
Supplementary Material: SD-𝜋XL: Generating Low-Resolution Quantized
Imagery via Score Distillation
ALEXANDRE BINNINGER, ETH Zurich, Switzerland
OLGA SORKINE-HORNUNG, ETH Zurich, Switzerland

input Canny edge depth map prediction initialization (argmax) initialization (softmax) result

Fig. 1. Initial setup for our parameter comparisons. The sequence includes the original input image, its corresponding Canny edge detection [Canny 1986],
and depth map prediction via DPT [Ranftl et al. 2021]. We also show the initial state of the generator, using the softmax- and argmax-generation modes, and
the result using our default parameters. The used prompt is “A cat wearing a graduation hat using a computer.”

Our supplementary material offers further insights into the implementation
of our method, illustrates the impact of various parameters, and includes
details about the evaluation of our approach.
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1 IMPLEMENTATION DETAILS
This section outlines the specifics of our method’s implementa-
tion, including the default parameters and technical configurations
utilized. The source code is made available at https://github.com/
AlexandreBinninger/SD-piXL.

1.1 Technical details
Our method employs backpropagation through the encoder of the
latent diffusion model. To enhance efficiency and minimize mem-
ory usage, we utilize a distilled version of the stable diffusion VAE,
namely taesdxl [Madebyollin 2023]. We adopt mid versions of the
Canny edge and depth ControlNets [Zhang et al. 2023], specifically
“controlnet-canny-sdxl-1.0-mid” and “controlnet-depth-sdxl-1.0-mid”
[von Platen et al. 2022]. This choice strikes a balance between com-
putational resource demands and the effectiveness of spatial condi-
tioning. An aspect of our generator 𝑔 is its invariance to translation
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by a constant across the last channel due to the softmax operation.
Indeed, given a constant 𝑎, the relation 𝑔(𝜃 ) = 𝑔(𝜃 + 𝑎) holds be-
cause 𝑒

𝜆𝑖,𝑗,𝑘 +𝑎∑𝑛−1
𝑙=0 𝑒

𝜆𝑖,𝑗,𝑙 +𝑎
= 𝑒

𝜆𝑖,𝑗,𝑘∑𝑛−1
𝑙=0 𝑒

𝜆𝑖,𝑗,𝑙
= 𝜋𝑖, 𝑗,𝑘 . Therefore, we center the

weights around zero in every iteration, ensuring they remain within
a reasonable range to avoid floating point precision issues.

1.2 Parameters
The execution of ourmethod typically involves 6000 to 10000 epochs,
translating to a runtime of approximately 1.5 to 2.5 hours on an
Nvidia RTX 4090 GPU. The standard parameters are set as follows:
the temperature parameter of the Gumbel-Softmax reparameteri-
zation 𝜏 is fixed at 1, the guidance scale 𝑠 at 40, and the FFT loss
weight𝑤FFT at 20. Unless specified otherwise, the default image size
for the presented results is 64 × 64, and the norm used for initializ-
ing the parameter of the generator is the 𝐿1 norm (see main paper,
Sec. 4.2). We use PyTorch [Paszke et al. 2019], with the generator
weights optimized using the AdamW optimizer [Loshchilov and
Hutter 2019]. The optimization process follows a constant learning
rate of 0.25, starting with a warm-up phase of 250 steps. Although
backpropagation through an argmax function can be realized by
duplicating the gradient from the softmax operation [Esser et al.
2021], our method primarily employs the softmax function. To ap-
proximate an argmax-like behavior, we can reduce the value of 𝜏 ,
see details in a comparative analysis in Sec. 2.4.
Image augmentations are applied randomly with the following

probabilities: grayscale (0.2), horizontal flip (0.5), perspective distor-
tion (0.5) with a distortion scale of 0.3. The scales for both the Canny
edge and depth map ControlNet conditioning are set uniformly at
0.35. We apply Gaussian blur with a radius of 1 pixel to the Canny
edge detection for smoothing effects. Finally, the uniform sampling
of the parameter 𝑡 ∼ U(𝑎, 𝑏) starts with 𝑎 = 20 and 𝑏 = 980, with 𝑏
linearly decreasing to 800 at the midpoint of our method’s execution,
and staying constant afterwards. This time step annealing strategy
is inspired from [Yu et al. 2023].
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2 PARAMETER COMPARISONS
In this section, we conduct an indicative comparison to justify the
choice of our default parameters. We also propose to analyze how
each parameter can be combined to achieve different effects.

2.1 Input
For our experiments, we decided to use an image of a cat generated
via a state-of-the-art diffusionmodel [Betker et al. 2023] as input. Fig.
1 shows the input image, its Canny edge and depth map prediction.
We also show the initialized state of the generator, both with the
argmax- and softmax-generation, as explained in Sec. 5.1 in the
main paper. We also showcase the result obtained with our default
parameters.

2.2 Loss functions
We recall that our loss function can be written as a sum of three
terms:

∇𝜃L = ∇𝜃LNoise + 𝑠∇𝜃LSem +𝑤FFT∇𝜃LFFT . (1)

We analyze the noise and semantic loss together, as they come from
the latent score distillation sampling term, and the smoothness loss
separately.

2.2.1 Noise loss and semantic loss. To show the respective role of
the noise loss ∇𝜃LNoise and the semantic loss ∇𝜃LSem, we perform
an ablation by setting 𝑤FFT = 0 and varying the guidance scale 𝑠
in Fig. 3. We notice that when the semantic loss 𝑠 is too small, the
resulting final image is smoothed out. In contrast, too high values
of the guidance scale leads to noisier and saturated results. While
the semantic loss is responsible for the semantics-awareness of our
optimization, the noise loss acts as a variance reduction term [Poole
et al. 2022]. The visualization in Fig. 2 corroborates this argument,
showing that the semantic loss is responsible for the semantic details,
while the noise loss prevents noisy sampling, especially for the lower
time steps. The visualization is performed by simply using the latent
decoder of the latent diffusion model [Madebyollin 2023] on the
gradient of the loss functions.

2.2.2 Smoothness loss. The fast Fourier transforms serves the pur-
pose of smoothing out the resulting image during the optimization
process. While not central to our technique, it tends to improve the
result and show that any classic loss can be used to redirect the
generation of SD-𝜋XL according to any objective. We demonstrate
its influence in Fig. 4 by varying the weight𝑤FFT . We can see that
the higher the weight, the fewer details appear in the generated
image. While oversmoothed results are generally not desirable, the
smoothness loss can act as a stylistic parameter for image abstrac-
tion purposes.

2.3 Augmentation
In our optimization, we randomly apply a grayscale filter and a
perspective transformation. We show the results of applying these
filters at different frequencies.

2.3.1 Grayscale. In Fig. 5 we show a comparative demonstration
of varying the probability (or the frequency) that the augmentation

performs a grayscale filter before being fed to the denoiser. Interest-
ingly, we can notice that applying a grayscale filter tends to tone
down the color distribution of the output. When no grayscale filter
is applied (𝑝grayscale ≈ 0), the color tends to be saturated. Conversely,
frequent use of the grayscale filter (𝑝grayscale ≈ 1) restricts the op-
timization process to a monochromatic view of the input palette.
In this scenario, the diffusion model only perceives color based on
their contribution to the grayscale tones, leading to the prominence
of yellow blotches in our example.

2.3.2 Random perspective. The perspective transform simulates the
effect of viewing the image from different angles. This transform
is useful, as it introduces variation in the generated images, forc-
ing the optimization to generalize its semantic update of features
in images irrespective of their orientation or angle. The impact of
this transformation is illustrated in Fig. 6, where we observe that
increased distortion scales lead to outputs more aligned with spatial
conditioning, as the optimization is required to adjust its updates
more broadly. However, excessively high distortion scales introduce
undesired noise into the final image. In our experiments, we demon-
strate the effects using a 1.0 probability for applying the perspective
transformation during optimization. However, in practical applica-
tions, we balance its impact by not applying random perspective
transformations in every instance.

2.4 Temperature parameter 𝜏
The Gumbel-softmax is parameterized by a scalar 𝜏 that modu-
lates its proximity to a categorical distribution [Jang et al. 2017;
Maddison et al. 2017]. In Fig. 7, we investigate the assertion that 𝜏
should remain within certain limits. As discussed in Sec. 4.1 of the
main paper, lower values of 𝜏 enhance the resemblance of Gumbel-
softmax to categorical sampling, but this leads to an increase in
noise in the generated images. Even though our loss integrates a
noise-preservation component, too noisy generated images result in
imprecise parameter updates. Conversely, higher values of 𝜏 cause
the Gumbel-softmax to approximate a uniform distribution, result-
ing in images with colors that are more uniform and smooth, with
diminished semantic clarity. Although the optimization process is
semantically driven and continues to adjust the generator param-
eters to align the image with the input prompt, excessively high
values of 𝜏 can compromise the optimization’s ability to capture
color nuances. It is noteworthy that 𝜏 values in the range of 0.25 to
2 yield aesthetically pleasing results, although with distinct stylistic
differences.

2.5 Initialization
Initialization can be important for generative techniques based on
score distillation [Jain et al. 2023]. We show its effect in Fig. 8.
Without the use of ControlNet [Zhang et al. 2023], the optimization
process lacks access to spatial information from the input image,
resulting in outcomes that can deviate from the original image.

2.6 ControlNet weights
In Fig. 13, we explore the impact of varying weight parameters
within the ControlNet framework [Zhang et al. 2023]. This analysis
reveals a natural progression: the absence of ControlNet results in
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Fig. 2. Illustration of the latent score distillation sampling loss with fixed guidance scale 𝑠 = 40. The first row represents the semantic loss, while the second
row is the noise loss. The full latent score distillation sampling loss LLSDS is shown on the third row. Note that this illustration is computed by using the latent
decoder of the latent diffusion model on the loss gradient, which is not a linear operation.

𝑠: 0 7.5 15 25 40 55 75 100 200 500

Fig. 3. Illustration of the influence of the guidance scale 𝑠 . For this experiment, the FFT loss was not used, i.e. 𝑤FFT = 0.

𝑤FFT : 0 25 50 100 200 500 1000 2500

Fig. 4. Illustration of the influence of the Smoothness Loss LFFT with increasing smoothness loss weight 𝑤FFT on the final image.

𝑝grayscale : 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1..0

Fig. 5. Depiction of how varying the probability of applying grayscale augmentation during the augmentation phase impacts our optimization process.

outputs that are less faithful to the original input, which demon-
strates the role of ControlNet in balancing strict adherence to the
initial input spatial conditioning. Interestingly, even without ex-
plicit ControlNet guidance, the initialization phase of our method
inherently allows for a degree of control that influences the final
outcome, as shown in Fig. 8.

3 EVALUATION
In this section, we show several comparisons and evaluations of SD-
𝜋XL with different pixelization methods. First, we propose a visual
comparison over several images with diverse styles. Second, we
present a quantitative evaluation to assess the pixelization quality

through three indirect measures, namely how the result image aligns
with the input prompt (semantic), how the result image is alike the
input image (fidelity), how aesthetically pleasant the result image
looks (aesthetics). Finally, we present the results of a perceptual
study over 56 participants that further corroborates the results of
the quantitative evaluation.

3.1 Visual comparison
Our visual comparison includes pictures of common food, of a per-
son, as well as a painting. The resolution of each image is reduced by
a factor of eight during the pixelization process. Results are shown
in Fig. 9. We compare with various pixelization techniques, namely
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𝑑𝑠 : 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1..0

Fig. 6. Illustration of the influence of the perspective transformation distortion scale. To better show the influence of the random perspective, the probability
of perspective transformation during the augmentation is set to 1.0 for this experiment.

argmax 𝜏 : 0.05 0.1 0.25 0.5 0.75 1.0 1.5 2.0 3.0 4.0

Fig. 7. We compare the effect of varying the magnitude of the temperature 𝜏 parameterizing the Gumbel-softmax operation. For the first column, we use an
argmax operation during the optimization and copy the gradient from the softmax operation for backpropagation.

with input image initialization random initialization

Fig. 8. We compare the effect of initializing the network based on the input
image with random initialization of the generator parameters. The results
are computed without ControlNet conditioning, to better showcase the role
of initialization in our method.

Pixelated Image Abstraction (PIA) [Gerstner et al. 2012], Deep un-
supervised pixelization (DUP) [Han et al. 2018], Make Your Own
Sprites (MYOS) [Wu et al. 2022], and VectorFusion [Jain et al. 2023].
Nearest-neighbor interpolation assigns the color value of the

nearest original pixel to each pixel in the downscaled image, often

Table 1. Evaluation through a perceptual study, highlighting the perfor-
mance of our method (Ours) in comparison to PIA and VectorFusion through
semantic, fidelity and aesthetics questions. Each column aggregates the
rankings across all questions in a specific category, representing the per-
centage of participants who placed each method at the respective rank (1,
2, 3, or 4) for that category.

Method Semantic Fidelity Aesthetics
Rank 1 2 3 4 1 2 3 4 1 2 3 4

PIA 24.6 23.0 31.2 21.2 49.3 37.9 11.1 1.8 25.5 26.0 33.1 15.5
VectorFusion 22.0 15.0 16.1 46.9 0.8 0.8 8.0 90.4 17.5 12.1 19.5 50.8
Ours-K-means 36.2 37.0 22.6 4.2 47.1 48.0 4.6 0.2 26.5 38.8 22.3 12.4
Ours-palette 17.1 25.0 30.1 27.7 2.7 13.3 76.3 7.6 30.5 23.1 25.1 21.3

resulting in a blocky or pixelated appearance. This method does
not produce a color-quantized image, and its lack of semantic and
geometric awareness can impair readability. In contrast, PIA [Ger-
stner et al. 2012] improves results through spatial and color space
clustering, but its lack of semantic understanding can sometimes
result in images that are difficult to interpret, such as the character’s
face and tie.
We also explore state-of-the-art neural techniques. DUP [Han

et al. 2018] is retrained on its own dataset, and we use pretrained
weights for MYOS [Wu et al. 2022]. For MYOS, we noticed that
downscaling the input to divide the size of the image by two prior
to using the neural network with cell size of 4 yields better results
than directly using a cell size of 8. We therefore decided to present
this output in our visual comparison. The primary content of the
dataset used for training these neural methods is clip art images,
which introduces a domain generalization issue. For example, DUP’s
outputs on photographic images tend to be overly saturated. MYOS,
on the other hand, does not precisely downscale but rather employs
“cell-aware” techniques based on a cell size of 4, as described in [Wu
et al. 2022], which can lead to uneven pixelization in practice. This
also constrains the pixelization to a finite range (2 to 8 in the case
of MYOS). As these methods do not enforce a uniform color within
each cell, they ultimately rely on nearest-neighbor downsampling
to achieve a distinct pixelized effect.

Table 2. First quartile (Q1), median (Med.) and interquartile range (IQR) of
the results of our perceptual study, according to semantic similarity, fidelity
to input image and aesthetic appeal.

Method Semantics Fidelity Aesthetics
Q1 Med. IQR Q1 Med. IQR Q1 Med. IQR

PIA 2.0 3.0 1.0 1.0 2.0 1.0 1.0 2.0 2.0
VF 2.0 3.0 2.0 4.0 4.0 0.0 2.0 4.0 2.0
Ours-K-means 1.0 2.0 2.0 1.0 2.0 1.0 1.0 2.0 2.0
Ours-palette 2.0 3.0 2.0 3.0 3.0 0.0 1.0 2.0 2.0
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input nearest-neighbor PIA DUP MYOS VectorFusion SD-𝜋XL initialization SD-𝜋XL
interpolation [Gerstner et al. 2012] [Han et al. 2018] [Wu et al. 2022] [Jain et al. 2023] K-means palette

512 × 512 An assortment of fresh bell peppers
with different shapes and sizes in a close-up view.

512 × 512 Painting with swirling skies, a bright crescent moon, and
a peaceful village beneath a dynamic celestial sky.

400 × 600 A formal portrait of Obama, wearing a suit with a tie.

Fig. 9. Visual comparison of various pixelization methods applied to images downscaled by a factor of 8. The input images are displayed on the left, with their
sizes indicated below. Both VectorFusion and SD-𝜋XL are initialized with the input image as their initial state, and conditioned on the prompt indicated below
their respective results. Due to VectorFusion’s limitation with non-square images, a 64 × 64 grid is employed for the examples in the last row. SD-𝜋XL is
demonstrated in two variations: one utilizing K-means for color palette determination, and the other employing a challenging 5-color palette. We also show the
initialization with the palette, to demonstrate how our method differs from classic palette matching. While PIA and the K-means variant of SD-𝜋XL operate
within a 8-color limit, nearest-neighbor interpolation, DUP, MYOS, and VectorFusion have no such constraints on their color palettes and are not quantized.

VectorFusion [Jain et al. 2023] segments the image into an even
square grid and employs a differentiable vector graphics renderer [Li
et al. 2020]. The technique uses score distillation to optimize the ren-
derer parameters, specifically the colors of each cell. Contrary to our
method, the color space of VectorFusion output is never constrained.
We observe that the output tends to be saturated, suggesting that
employing a color palette mitigates the saturation effect typically
associated with score distillation methods. Starting with the input
image as a base, results bear a general resemblance to the original,
yet exhibit notable divergence in certain areas. This is visible in all
examples, particularly in the positioning of the bell peppers and
the global composition of the painting (Fig. 9). This legitimates the
use of ControlNet [Zhang et al. 2023] to encourage more similarity
with the input image, which is further validated by the outcomes
achieved with SD-𝜋XL.
We introduce two variations of our method: the first employs

K-means to create a 8-color palette through color space clustering.
The second utilizes challenging color palettes, and to demonstrate
the distinctiveness of our approach, we also present its initialization.
This illustrates the progression from a basic palette association to the
final output. Moreover, it shows that a simple downscaling followed
by a palette transfer does not provide convincing results, justifying
our approach based on an optimization process using an image
generator constrained to the color palette. SD-𝜋XL consistently
delivers outputs that more closely mirror the input image than
VectorFusion, while effectively capturing the semantic core of the

prompt. This is particularly visible in the case of the painting (second
row of Fig. 9), where the overall structure of the original image is
kept in its pixelized version, but with some divergence in details
that conveys meaning more aligned with the input prompt. On
this specific example, MYOS achieves a result that is closer to the
input image, and VF a result that aligns more to the input prompt,
while our method reaches a middle ground between both objectives.
Remarkably, this equilibrium is maintained despite the constraints
of a limited color palette and substantial color variations in the input
image.

3.2 Quantitative evaluation
We present a quantitative evaluation of pixelization methods, which
assesses fidelity to the input image, semantic similarity and aes-
thetics qualities of different pixelizations methods. To that effect,
we first sample 150 prompts from PartiPrompts [Yu et al. 2022].
We divide them equally into 3 categories for different target sizes:
32 × 32, 48 × 48, and 64 × 64. Each set of 50 prompts is sampled ac-
cording to this allotment: 10 from the ’Animal’ category, 10 from the
’People’ category, 10 from the ’Outdoor Scenes’ category, 5 from the
’Indoor Scenes’ category, 5 from the ’Food & Beverages’ category,
5 from the ’Vehicles’ category, and 5 from the ’Produce & Plants’
category. We order the prompts by length, associating the shorter
prompts to the smallest size, and the longer, more detailed ones
to the 64 × 64 category. To avoid recurrence of the same concept
(e.g., the same animal), we resort to a large language model (LLM)
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[Brown et al. 2020] to further filter out repetitive prompts. In some
instances, we remove color mentions, to avoid further bias of the
results, favoring methods that do not offer a quantization of the
color space. Subsequently, we produce input images correspond-
ing to these prompts using SDXL [Podell et al. 2023], employing a
CLIPScore-based [Radford et al. 2021] rejection sampling technique.
This involves generating six images and selecting the one with the
highest CLIPScore. In instances where SDXL fails to produce an
image of satisfactory quality, we turn to DALL·E 3 [Betker et al.
2023] for additional image generation. The prompts and generated
images can be found in the supplementary material.

We quantitatively compare PIA [Gerstner et al. 2012], quantized
MYOS [Wu et al. 2022], and VectorFusion [Jain et al. 2023] with
three variants of our method. The palettes variant utilizes a palette
randomly sampled from 34 options available on the Lospec website
[los 2024]. The K-means variant employs a color palette determined
through K-means clustering of the input color space, with both
K-means and PIA using 8 colors for a fair comparison. The adaptive
variant optimizes the color palette alongside the generator weights
without Gumbel sampling, creating an output image that is not
quantized and has an unconstrained color space, offering a fairer
comparison with VectorFusion. This method also uses 8 colors to
ensure the entire color space can be covered by a convex sum of
input colors. MYOS only provides pixelization with integer factor. To
compare with this method, we first downscale the input image with
bicubic interpolation to four times the target output resolution, and
then run MYOS with a cell size of 4, followed by nearest neighbour
downscaling to the target output resolution. Because there is no
integer pixelization factor for 48 × 48 images, we do not present
results for this pixelization scale. We then apply two quantizations:
a K-means color clustering with 8 colors, and a palette transfer with
libimagequant [Lesiński 2024]. The palette used is the same as the
palette of the corresponding image produced with SD-𝜋XL-palette.
Both VectorFusion and SD-𝜋XL are run for 6000 steps and initialized
with the input image. A selection of the results from SD-𝜋XL with
palettes and K-means on this dataset is shown in Fig. 14.
We use several metrics divided into three categories: semantic,

fidelity and aesthetic. We show the results in Table 3 individually
for each size, and the average over the 150 examples. The semantic
evaluation includes CLIPScore L/14 similarity [Radford et al. 2021],
determined by calculating the mean cosine similarity between the
CLIP embeddings of the generated images and their respective text
captions, and the human preference score [Wu et al. 2023], a model
that can predict human preferences on prompt-images pairs. We can
see that VectorFusion and SD-𝜋XL-adaptive achieves the same score
for semantic score, while SD-𝜋XL-K-means and palette are slightly
below, because of the constraints imposed by the color quantization.
However, their CLIPScore tends to be higher than MYOS and PIA’s,
which are not driven semantically at all.

The fidelity to the input image is measured via the peak signal-
to-noise ratio (PSNR) and the structural similarity index measure
(SSIM) [Wang et al. 2004], two classic methods for image similarity
measures [Horé and Ziou 2010]. On this metric, MYOS and PIA
generally achieve the best score, as they are entirely driven by
their similarity to the input images. Our SD-𝜋XL-K-means closely
follows. In contrast, the lack of spatial conditioning in VectorFusion

can make the output greatly diverge from the input, lowering its
fidelity score.

Although it is hard to quantitatively evaluate the aesthetics of an
image, we use the LAION aesthetic classifier [Schuhmann 2023], a
model specifically trained on human preference to assign aesthetic
scores to images.We observe that the palette andK-means variants of
SD-𝜋XL outperform PIA, MYOS and VectorFusion on this aesthetics
measure. Despite color quantization posing difficulties for semantic
or fidelity analysis, the high aesthetic scores for SD-𝜋XL-palette
variant can be attributed to the harmonious color combinations, a
feature that is lacking in VectorFusion, which performs poorly on
this metric.

While all these metrics have a positive correlation with the qual-
ity of good pixelization, none of the metrics assesses directly the
pixelization quality itself. To support this argument, we ran bilinear
downscaling on our dataset and computed the metrics on the fidelity
measure. While this technique is not well-adapted for pixelization
purpose, the average PSNR is 16.8, and the average SSIM is 0.512,
which are substantially higher than pixelization methods. This is
expected, as bilinear interpolation is more faithful to the input im-
age than pixelization method, but it shows that this measure alone
is not an indicator of good pixelization. We interpret the results as
such: CLIP-based methods like VectorFusion produce results that
are more aligned semantically, MYOS and PIA produce the results
that are the closest to the input, and SD-𝜋XL achieves a satisfying
compromise between the two different metrics, while being more
aesthetically pleasing overall.

3.3 Perceptual study
To mitigate potential bias of the networks used to quantitatively
evaluate our method, we conducted a comprehensive perceptual
study to compare the effectiveness of PIA, VectorFusion, and SD-
𝜋XL with K-means and palettes. A total of 56 participants were
recruited for the study. The survey presents participantswith a series
of images processed using the four different pixelization techniques.

3.3.1 Design. To design our perceptual study, we randomly sample
45 images from our quantitative evaluation dataset. Namely, we
sample 15 images from each size category (32 × 32, 48 × 48, and
64 × 64). We further divide the perceptual study into three parts:
image fidelity, prompt similarity, and aesthetics appeal. Each part
contains 5 images from each size category. The exact questions
and layout are shown in Fig. 15, with the first question of each
category. For each question, the order of the presented methods is
randomized. We also show a visual representation of the answers
in Fig. 15, essentially visualising as histograms the results reported
in Table 1.

3.3.2 Results. Participants are asked to rank these 45 images based
on specific criteria, such as semantic accuracy with respect to a
prompt, fidelity to the input image, and aesthetic appeal. The per-
ceptual study, as detailed in Table 1, offers a comparative evaluation
of image pixelization methods across semantic, fidelity, and aes-
thetics categories. Notably, SD-𝜋XL-K-means excels in semantic
integrity, leading with 36.2% top-rank responses. PIA slightly domi-
nates in fidelity, receiving a 49.3% first-place rating against 47.1%

6



Supplementary Material: SD-𝜋XL: Generating Low-ResolutionQuantized Imagery via Score Distillation SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan

SD-𝜋XL Embroidery Fuse beads Interlocking bricks

Fig. 10. SD-𝜋XL generates low-resolution quantized images that are suitable
for many fabrication applications, such as cross-stitch embroidery, fuse
beads, or interlocking brick designs. The result image size is 30 × 30 pixels,
generated without an initialization image, and only conditioned on the
prompt “A red apple with a leaf on a blue table.”

Fig. 11. Additional examples of cross-stich embroideries showcased on . The
sizes of the embroideries are as follow: first row is 32 × 32, second row is
48 × 48, and last row is 64 × 64.

for SD-𝜋XL-K-means. In aesthetics, SD-𝜋XL-palette emerges as the
preferred method with 30.5% top-rank responses, indicating its su-
perior aesthetic appeal. In contrast, VectorFusion (VF) consistently
ranks lower across all categories, suggesting limitations in semantic
preservation, fidelity, and aesthetic appeal. The discrepancy between
the perceptual study results and the quantitative evaluation for Vec-
torFusion’s semantic similarity performance is likely due to a bias
of the scoring network towards non-quantized images.
To enhance the interpretability of our results, we showcase the

first quartile, the median and the interquartile range in Table 2.
The analysis reveals a varied landscape of participant responses.
While PIA and SD-𝜋XL-K-means demonstrate consistent perfor-
mance across different categories, VF shows a higher variability in
participant perceptions, particularly in the aesthetic domain: while
it ranks last for more than half of the time, it also sporadically
achieves good aesthetics appreciation. This variability suggests that
user opinions on VF’s performance are polarized. In contrast, SD-
𝜋XL-palette exhibits a balance between consistency and diversity in
the feedback. Overall, the data indicates no single method excels in
all aspects; each has unique strengths and weaknesses as perceived
by the participants.

“A young’s man portrait,
looking to the side.”

“Face of a panda. Big head
and eyes.”

“A woman with a long
dress.”
Courier BOLD

Fig. 12. SD-𝜋XL demonstrates the ability to create mosaics using diverse
elements, such as emojis or icons. Letters can be used to create compelling
ASCII art. The results can be better seen on a screen with large zoom.

4 ADDITIONAL RESULTS
This section presents more crafted examples and experiments. We
show how it is possible to use elements such as small images instead
of pixel colors to produce mosaic-like effects.

4.1 Additional fabrication
We present additional fabrication examples. Fig. 10 showcases an
example of embroidery, fuse beads and interlocking bricks fabri-
cations, similar to the one presented in the main paper but with
lower resolution. We also present additional cross-stitch embroi-
deries in Fig. 11 with various designs, such as different sizes, color
palettes and styles. This demonstrates how our method can be used
to fabricate diverse yet compelling embroideries.

4.2 Mosaic
We showcase the generalization capabilities of SD-𝜋XL to other
unit elements than pixel colors. As outlined in Section 4.1 of the
main paper, instead of colors, our generator is capable of using any
elements that can be rendered into images of equal dimensionsℎ×𝑤 ,
enabling the creation of images with a mosaic-like effect. Examples
of this capability are demonstrated in Fig. 12, where we employ a
variety of elements including colorful fruit emojis [emo 2024], black
and white open icons from Font Awesome [fon 2024a] and letters in
random colors from the monospace font Courier Bold [fon 2024b].
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Table 3. Quantiative evaluation of pixelization methods across various metrics. We compare pixelated image abstraction (PIA) [Gerstner et al. 2012], two
quantized variants of Make Your Own Sprites (MYOS) [Wu et al. 2022], VectorFusion [Jain et al. 2023], and three variants of SD-𝜋XL: palette, K-means, and
adaptive. The evaluation metrics are grouped into three categories: semantic similarity with CLIPScore L/14 and Human Preference Score V2 (HPSV2); fidelity
to the input image with the Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity Index Measure (SSIM); and aesthetic score with the LAION
Aesthetic Predictor Scores [Schuhmann 2023]. Scores are provided for images of sizes 32 × 32, 48 × 48, and 64 × 64, along with their averages (Avg). MYOS
does not provide non-integer scaling factor, and as input images have size 1024 × 1024, output images of size 48 × 48 are not provided. The higher the value,
the better. Best scores across categories are in bold.

Semantic Fidelity Aesthetics
CLIPScore L/14 ↑ HPSV2 ↑ PSNR ↑ SSIM ↑ Aesthetic Predictor ↑

[Radford et al. 2021] [Wu et al. 2023] [Horé and Ziou 2010] [Wang et al. 2004] [Schuhmann 2023]

Method 32 48 64 Avg 32 48 64 Avg 32 48 64 Avg 32 48 64 Avg 32 48 64 Avg

PIA 21.1 23.5 25.4 23.3 0.240 0.248 0.254 0.247 14.1 15.0 15.6 14.9 0.455 0.485 0.487 0.476 4.47 4.59 4.85 4.64

MYOS palette 18.6 — 21.7 21.2 0.231 — 0.239 0.235 12.4 — 13.7 13.1 0.407 — 0.418 0.412 4.38 — 5.04 4.71
K-means 20.7 — 26.1 23.4 0.245 — 0.261 0.253 15.2 — 16.9 16.0 0.467 — 0.511 0.489 4.52 — 4.99 4.76

VectorFusion 24.5 25.2 27.0 25.6 0.250 0.256 0.261 0.256 8.0 8.2 8.3 8.2 0.293 0.292 0.258 0.281 4.16 4.59 4.86 4.54

SD-𝜋XL
palette 23.1 22.6 24.5 23.4 0.237 0.247 0.244 0.243 10.3 11.7 11.3 11.1 0.388 0.444 0.398 0.410 4.83 4.46 5.13 4.81
K-means 22.7 24.0 25.8 24.2 0.235 0.251 0.250 0.245 12.9 14.0 13.9 13.6 0.442 0.486 0.451 0.460 4.78 4.66 5.31 4.92
adaptive 23.9 25.0 28.4 25.8 0.238 0.261 0.263 0.254 8.3 8.7 9.5 8.8 0.333 0.373 0.374 0.360 3.84 4.21 4.79 4.28
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Depth 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Canny

0.0
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0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 13. We present the combined effects of ControlNet [Zhang et al. 2023] weights on both Canny edge and depth-conditioning networks [von Platen et al.
2022], examined concurrently. We initialize the weights of the generator randomly to disambiguate the contribution of ControlNet to the spatial fidelity of the
generation from the influence of the initialization. The cumulative nature of these weights accounts for the distortion observed in the output when their sum
exceeds 1.
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Palette

K-means

Fig. 14. Results of SD-𝜋XL on the dataset for quantitative evaluation are presented for both palette (top) and K-means (bottom) versions. Results in three
different sizes are shown: 32 × 32, 48 × 48, and 64 × 64, each scaled proportionally to its dimensions.
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User study questionnaire Histogram of user responses
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Fig. 15. Overview of the user study design and outcomes. The left column displays the questionnaires used in the study, categorized into three sections: image
fidelity (first 15 questions), prompt similarity (next 15 questions), and aesthetics preference (last 15 questions). Presentation order of different methods is
randomized in each section. The right column visualizes the aggregate user responses across these categories as histograms.
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