correct human mistakes on-the-fly for pixel art fabrication have
been developed [Igarashi and Igarashi 2022]. Fuse beads is a popular
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form of pixel art fabrication, and is de facto limited by the available
bead colors. Interlocking bricks such as LEGO® are another suitable
fabrication possibility. While advancements have been made in the
realm of 3D LEGO® design methodologies [Xu et al. 2019], efforts
are actively made to explore the design of 2D brick-based structures
as well [Zhou et al. 2023].

3 BACKGROUND

3.1 Diffusion
We briefly review diffusion models, referring the reader to a com-
prehensive survey for more in-depth explanation [Po et al. 2024].
Diffusion models are a family of generative models that map Gauss-
ian noise into samples from a targeted image distribution 𝑝data
[Ho et al. 2020; Sohl-Dickstein et al. 2015]. They consist of two
main stages. The first is the forward process: an initial sample
𝑥0 ∼ 𝑝data undergoes a progressive noising over 𝑇 steps, culmi-
nating in a Gaussian-distributed sample 𝑥𝑇 ∼ N(0, 𝜎𝑇 ). To avoid
exploding variance [Song et al. 2021], the noisy sample is computed
as 𝑥𝑡 = 𝛼𝑡𝑥0 + 𝜖𝜎𝑡 , where 𝜖 ∼ N(0, 1), 𝑡 ∈ {0, ...,𝑇 } is the time step,
𝛼𝑡 and 𝜎𝑡 parameterize the diffusion [Kingma et al. 2023]. Following
the initial phase is the backward process: it begins with a noisy
sample 𝑥𝑡 and successively estimates the noise to progressively
generate cleaner samples 𝑥𝑡−1. This iterative denoising continues
until it reconstructs the final image 𝑥0, which closely resembles the
original data distribution 𝑝data. Typically, this denoising function is
implemented using a U-Net architecture [Ronneberger et al. 2015],
denoted as 𝜖𝜙 (𝑥𝑡 ; 𝑡). This function specifically aims to deduce the
noise 𝜖 that was initially mixed with the original data 𝑥0 to create
the noisy version 𝑥𝑡 .
Conditioning in diffusion models. The denoising process can be

conditioned by a parameter 𝑦, for instance with text for prompt-
based image generation. To generate samples aligned with a spe-
cific condition 𝑦, diffusion models utilize classifier-free guidance
(CFG) [Ho and Salimans 2022]. CFG modifies the conditioned predic-
tion 𝜖𝜙 (𝑥𝑡 ;𝑦, 𝑡) away from the unconditioned prediction 𝜖𝜙 (𝑥𝑡 ; ∅, 𝑡),
with scaling 𝑠 ∈ R modulating the intensity of the conditioning:

𝜖𝑠,𝜙 (𝑥𝑡 ;𝑦, 𝑡) = 𝜖𝜙 (𝑥𝑡 ;𝑦, 𝑡) + 𝑠 (𝜖𝜙 (𝑥𝑡 ;𝑦, 𝑡) − 𝜖𝜙 (𝑥𝑡 ; ∅, 𝑡)).

3.2 Score distillation
Score distillation employs pretrained diffusion models to compute
semantics-aware gradients for updating the parameters of a dif-
ferentiable renderer or generator [Poole et al. 2022]. Denote 𝑔 a
differentiable image generator with parameters 𝜃 , and 𝑥 = 𝑔(𝜃 ) a
generated image. For a given time step 𝑡 , a noised version of 𝑥 is
defined as 𝑥𝑡 = 𝛼𝑡𝑥 + 𝜖𝜎𝑡 , with 𝜖 ∼ N(0, 1). The gradient of the
score distillation sampling (SDS) loss is described by the equation

∇𝜃LSDS = E𝑡,𝜖

[
𝑤 (𝑡)

(
𝜖𝑠,𝜙 (𝑥𝑡 ;𝑦, 𝑡) − 𝜖

) 𝜕𝑥

𝜕𝜃

]
, (1)

where 𝑤 (𝑡) = 𝜎2
𝑡 serves as a scaling factor. This gradient is sub-

sequently used to refine the parameters of the generator 𝑔(𝜃 ). Al-
though initially developed for 3D generation, the application of
score distillation extends beyond 3D. Given that an image generator
is differentiable, score distillation can be used for semantics-based
optimization, such as prompt-based image editing [Hertz et al. 2023].

Its utility is also evident in various other forms of image represen-
tation, such as vector graphics [Jain et al. 2023], font design [Iluz
et al. 2023], or tiling [Aigerman and Groueix 2024].

3.3 Gumbel reparameterization
The Gumbel reparameterization technique utilizes the Gumbel dis-
tribution [Gumbel 1954] for sampling from a categorical distribu-
tion using its logits. Its impact is analyzed in Sec. 5.2, and this sec-
tion explains its operation. Consider a set of 𝑛 scalars (𝜆0, ..., 𝜆𝑛−1)
which represent the logits of a categorical probability distribution
Cat (𝜋0, . . . , 𝜋𝑛−1), where the probability of selecting the 𝑘-th cate-
gory is determined by the softmax operation 𝜋𝑘 = 𝑒𝜆𝑘 /∑𝑛−1

𝑙=0 𝑒𝜆𝑙 . Let
{𝐺𝑘 }0≤𝑘<𝑛 be a series of𝑛 independent random variables, each sam-
pled from a Gumbel distribution Gumbel(0, 1), and let 𝑦𝑘 = 𝜆𝑘 +𝐺𝑘

for 0 ≤ 𝑘 < 𝑛. The random variable 𝑌 ≔ argmax0≤𝑘<𝑛{𝑦𝑘 }
is then distributed according to Cat (𝜋0, . . . , 𝜋𝑛−1). The Gumbel-
Softmax reparameterization technique offers a way to perform sto-
chastic sampling from categorical distributions while remaining
amenable to backpropagation [Jang et al. 2017; Maddison et al.
2017]. This method utilizes a softmax function that is parame-
terized by a temperature scalar 𝜏 . Given 𝑛 categories {𝑐𝑘 }0≤𝑘<𝑛
and the objective of sampling from the categorical distribution
Cat (𝜋0, . . . , 𝜋𝑛−1), the softmax function for each category is de-
fined as 𝑠𝑘 (𝜏) = 𝑒

𝑦𝑘
𝜏 /∑𝑛−1

𝑙=0 𝑒
𝑦𝑙
𝜏 , where 𝑦𝑘 are the logits modified

by Gumbel noise. The sampling process of a category is then real-
ized by 𝑐𝜏 =

∑𝑛−1
𝑘=0 𝑠𝑘 (𝜏)𝑐𝑘 . The parameter 𝜏 modulates how closely

𝑐𝜏 approximates a categorical distribution. As 𝜏 approaches zero,
𝑠𝑘 (𝜏) converges to an indicator function 1𝑘=argmax0≤𝑙<𝑛 {𝑦𝑙 } , imply-
ing that for small 𝜏 , 𝑐𝜏 closely resembles the categorical sampling
Cat (𝜋0, . . . , 𝜋𝑛−1) from the categories {𝑐𝑘 }0≤𝑘<𝑛 . Conversely, as 𝜏
increases towards infinity, 𝑠𝑘 (𝜏) approaches 1

𝑛 , meaning larger 𝜏
values lead to 𝑐𝜏 resembling a uniform average of the categories.

4 METHOD
SD-𝜋XL optimizes the parameters of a differentiable image genera-
tor by using SDXL [Podell et al. 2023], a pre-trained latent diffusion
model, denoted as 𝜖𝜙 , to derive a semantics-aware loss. The method
requires an input text prompt 𝑦 and can optionally take an input im-
age 𝑥 to guide the diffusion process. The inclusion of a smoothness
loss is also supported. Our method is illustrated in Fig. 4.

4.1 Stochastic quantized image generation
In the proposed framework, the goal is to synthesize an image using
only𝑛 distinct colors from a finite set C = {𝑐𝑘 }0≤𝑘<𝑛 . Although C is
typically a color palette—equivalent to a collection of 𝑛 single-pixel
images—it can also represent any set of elements that are uniform in
size and can be rendered as image pixels, as shown in the mosaics in
the supplementary material. To generate an image 𝑥 of dimensions
(𝐻,𝑊 ) using colors from the palette C, we employ a generator 𝑔,
parameterized by 𝜃 = 𝜆𝑖, 𝑗,𝑘 ∈ R𝐻×𝑊 ×𝑛 . The logits 𝜆𝑖, 𝑗,𝑘 give the
probability that the pixel at position (𝑖, 𝑗) in 𝑥 will take the value
𝑐𝑘 , computed as

𝜋𝑖, 𝑗,𝑘 =
𝑒𝜆𝑖,𝑗,𝑘∑𝑛−1
𝑙=0 𝑒𝜆𝑖,𝑗,𝑙

.
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Fig. 4. Visualization of the optimization process for generating a pixelized 𝐻 ×𝑊 image with a color palette of size 𝑛. If an input image is provided, the
process starts with initializing the logits 𝜆𝑖,𝑗,𝑘 by downsampling the input image and matching each pixel to the nearest palette color. Otherwise, the logits
are randomly initialized. Next, Gumbel-distributed random variables𝐺𝑖,𝑗,𝑘 are added to the logits. Applying a softmax function and combining the palette
colors weighted by 𝑠𝑖,𝑗,𝑘 (𝜏 ) yields an output image 𝑥 . This 𝑥 , the Canny edge map [Canny 1986] and an estimated depth map [Ranftl et al. 2021] of the input
image are then augmented and used in a latent diffusion model [Podell et al. 2023] to compute a semantic loss ∇𝜃 LLSDS , conditioned on an input prompt 𝑦.
Additionally, a smoothness loss LFFT derived from 𝑥 is used to optimize the parameters 𝜃 .

By definition, our generator is invariant to translation of 𝜃 . We take
advantage of the Gumbel-softmax reparameterization (Sec. 3.3) and
sample 𝐻𝑊𝑛 independent random variables𝐺𝑖, 𝑗,𝑘 ∼ 𝐺𝑢𝑚𝑏𝑒𝑙 (0, 1),
and define 𝑦𝑖, 𝑗,𝑘 ≔ 𝜆𝑖, 𝑗,𝑘 +𝐺𝑖, 𝑗,𝑘 . After performing a softmax

𝑠𝑖, 𝑗,𝑘 (𝜏) =
𝑒

1
𝜏
𝑦𝑖,𝑗,𝑘∑𝑛−1

𝑙=0 𝑒
1
𝜏
𝑦𝑖,𝑗,𝑙

,

the color of each pixel in 𝑥 is computed as 𝑥𝑖, 𝑗 (𝜏) =
∑𝑛−1
𝑘=0 𝑠𝑖, 𝑗,𝑘 (𝜏) 𝑐𝑘 .

Lower 𝜏 values enhance the resemblance of the sampling process to
a categorical distribution, but excessively small 𝜏 leads to backprop-
agation instability. In practice, we find 𝜏 = 1 to achieve reasonable
results. Further insights and discussions on this choice are presented
in the supplementary material.

4.2 Input image conditioning
SD-𝜋XL operates with a semantic loss, yet the optimization process
can be enhanced by an input image for both initialization and spatial
conditioning. Since we can use rejection sampling [Jain et al. 2023] to
generate images from prompt𝑦 and then select the best according to
their CLIP score [Radford et al. 2021], the content of this section also
applies to text-only pixel art generation. We initialize the generator
with an image 𝑥𝑑 , obtained by downsampling 𝑥 to size (𝐻,𝑊 )
using bilinear interpolation. We set the initial values of 𝜃 to 𝜆𝑖, 𝑗,𝑘 =

−∥𝑥𝑑
𝑖,𝑗

−𝑐𝑘 ∥. If a color palette is not provided, we employ a K-means
algorithm to partition the color space into 𝑛 clusters, using their
centroids for the color palette C.
ControlNet [Chen et al. 2023] is a network architecture used to

spatially condition the diffusion process. In our approach, we employ
ControlNet networks pretrained to condition the diffusion on edges
and depth information. By applying Canny edge detection [Canny
1986] and the dense prediction transformer (DPT) [Ranftl et al. 2021],
we condition the diffusion process on the structural and spatial

×

H

W
n

θ = {λi,j,k} πi,j,k

Generator

Palette

ck

×
Argmax

Softmax

Fig. 5. Our image generator can strictly adhere to the input palette using
an argmax function (bottom frog). Using softmax yields an image whose
pixel colors lie in the convex hull of the input palette, leading to less crisp,
pixelized outputs (top frog).

characteristics of the input image 𝑥 , providing the generation with
spatial context. We denote the denoiser conditioned by ControlNet
on c = {𝑥Canny, 𝑥depth} as 𝜖𝜙,c (𝑥𝑡 ;𝑦, 𝑡). The impact of ControlNet
conditioning is examined in Sec. 5.3.

4.3 Image augmentation
As illustrated in Fig. 4, during our optimization, the current gen-
erated image 𝑥 and its associated conditioning images 𝑥Canny and
𝑥depth are fed to the diffusion model. Prior to that, we apply data
augmentation: The images are first resized to the target output di-
mensions of the diffusion model, and subsequent augmentations
include random grayscale conversion, perspective alteration, and
horizontal flipping. As the conditioning images spatially guide the
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denoising process, it is crucial that both the generated and condition-
ing images undergo identical augmentations. To effectively utilize
open-source latent diffusion models such as Stable Diffusion XL
[Podell et al. 2023], the augmented image is encoded, represented
as 𝑧 = 𝐸𝑛𝑐 (𝐴𝑢𝑔(𝑥)). Subsequently, we denote 𝑧𝑡 = 𝛼𝑡𝑧 + 𝜎𝑡𝜖 the
noise-altered version of 𝑧 at time step 𝑡 .

4.4 Loss function
Adapting the score distillation sampling loss (Eq. (1)) for latent
diffusion models, the latent score distillation sampling (LSDS) loss
can be written as [Jain et al. 2023]:

∇𝜃LLSDS = E𝑡,𝜖,𝐺

[
𝑤 (𝑡)

(
𝜖𝑠,𝜙 (𝑧𝑡 ;𝑦, 𝑡) − 𝜖

) 𝜕𝑧

𝜕𝑥

𝜕𝑥

𝜕𝜃

]
. (2)

In our case, the expected value also takes into account the Gumbel
random variables 𝐺 = {𝐺𝑖, 𝑗,𝑘 }. By decomposing 𝜖𝑠,𝜙,c, we find

𝜖𝑠,𝜙,c (𝑧𝑡 ;𝑦, 𝑡)−𝜖 = (𝜖𝜙,c (𝑧𝑡 ;𝑦, 𝑡) − 𝜖)︸                ︷︷                ︸
variance-reduction

+𝑠 (𝜖𝜙,c (𝑧𝑡 ;𝑦, 𝑡) − 𝜖𝜙,c (𝑧𝑡 ; ∅, 𝑡))︸                               ︷︷                               ︸
semantic

.

This brings a decomposition of the LSDS loss into two terms:

∇𝜃LLSDS = ∇𝜃LNoise + 𝑠∇𝜃LSem, (3)

where

∇𝜃LNoise = E𝑡,𝜖,𝐺

[
𝑤 (𝑡)

(
𝜖𝜙,c (𝑧𝑡 ;𝑦, 𝑡) − 𝜖

) 𝜕𝑧

𝜕𝑥

𝜕𝑥

𝜕𝜃

]
,

∇𝜃LSem = E𝑡,𝜖,𝐺

[
𝑤 (𝑡)

(
𝜖𝜙,c (𝑧𝑡 ;𝑦, 𝑡) − 𝜖𝜙,c (𝑧𝑡 ; ∅, 𝑡)

) 𝜕𝑧

𝜕𝑥

𝜕𝑥

𝜕𝜃

]
.

(4)

The noise-reduction loss component refines the parameters to yield a
denoised image output, a desirable feature in contrast to its typically
obstructive role in 3D generation. The semantic loss ensures that
the generated result is in harmony with the provided prompt. A
justification for this decomposition of the loss terms is elaborated
in the supplementary material.
SD-𝜋XL, being optimization-centric, allows for the integration

of conventional loss functions. We introduce an additional fast
Fourier transform (FFT) [Brigham andMorrow 1967] loss to enhance
smoothness. This involves calculating the FFT of the grayscale of
𝑥 , centering it, masking out low frequencies with𝑀 ∈ R𝐻×𝑊 , and
averaging the absolute values:

LFFT =
∥Shift (FFT (𝑥)) ⊙ 𝑀 ∥1

∥𝑀 ∥1
. (5)

Finally, the gradient of our loss can be written as:

∇𝜃L = ∇𝜃LNoise + 𝑠∇𝜃LSem +𝑤FFT∇𝜃LFFT . (6)

In practice, we find 𝑠 = 40 and𝑤FFT = 20 to yield effective results.

5 RESULTS
This section outlines the final image generation process after op-
timization and justifies the adoption of the Gumbel-softmax repa-
rameterization. We succinctly present the influence of ControlNet
and the results of our comparative analysis, and refer the reader
to the supplementary material for further details. We end with a
discussion of our method’s limitations and future directions.

argmax softmax normalized average
generation generation entropy normalized entropy

op
tim

iz
at
io
n
w
ith

ou
t

G
um

be
l-s
of
tm

ax

with
Gumbel-softmax

without
Gumbel-softmax

op
tim

iz
at
io
n
w
ith

G
um

be
l-s
of
tm

ax

Fig. 6. We show SD-𝜋XL’s results with the Gumbel-softmax reparameteri-
zation (first row) and without (second row) during the optimization. The
argmax-generation, the softmax-generation, the entropy per pixel and the
average normalized entropy over time are displayed. Images are 64 × 64
pixels. The average normalized entropy is shown for 30,000 steps to ensure
that the obtained results are not due to an early stop.

5.1 Final image generation
After optimization, our generator offers two image generation meth-
ods, shown in Fig. 5. The first option is argmax-generated images,
which respect hard constraints and strictly adhere to a color palette,

𝑥𝑖, 𝑗 = 𝑐
�̃�𝑖,𝑗

, where �̃�𝑖, 𝑗 = argmax0≤𝑘<𝑛𝜆𝑖, 𝑗,𝑘 .

The second option is using 𝜋𝑖, 𝑗,𝑘 as coefficients of a convex sum
over the palette C to obtain softmax-generated images, calculated as

𝑥𝑖, 𝑗 =
∑𝑛−1
𝑘=0 𝜋𝑖, 𝑗,𝑘 𝑐𝑘 .

Their color space is merely constrained to the convex hull of the
palette C, softening the pixel art effect. We showcase in Fig. 10
the two generation methods. Note that softmax-generated images
do not require Gumbel reparameterization during optimization, as
explained in the following section.

5.2 Stochastic vs. deterministic optimization
We explain the rationale behind including Gumbel reparameteri-
zation during optimization for argmax-generated images. In the
stochastic optimization process, with Gumbel reparameterization,
𝜋𝑖, 𝑗,𝑘 is interpreted as the likelihood of the element in position (𝑖, 𝑗)
being 𝑐𝑘 . Conversely, deterministic optimization (without Gumbel
reparameterization) alters this perception, treating 𝜋𝑖, 𝑗,𝑘 as coeffi-
cients in a convex combination of palette elements. This approach
enables the generation of stylized low-resolution images through
softmax-generation, as exemplified by the cat’s fur texture in Fig. 6,
but it adversely impacts the readability of argmax-generated images.
To explain this phenomenon, we analyze the entropy per pixel.

The entropy of a probability distribution quantifies its uncertainty
[Shannon 1948], and is defined as𝐻 (𝜋𝑖, 𝑗 ) ≔ −∑𝑛−1

𝑘=0 𝜋𝑖, 𝑗,𝑘 log(𝜋𝑖, 𝑗,𝑘 ).
Given that a uniform distribution represents the peak of categorical
distribution entropy, the maximum entropy is log𝑛. Thus, we use
normalized entropy 𝐻 (𝜋𝑖, 𝑗 ) ≔ 1

log𝑛𝐻 (𝜋𝑖, 𝑗 ) to gauge pixel uncer-
tainty independently of the palette size. Our findings reveal that

6



SD-𝜋XL: Generating Low-ResolutionQuantized Imagery via Score Distillation SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan

input nearest-neighbor PIA DUP MYOS VectorFusion SD-𝜋XL initialization SD-𝜋XL
interpolation [Gerstner et al. 2012] [Han et al. 2018] [Wu et al. 2022] [Jain et al. 2023] K-means palette

512 × 512 An assortment of fresh bell peppers

Fig. 7. Visual comparison of pixelization methods with a downscale factor of 8. The input image is displayed with its size indicated below. Both VectorFusion
and SD-𝜋XL are initialized with the input image as their initial state, and conditioned on the prompt indicated below their results. We show the initialization
with the palette to demonstrate how our method differs from classic palette matching. While PIA and the K-means variant of SD-𝜋XL operate within a 8-color
limit, nearest-neighbor interpolation, DUP, MYOS, and VectorFusion have no such constraints and are not quantized.

Input conditioning
Depth Map Canny Edge

Depth 0.0 0.1 0.2 0.5
Canny

0.0

0.1

0.2

0.5

Fig. 8. We present the combined effects of ControlNet [Zhang et al. 2023]
weights on both Canny edge and depth-conditioning networks [von Platen
et al. 2022], examined concurrently. The image is randomly initialized to
disambiguate the contribution of ControlNet from the influence of the
initialization.

the Gumbel reparameterization significantly reduces entropy, as
displayed on Fig. 6. Due to the pixel-wise independence in sam-
ples, employing the Gumbel-softmax reparameterization introduces
noise in the results, which serves a beneficial purpose during the
optimization phase, as the loss function is designed to counteract

this noise. A probability distribution nearing uniformity, indicated
by high entropy, leads to noisier images. Therefore, our optimiza-
tion achieves denoising by encouraging the logits 𝜆𝑖, 𝑗,𝑘 to diverge
significantly, effectively pushing the softmax towards a distinct class
representation for each pixel. As a result, the optimized logits lead
to a clearer, less noisy output by strongly favoring one class over
the others in the softmax distribution, leading to crisper, pixelized
visuals and lower entropy, demonstrated in Figs. 6 and 10.

5.3 ControlNet influence
As explained in Sec. 4.2, the Canny edge and depth maps of the input
image can spatially condition the generation via ControlNet [Zhang
et al. 2023]. The user can modulate the weights used for controlling
the generation, and Fig. 8 shows that incrementing ControlNet’s
weights increases the fidelity of the result to the input image layout.
Additional comparisons are available in the supplementary material.

5.4 Pixelization evaluation
We extensively evaluate the use of our method for pixelization
through a quantitative comparison and a perceptual study. We com-
pare with Pixelated Image Abstraction (PIA) [Gerstner et al. 2012],
quantized Make Your Own Sprite (MYOS) [Wu et al. 2022] and Vec-
torFusion [Jain et al. 2023]. Our method is presented in two forms:
the “palette” variant utilizes a predefined palette, and the “K-means”
variant computes a palette from the input image using K-means
clustering. We provide one visual comparison in Fig. 7, and several
additional examples are provided in the supplementary material
alongside additional details and result metrics of our quantitative
evaluation. For our quantitative evaluation, we generate 150 images

Table 2. Evaluation through a perceptual study, highlighting the perfor-
mance of SD-𝜋XL (Ours) in comparison to PIA and VectorFusion through
semantic, fidelity and aesthetics questions. Each column aggregates the
rankings across all questions in a specific category, representing the per-
centage of participants who placed each method at the respective rank (1,
2, 3, or 4) for that category.

Method Semantic Fidelity Aesthetics
Rank 1 2 3 4 1 2 3 4 1 2 3 4

PIA 24.6 23.0 31.2 21.2 49.3 37.9 11.1 1.8 25.5 26.0 33.1 15.5
VectorFusion 22.0 15.0 16.1 46.9 0.8 0.8 8.0 90.4 17.5 12.1 19.5 50.8
Ours-K-means 36.2 37.0 22.6 4.2 47.1 48.0 4.6 0.2 26.5 38.8 22.3 12.4
Ours-palette 17.1 25.0 30.1 27.7 2.7 13.3 76.3 7.6 30.5 23.1 25.1 21.3

7



SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan Alexandre Binninger and Olga Sorkine-Hornung

and pixelize them. We analyze pixelization methods across three
metrics: semantic similarity, fidelity and aesthetics. The metrics
show distinct strengths: VectorFusion achieves the best semantic
accuracy, while MYOS and PIA lead in fidelity. Our method excels
in aesthetics due to its superior color harmony. Despite the limi-
tations imposed by color quantization, our SD-𝜋XL variants also
deliver competitive results for both semantic accuracy and fidelity,
effectively balancing these objectives and providing the most aes-
thetically pleasing results overall. These results are corroborated in
Fig. 7: the results from nearest-neighbor, PIA and MYOS are very
close to the input, but at the expense of aesthetics or clarity. DUP
tends to show saturated colors, and VF diverges significantly from
the input image due to lack of spatial conditioning. Our method
strikes a balance between fidelity and aesthetics, even on a color
palette very different from the input’s colors. We also conducted a
perceptual study, where 56 participants evaluated 45 images sam-
pled randomly and rated each based on the given criteria. Results,
displayed in Table 2 and Table 3, showed our K-means variant ex-
celling in semantic accuracy, while PIA led in fidelity. The palette
variant was favored for its aesthetic appeal, and VectorFusion gen-
erally received lower rankings across all categories, indicating some
limitations in these aspects compared to other methods.

5.5 Limitations and future work
We acknowledge several limitations and future research areas for
SD-𝜋XL. While our method does not require training a network
from scratch, the overall optimization process can be quite slow, re-
quiring 1.5 hours on an Nvidia RTX4090 for 6000 steps. Additionally,
the model’s reliance on prompts is a limitation. Further exploration
into image-only semantic conditioning [Ye et al. 2023] could poten-
tially eliminate the need for prompts and increase fidelity. Another
limitation of our method is the independent sampling for each pixel.
Stochastic sampling conditioned on multiple pixels or joint proba-
bility distribution between neighboring pixels could improve the
awareness of themethod at a more global level, which could improve
its overall quality and convergence speed. Moreover, the prospect of
achieving frame-to-frame consistency in pixelized animations offers
a promising direction for future extensions of this work, especially
as text-to-video diffusion models continue to advance [Xing et al.
2023]. On a more general level, SD-𝜋XL is inherently constrained
by the limitations of the underlying diffusion models, including
ethical concerns [Birhane et al. 2021]. With further advancements
in text-to-image models and diffusion techniques, we anticipate
corresponding improvements in the capabilities of SD-𝜋XL.

Table 3. First quartile (Q1), median (Med.) and interquartile range (IQR) of
the results of our perceptual study, according to semantic similarity, fidelity
to input image and aesthetic appeal.

Method Semantics Fidelity Aesthetics
Q1 Med. IQR Q1 Med. IQR Q1 Med. IQR

PIA 2.0 3.0 1.0 1.0 2.0 1.0 1.0 2.0 2.0
VF 2.0 3.0 2.0 4.0 4.0 0.0 2.0 4.0 2.0
Ours-K-means 1.0 2.0 2.0 1.0 2.0 1.0 1.0 2.0 2.0
Ours-palette 2.0 3.0 2.0 3.0 3.0 0.0 1.0 2.0 2.0

6 CONCLUSION
This paper introduced SD-𝜋XL, a method for generating low reso-
lution, color-quantized images via semantic conditioning through
diffusion-based networks. Central to our approach is the ability to
strictly adhere to predefined constraints, such as input color palettes,
which ensures the generation of crisp pixel art. Fig. 9 shows that
our method has flexible generation capabilities, working for any
desired input resolution or color palette, incorporating both seman-
tic and image-based conditioning, and is amenable to stylization
via LoRA finetuning. We demonstrate through comprehensive ex-
periments and comparative studies the performance of SD-𝜋XL in
generating quantized images that are not only visually appealing
but also accurate to the specified constraints. Our technical contribu-
tion consists in the use of the Gumbel-softmax reparameterization,
justified both on the theoretical and empirical front for pixel art gen-
eration. Moreover, SD-𝜋XL’s state-of-the-art results in quantized
image generation are evident in its ability to produce pixel art that
meets modern-day fabrication and design requirements. Thanks
to its strict adherence to a given palette, it can be directly utilized
to create instructions for crafting with beads, interlocking bricks,
or to embroider images using discrete styles such as cross-stitch.
We produced several such physical creations, shown in Figs. 1, 2,
3. We believe that SD-𝜋XL offers a powerful tool for artists, game
developers and designers, helping make pixel art creation more
accessible and versatile.
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Kmeans
colors 2 3 4 6 8 10 12

palette

palette

steps initialization 600 1500 3000 6000 15000 30000

resolution 24 × 24 32 × 32 48 × 48 64 × 64 96 × 96 128 × 128 192 × 192

LoRA none Pixel art style Embroidery style Water color style Papercut style 3D render style Voxel style

Fig. 9. The first row illustrates SD-𝜋XL using K-means color clustering with varying numbers of colors. Rows 2 and 3 display the application of our method
with different color palettes, and shows that our method works with any number of colors. The progression of SD-𝜋XL through various time steps is depicted
in row 4. In row 5, we showcase outputs at different resolutions. The final row showcases SD-𝜋XL with diffusion models fine-tuned to distinct styles via
low-rank adaption (LoRA) [Hu et al. 2021], to demonstrate the generalizability of our approach. Each name is a clickable link that directs to the corresponding
LoRA. For a clearer distinction in style variations, we opt not to use ControlNet for the images in the last row. The chosen prompt for this demonstration is “A
cat wearing a graduation hat using a computer”, with the input image and further conditioning details provided in supplementary material.
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with Gumbel-softmax reparameterization - argmax generation

32 × 32

48 × 48

64 × 64

96 × 96

without Gumbel-softmax reparameterization - softmax generation

32 × 32

48 × 48

64 × 64

96 × 96

Fig. 10. Pixel art generation with SD-𝜋XL, used without initial image or spatial conditioning. We present results on several resolutions, written on the leftmost
column. The table is divided in two generation methods: the first part presents results with Gumbel-softmax reparameterization during optimization, generated
with argmax. This generation method produces crisp pixel art that strictly adheres to the input palette. The second part does not use the Gumbel-softmax
reparameterization, but uses a softmax generation to produce smooth, low-resolution images whose colors lie in the convex hull of the input palette.
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