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Abstract
We provide more details related to data preparation, implementation, training and evaluation of our method.

1. Network Architecture

The network is composed of three parts: a Vision Transformer
encoder, a Transformer decoder and an implicit shape decoder
(SPAGHETTI). The Vision Transformer encoder consists in a
"sketch to visual embeddings" Transformer encoder. It takes as input
a 256×256 grayscale image, decomposes it into 256 patches of size
16×16, uses a learnable position encoding, and maps each patch to
a visual embedding of dimension hd = 512. The Vision Transformer
itself consists in 8 layers intertwining multi-head attention layers and
feed-forward networks with layer normalization [DBK∗20]. Then,
we use a Transformer decoder as our "visual embedding to shape
latent code" network. It maps the 256 visual embeddings to latent
space code. The latent space code is composed of m vectors of di-
mensions dmodel. Single-class SENS uses m = 16 and dmodel = 512,
while multi-class SENS uses m = 32 and dmodel = 768. The Trans-
former decoder also takes as input m learnable part queries of
dimension 1.5hd that are optimized simultaneously with the weights
of the network. It is composed of 12 cross-attention layers and
feed-forward networks with layer normalization. The output of the
Transformer decoder is then mapped to the latent code zh of the
shape decoder latent space via an MLP with ReLU activation.

2. Training

Single-class models are trained on an Nvidia RTX 3090 GPU for 850
epochs. We use a gradual warmup scheduler [GDG∗17] to linearly
increase the learning rate at each epoch. The learning rate starts at
10−7 and linearly increases to 10−6. Our approach to training the
multi-class model was based on a combined dataset from various
classes, namely chairs, planes, and lamps. We include ShapeNet
outline and partial outline renderings, as well as CLIPasso [VPB∗22]
abstract sketches, and ProSketch chair sketches [ZQG∗21]. The
training was based on 630 epochs, and the training duration for the
multi-class model was 96 hours, which is longer than the 60 hours
required for the single-class model due to the increased amount of
data per epoch. The same learning rate and scheduler were used.

3. Evaluation

Our evaluation is performed on the AmateurSketch dataset
[QGS∗21], which contains 3000 freehand sketches of ShapeNet
shapes [CFG∗15] of medium abstraction level. We only compare
with the chair class, because this is the only class ubiquitously
supported by all the methods we compare with.

Table 1: Performance comparison of shape reconstruction methods
on the AmateurSketch dataset [QGS∗21] using chamfer distance
(CD), earth mover’s distance (EMD), and Fréchet inception distance
(FID). Lower values indicate better performance. Comparison is
done with Pixel2Mesh [WZL∗18], Sketch2Mesh [GRYF21], and
DeepSketch [ZGZS22]. The notions “cropped” and “padded” refer
to the differences in input normalization. DeepSketch results are
shown with the network trained with their default training data and
re-trained with our training data.

Method CD↓ EMD↓ FID↓

Pixel2Mesh 0.2191 0.1658 401.7
Sketch2Mesh (padded input) 0.2113 0.1573 368.4
Sketch2Mesh (cropped input) 0.2325 0.1635 305.8
DeepSketch (default dataset) 0.1520 0.1142 292.2
DeepSketch (our dataset) 0.1920 0.1417 317.4
SENS 0.1186 0.0946 171.3

3.1. Objective evaluation

Our quantitative evaluation is based on several metrics. We com-
pare our results with different methods: Pixel2Mesh [WZL∗18],
Sketch2Mesh [GRYF21] and DeepSketch [ZGZS22]. The compari-
son results are shown in Table 1.

3.1.1. Chamfer distance (CD)

The chamfer distance calculates the average distance between each
point in one set to its closest point in the other set and is an intuitive

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Associa-
tion for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

https://orcid.org/0000-0002-9833-4126
https://orcid.org/0000-0003-3037-3556
https://orcid.org/0000-0002-8089-3974
https://orcid.org/0000-0001-6777-7445
https://orcid.org/0000-0002-2830-0297


2 of 10 A. Binninger, A. Hertz, O. Sorkine-Hornung, D. Cohen-Or, R. Giryes / SENS, Supplementary Material

way to quantify the dissimilarity between two point clouds. It is
thus widely used for geometric comparison. The chamfer distance
between two point sets A and B can be defined as follows:

dchamfer(A,B) =
1
|A| ∑

a∈A
min
b∈B

∥a−b∥2 +
1
|B| ∑

b∈B
min
a∈A

∥a−b∥2.

For each sketch in the AmateurSketch dataset, we extract a mesh
from the implicit shape produced by our network. Then, we sample
100,000 points on the surface of our output and on the reference
mesh, and compute the chamfer distance between the two produced
point clouds using the Point Cloud Utils library [Wil22].

3.1.2. Earth mover’s distance (EMD)

The earth mover’s distance is a measure of dissimilarity between two
probability distributions or point sets, and is often described as the
minimum cost to transform one distribution into the other. The EMD
between two point sets A = {ai ∈R3}n

i=1 and B = {b j ∈R3}m
j=1

can be formally defined as:

EMD(A,B) = min
π∈Π(A,B)

n

∑
i=1

m

∑
j=1

πi, j∥ai −b j∥,

where π is a correspondence between A and B, i.e. Π(A,B) is the
set of n×m matrices, where rows and columns sum to one and
πi, j ∈ [0,1] is the coefficient indicating how much points ai and b j
correspond to each other. Due to the computational complexity of
the EMD, we sample 1000 points on both meshes. We also use Point
Cloud Utils library [Wil22] for the computation of the EMD.

3.1.3. Fréchet inception distance (FID)

To take visual perception into consideration, we use the Fréchet
inception distance [HRU∗18]. FID evaluates the similarity between
two sets of images, generated and real, by computing the Fréchet
distance between the Gaussian distributions of their respective fea-
tures. A lower FID value signifies a greater resemblance between the
two image sets. The shading image based FID has been described
in SDF-StyleGAN [ZLWT22], for which the authors report that it
yields relevant results for measuring the plausibility and similarity
of two shapes. We sample 20 views and render the shape Sout pro-
duced by SENS and the reference shape Sref. The features are then
extracted from these image via the Inception-V3 network [SVI∗15],
an architecture trained over ImageNet [DDS∗09], which maps an
image to a probability distribution over 1000 classes. From this prob-
ability distribution, we can extract the mean µi and the covariance
matrix Σi for each image i. The formula used to compute the FID is
given by:

FID =
1

20

20

∑
i=1

(
∥µout

i −µref
i ∥2 +Tr

(
Σ

out
i +Σ

ref
i −2

√
Σref

i Σout
i

))
.

To compute the FID, we use the cleanFID library [PZZ22].

3.1.4. Interpretation

We report the results of our objective evaluation in Table 1. First,
we note that Sketch2Mesh [GRYF21] fails to produce a shape in
112 cases when the input was cropped, and to provide a fair com-
parison we could not use their refinement because the camera view

parameters are not an input of our method. We report the results for
both cropped and padded input sketches, observing that the optimal
method varies depending on the used metric. Because the train-
ing procedure is available for DeepSketch [ZGZS22], we train this
method for our evaluation in two ways: (1) using their default dataset,
which includes their synthetic renders and ProSketch [ZQG∗21],
and (2) using our training dataset which consists of our full outline
rendering, ProSketch, and abstract CLIPasso [VPB∗22] renders.
We indicate results for both training procedures. The evaluation on
the default DeepSketch is done on padded input. Because cropped
inputs are used for retraining DeepSketch on our dataset, we crop
and center the AmateurSketch input sketches for its evaluation.
Pixel2Mesh [WZL∗18] and our method are evaluated with cropped
input sketches.

For both geometric and perceptual metrics, SENS performs sub-
stantially better than the state of the art. This indicates that SENS
is particularly suitable for sketches with different levels of abstrac-
tion, and therefore is a relevant approach to allow people of various
drawing skills to attempt sketch-based modeling. Since training
DeepSketch on our dataset does not show any improvement on the
metrics, this additionally indicates that the dataset is not the sole
factor that explains the difference of performance between SENS
and the state of the art.

Table 2: Performance comparison of multi-class shape reconstruc-
tion methods on the AmateurSketch dataset [QGS∗21] using cham-
fer distance (CD), earth mover’s distance (EMD), and Fréchet in-
ception distance (FID). Lower values indicate better performance.
Comparison is done with LAS-diffusion [ZPW∗23].

Method CD↓ EMD↓ FID↓

LAS-diffusion 0.2112 0.1585 209.2
SENS multi-class 0.1171 0.0940 171.0

3.1.5. Multi-class reconstruction

While LAS-Diffusion [ZPW∗23] is targeted toward a view-aware
setting, this sketch-to-shape method can run without camera parame-
ters. Since the authors provide the multi-class pretrained network for
this task, we compare multi-class SENS with LAS-Diffusion using
the same evaluation metrics as for the single-class comparison. The
results are reported in Table 2. We can see that our method performs
better than LAS-diffusion on the AmateurSketch dataset. However,
we emphasize that the multi-class LAS-diffusion has been trained on
all the ShapeNet classes, while our method training was focused on
only 3 classes. Moreover, while it is possible to run LAS-diffusion
without input view information, the authors state in their ablation
study that using a view-agnostic network tends to yield additional or
wrong geometry. Therefore, no definitive conclusion can be drawn
from this comparison.

Additionally, when comparing single-class and multi-class SENS,
we notice that the metrics give very similar results. This shows that
our multi-class setup has good generalization abilities.
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Figure 1: The two types of questions asked in our user study. When asking for how realistic the shape looks, the same view is applied for
rendering the shapes. When asking for similarity with the input sketch, shapes are rendered with the same azimuth angle as the input sketch.
The azimuth angle is provided by the AmateurSketch dataset.

Figure 2: Results of our user study, displayed as an histogram. The results highlight the performance of our method in comparison to
Pixel2Mesh [WZL∗18], Sketch2Mesh [GRYF21], and retrained DeepSketch [ZGZS22] in terms of realism and similarity to input sketches.

3.2. Subjective evaluation (user study)

To perform a perceptual evaluation of our work, we conduct a user
study. We randomly sample 24 sketches from the AmateurSketch
dataset and render the output of SENS, Pixel2Mesh [WZL∗18],
Sketch2Mesh [GRYF21] (cropped input), and retrained DeepSketch
[ZGZS22]. We show in Fig. 1 the exact format used for the user
study. For each sketch, we ask participants to rank the four methods’
output in two questions: how realistic and how close to the input
sketch the resulting chair looks. For the second question, we align
the rendering view of the shape with the same azimuth angle as
given by the AmateurSketch dataset. The order of the methods
is randomized across the sketches, but the same order is used for

both questions for each sketch. We recruit 54 individuals of diverse
backgrounds and ages to partake in the user study, including 15
women and 39 men.

The results are reported in Table 3 and Fig. 2. According to
this study, SENS provides the most realistic shape in 87.9% of
the cases and the most similar to the input sketch in 94% of the
cases. Pixel2Mesh is often deemed to perform the worst, especially
in terms of realism. Sketch2Mesh and DeepSketch both seem to
perform equally well for both questions and rank second and third
with nearly equal scores, as shown by the interquartile range in Table
4. Therefore, our user study is aligned with our objective evaluation.
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Figure 3: Some sketches and shapes from the Task 1 of the usability study. The results come from each user (P1 to P8, ordered from left to
right, top to bottom). Some sketches (P3, P6, and P8) are edited versions of the outline rendering from previously generated shapes. The
displayed shapes are not solely generated by the input sketches, but might have been refined via part reconstruction or part-based modeling.

Table 3: Perceptual evaluation through a user study, highlighting the
performance of our method in comparison to Pixel2Mesh [WZL∗18],
Sketch2Mesh [GRYF21] and retrained DeepSketch [ZGZS22] in
terms of realism and similarity to input sketches. The ranking in
each question is from 1 (best) to 4 (worst).

Question Realistic Similar to sketch

Rank 1 2 3 4 1 2 3 4

Pixel2Mesh 0.1 1.1 12.8 86.0 0.4 15.8 24.8 59.0
Sketch2Mesh 10.3 53.1 33.1 3.4 1.6 28.5 45.1 24.8
DeepSketch 1.7 36.6 51.3 10.3 4.0 50.0 29.8 16.2
SENS 87.9 9.1 2.7 0.3 94.0 5.7 0.3 0.0

Table 4: Median and interquartile range (IQR) of the results of our
user study, for both realism and similarity to input sketches.

Method Realistic Similar
Median IQR Median IQR

Pixel2Mesh 4.0 0.0 4.0 1.0
Sketch2Mesh 2.0 1.0 3.0 1.0
DeepSketch 3.0 1.0 2.0 1.0
SENS 1.0 0.0 1.0 0.0

3.3. Usability study

To evaluate the usability of our sketch-to-shape generation and edit-
ing methods, we carried out a usability study, drawing inspiration
from the study presented in GA-Sketching [ZLY∗23]. Eight partici-
pants from diverse backgrounds participated in the study. Among
them, half were aged between 20 and 30, while the rest were above
30. The gender distribution was balanced, with 50% women and
50% men. In terms of 3D modeling experience, 25% reported having
no experience, 50% had limited experience, and 25% identified as
hobbyists. When it came to 2D sketching or drawing, half the partic-
ipants had no experience, 25% reported limited experience, and 25%
described themselves as hobbyists. Notably, none of the participants
were professional 2D illustrators or 3D artists. The modeling session
was divided into two phases. Initially, participants were introduced

Figure 4: The three target shape images are displayed in the first
column, with four attempts to model them during Task 2 of the us-
ability study. The target shapes are sourced from the public domain.

to the software’s operation and its various functionalities, which
included sketch-to-shape generation, outline rendering, part-based
modeling, and part refinement. Subsequently, participants undertook
two tasks. In Task 1, they had the freedom to sketch any chair design;
however, they were required to use each of the software’s functional-
ities at least once during the session, ensuring they became familiar
with all available options. Task 2 involved modeling three specific
shapes provided as reference images. While their sketches did not
need to align with the image’s perspective, the resulting shapes
should closely resemble the target. The outcomes from both tasks
are depicted in Fig. 3 and Fig. 4. The outcomes of Task 1 underscore
the system’s resilience and adaptability. Even when participants,
some of whom lacked advanced drawing skills, sketched rudimen-
tary or imprecise chair designs, the algorithm consistently produced
coherent 3D shapes. Often, only a few additional intuitive modeling
steps were needed to refine the shape. Task 2 further demonstrates
the system’s ability to convert target ideas into concrete 3D models.
Participants were able to transform target images into 3D chairs,
even when the sketched perspectives differed from the reference
images. This ease of transformation from a 2D reference image to a
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Figure 5: The mean of SUS scores. The whiskers represent the
standard deviation. For questions with odd index, higher scores
indicate better performance; for even-numbered questions, lower
scores are preferable.
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Figure 6: The mean of the NASA-TLX scores, which asks the partic-
ipant to rate their experience according to six criteria to assess the
intensity of the effort. The whiskers represent the standard deviation.
The lower the better, except for Q4.

realistic 3D chair model accentuates the system’s ability in bringing
users’ visions to realization.

After completing the modeling session, participants were invited
to complete a feedback form including both the System Usability
Scale (SUS) questionnaire [Bro96] and the NASA Task Load In-
dex (NASA-TLX) questionnaire [HS88]. The SUS questionnaire
contains ten questions which evaluate the system’s usability, and
gauge its usefulness, ease of use, and consistency. The NASA-TLX
questionnaire is designed to measure task-related effort intensities,
such as mental (Q1), physical (Q2), and temporal (Q3) demands, as
well as performance (Q4), effort (Q5), and frustration levels (Q6).
The results are shown in Fig. 5 and Fig. 6. Notably, the exceptionally
low SUS scores for Q2 and Q4, combined with elevated scores for
Q5 and Q7, and notably the unanimous score of 1 for Q10, suggest
a high intuitiveness with the editing options. This observation is
further corroborated by the low scores reflected in the NASA-TLX.
The marginally subpar scores for Q6 and Q9 appear to align with the
absence of very high-frequency details from sketches to the resulting
shape, a limitation we acknowledge in the main paper. However,
it is worth noting the significant elevation in the NASA-TLX Q4
score, implying participants’ satisfaction with their performance.
Participants could readily conceptualize an initial rudimentary shape,
even from the most abstract sketches and for those with very limited
experience.

3.4. Additional visual results

In addition to the quantitative and qualitative evaluations, we also
provide further visual results. We randomly sample 128 sketches
from the AmateurSketch dataset and present the result of SENS in
Fig. 7, Fig. 8, Fig. 9, and Fig. 10.
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Figure 7: We randomly sample sketches from the AmateurSketch dataset and showcase the results of our method.
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Figure 8: We randomly sample sketches from the AmateurSketch dataset and showcase the results of our method.
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Figure 9: We randomly sample sketches from the AmateurSketch dataset and showcase the results of our method.
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Figure 10: We randomly sample sketches from the AmateurSketch dataset and showcase the results of our method.
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