
EUROGRAPHICS 2007 / D. Cohen-Or and P. Slavík    Volume 26 (2007 ), Number 3 
(Guest Editors) 

© The Eurographics Association and Blackwell Publishing 2007. Published by Blackwell 
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden, 
MA 02148, USA. 

_____________________ 
† Supported by the Alexander von Humboldt Foundation 

Context-Aware Skeletal Shape Deformation 

 
Ofir Weber1, Olga Sorkine†2, Yaron Lipman3 and Craig Gotsman1 

1Technion, Israel 
2TU Berlin, Germany 

3Tel Aviv University, Israel 

 

Abstract 
We describe a system for the animation of a skeleton-controlled articulated object that preserves the fine geometric 
details of the object skin and conforms to the characteristic shapes of the object specified through a set of examples. 
The system provides the animator with an intuitive user interface and produces compelling results even when pre-
sented with a very small set of examples. In addition it is able to generalize well by extrapolating far beyond the ex-
amples. 
 

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry 
and Object Modeling I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism 

 

 

 
1.   Introduction 
Editing and animation of 3D objects is an important prob-
lem in computer graphics, with applications in the film and 
gaming industry. In this work, we address the problem of 
deformations for complex articulated 3D shapes. By articu-
lated shape we mean one whose general set of poses (or 
kinematics) can be described using a simple subspace rep-
resentation, such as a skeleton, as in character animation of 
humans, animals and similar creatures. Given an arbitrary 
pose, our goal is to design a compelling, naturally-looking 
deformation of the rest shape in this pose. 

There are three important properties which a deformation 
method should possess: (i) the deformed shape should pre-
serve local details present in the rest shape, such as fine-
scale geometric skin characteristics (e.g., bumps or wrin-
kles); (ii) the deformed shape should conform to the char-
acteristic shapes of the specific character being animated: 
for example, muscles should bulge or cloth should crease; 
(iii) the deformation should be a smooth function of the 
pose, such that a plausible and aesthetically-pleasing ani-
mation of the shape is obtained as the deformation controls 
continuously modify the pose. 

In this work we exploit recent developments in differen-
tial surface representations and detail-preserving surface 
deformation for the purpose of articulated character anima-
tion. These techniques are capable of intuitively and effi-
ciently deforming complex surfaces while preserving local 

details at multiple scales. Employing these deformation 
techniques addresses the first and third criteria listed above, 
namely, local detail preservation and smooth dependency 
on the pose. However, pure geometric deformation meth-
ods cannot be aware of the characteristic shapes of the 
deformed object, and this information must come from an 
external source. We provide this contextual information in 
the form of examples of the animated object in a small 
number of poses. Our key observation is that the clear 
separation of characteristic shape from intrinsic surface 
detail allows effective interpolation and extrapolation of 
the example shapes. Combining these two independent 
components, we describe a deformation method that can 
handle shapes of high geometric complexity and produce 
natural skin deformation and animation, in an effective and 
space-efficient manner. 

1.1.   Background 
The skin-skeleton paradigm is very popular in the anima-
tion industry and is the method of choice in most commer-
cial modeling/animation packages. Its popularity stems 
from the intuitive manipulation, the ability to quickly solve 
inverse-kinematics on a small subspace (the skeleton) and 
efficient mapping of the animation mechanisms onto the 
graphics hardware. The difficult part is obtaining high-
quality deformations of the skin given a pose of the skele-
ton. The most wide-spread skin deformation (or, in short, 
skinning) technique is the so-called Skeletal Subspace De-
formation (SSD) method (see [LCF00] for a description), 
which transforms each vertex of the skin by a weighted 



O. Weber, O. Sorkine, Y. Lipman & C. Gotsman / Context-Aware Skeletal Shape Deformation 

© The Eurographics Association and Blackwell Publishing 2007. 

linear blend of transformations associated with the skeletal 
joints influencing that vertex. These blending weights are 
typically set and tweaked by the animator; they make SSD 
notoriously difficult to control: the linear nature of the 
transformation blending causes the candy-wrapping and 
elbow-collapse artifacts. Consequently, the joint influence 
weights must be tweaked so that every possible pose looks 
reasonable, an extremely tedious, unintuitive and time-
consuming chore. Lastly, SSD (like any other skinning 
technique) cannot achieve credible contextual movement, 
because the algorithm lacks any knowledge of these 
movements. A bend of an arm will not cause the muscle to 
bulge since all reachable shapes are limited to the linear 
subspace of transformations, none of which contain this 
information. 

To overcome the problem of context freedom, the Pose-
Space Deformation (PSD) technique [LCF00, SCFRC01] 
augments SSD by morphing with displacements taken from 
a set of user-supplied example skins. Usually the animator 
designs a few key poses of the skin+skeleton, manually 
deforming the skin such that it attains the correct shape for 
the character in those poses. Alternatively, the example 
skins can be obtained by 3D acquisition [ACP03, 
ASK*05]; skeleton rigging and precise registration and 
correspondence of all skins is then required. The interpola-
tion can be performed on a per example basis, assigning the 
same weight to all the skin vertices of the example (as in 
[LCF00, SCFRC01]), or on a per-vertex basis, assigning 
each vertex of the example a different weight ([KM04, 
RLN06]). The latter is more expensive, yet much better 
suited for situations where the examples are sparse. Kry et 
al. [KJP02] perform principle component analysis on the 
displacements learned from examples to compress their 
representation. Mohr and Gleicher [MG03] use examples to 
automatically find additional skeleton joints and weights 
which can reduce some of the undesirable effects of SSD. 

One of the underlying problems with SSD-type deforma-
tion is lack of treatment of the skin surface as a connected 
manifold, because each vertex is transformed independ-
ently of its neighborhood on the surface. Therefore, self-
intersections may easily occur. When using a differential 
surface representation such as we advocate, the deformed 
skin is obtained as the result of a global optimization proc-
ess that accounts for the geodesic relationships between the 
skin vertices, resulting in a graceful and detail-preserving 
deformation. Recent skin deformation methods have 
adopted variants of this approach [ASK*05, SZGP05, 
DSP06, HSL*06, SYBF06, YHM06], yet the full potential 
of differential deformations, coupled with examples, has 
not yet been explored. 

Surface deformation techniques have been recently 
shown to be effective in animation applications based on 
motion-capture data [BPGK06, HSL*06, KS06, SYBF06, 
YHM06]; most of these methods rely on non-linear global 
optimization and are context-free. The quality of the de-
formations they produce is typically much higher than that 
of SSD, including complete avoidance of candy-wrapping 
and joint collapse; however, this comes at a significantly 
higher computational price. 

The MeshIK system [SZGP05, DSP06] supports exam-
ple-based posing of a mesh (without a skeleton) by non-
linear optimization in the space of the examples. While 
performing well in a dense space of examples, the tech-
nique has difficulty to extrapolate or operate with a sparse 
example set. Another problem with MeshIK is its strong 
dependence on the example shapes at run-time: the non-
linear optimization procedure incorporates the complete set 
of examples within the global non-linear solution, which 
becomes very expensive as the number of examples in-
creases. This problem was alleviated in [DSP06] by operat-
ing in a meaningful subspace consisting of a set of “bones”, 
which, although one step back towards a skeletal structure, 
do not necessarily fit together to a well-formed skeleton, 
but rather define a set of rigidly-moving regions of the 
mesh.  

Anguelov et al. [ASK*05] present a comprehensive 
framework, called SCAPE, for human shape acquisition 
and animation. SCAPE combines example-based deforma-
tion with linear differential deformations. More specifi-
cally, SCAPE assumes that each rest-pose triangle is first 
rigidly transformed by exactly one joint, thus propagating 
the skeleton transformations to the skin. Each triangle's 
transformation is additionally corrected by another trans-
formation, learned from the example skins by linear regres-
sion methods. The correction transforms, learned per trian-
gle, are functions of the pose configuration of the two clos-
est influencing joints; up to 63 parameters per triangle 
needed to be stored in memory. The connected skin surface 
can then be reconstructed using Poisson stitching 
[YZX*04]. Due to the linear regression used, when the 
correction transformations contain rotational components, 
the result deformation will suffer from visual artifacts simi-
lar to those of SSD. Extending SCAPE to use non-linear 
regression can be expensive. 

Our approach is similar to SCAPE [ASK*05] in that we 
also use an underlying linear deformation approach; how-
ever, we allow interactive marking of the joint influences, 
we do not restrict the influence of each skin element to one 
or two joints, and we propagate the skeleton transformation 
further using harmonic interpolation [ZRKS05]. In our 
framework the underlying deformation is already detail-
preserving, thus local surface texture deformation need not 
be captured or corrected by the examples. When all the 
example data is present, our method will interpolate the 
example skins precisely when provided with the example 
skeleton configuration. This is not possible with SCAPE. 
In addition, we develop a compact representation of the 
example data, such that just a small number of localized 
skin elements need to contain augmented example informa-
tion, with minimal impact on deformation quality. 

Using example meshes as an input for a deformation 
method can be problematic for resource-demanding appli-
cations such as computer games. Typical games use a large 
number of different characters; many of them may be pre-
sent in a single game scene. The amount of memory allo-
cated for deformation purposes is usually small compared 
to textures, scene geometry, AI, physics, etc. Using exam-
ples to guide a deformation may easily lead to an increase 
in the amount of memory allocated for character geometry 



O. Weber, O. Sorkine, Y. Lipman & C. Gotsman / Context-Aware Skeletal Shape Deformation 

© The Eurographics Association and Blackwell Publishing 2007. 

by few orders of magnitude. Our algorithm needs fewer 
examples than PSD [LCF00, SCFRC01] in order to pro-
duce high-quality results. In addition, the examples them-
selves are represented in a compact manner. 

In parallel to us, Wang et al. [WPP07] developed an ap-
proach similar to ours. However, contrary to our method, 
their technique relies on regression methods and needs 
many examples in order to learn the deformation model. 
An important contribution of their work is the formulation 
of an approximation to the Poisson system, which improves 
performance. 

1.2.   Outline and contributions 
Our deformation framework enables interactive posing and 
animation, and is based on the skin-skeleton paradigm 
familiar to artists. We allow intuitive control over the skin 
animation by painting a rough influence field of each joint 
on the skin. Given a desired skeleton pose, the skin is first 
deformed using the detail-preserving shape editing ap-
proach. This already gives reasonable results; however, if 
contextual data is present, the result is also influenced by 
the characteristic shapes extracted from the examples via a 
differential “morphing” process that enables correct ex-
trapolation (Sec. 2). The characteristic shapes are com-
pactly represented, such that essentially only a fraction of 
the skin elements (called anchors) contains example infor-
mation; the correction for the entire shape is performed in 
real-time by smooth interpolation across the surface (Sec. 
3). Our main contributions in this work are: 
• An example-based skin deformation framework that 

works well with a very sparse example set and enables 
interpolation as well as meaningful extrapolation of 
example data. 

• A framework based on the clear separation of intrinsic 
surface detail information from pose-dependent char-
acteristic shape information. 

• Compact representation of the example data, enabled 
by the generally low-frequency nature of the charac-
teristic shapes. This leads to space- and time-efficient 
deformation with an intuitive tradeoff of memory con-
sumption and performance for result quality. 

2.   Shape deformation framework 
We describe the setup and interface of our deformation 
framework first from the user's point of view, and then 
detail the core algorithms present in the system. 

2.1.   User setup and notations 
Our system requires minimal user effort to setup for skele-
tal shape deformation. The input is a manifold triangle 
mesh, which we call the rest shape S0 = (V0,F ) and its as-
sociated skeleton structure having joints B = {b1,...,bK} and 
links between the joints. In general, we denote the mesh 
geometry (vertex positions) by V = {v1,...,vN} and the con-
nectivity (the set of faces in the mesh) by F  = { f1,...,fM}. In 
addition to providing the skeleton, the user is required to 
establish a basic correspondence between the skeleton and 

the rest shape: for each joint bk, the vertices of S0 associ-
ated with bk are specified, meaning that the user marks 
regions Hk ⊂ V of the rest shape surface that should com-
pletely follow the movement of each joint. We call these 
regions joint handles. As we will see later, when no exam-
ple shapes are provided, the joint handles are transformed 
exclusively by the corresponding joint transformation; 
when examples are present this behavior is modified by 
mimicking the examples. Note that the handles should be 
disjoint, but need not cover the entire mesh surface. Their 
marking can be performed via a simple binary painting 
interface (see Fig. 1 and the accompanying video). No 
numerical input of influence weights is required; in a sense 
our system automatically deduces the joint influences on 
the entire surface from the painted regions. 

This basic setup is enough to perform detail-preserving 
skeletal deformation with the algorithm described next. 
However, this will typically not capture the “characteristic 
behavior” of the object – its “context”. To increase the 
realism of the deformation, the system incorporates exam-
ple shapes that put the deformation into context, demon-
strating characteristic deformations of the shape, such as 
bulging of muscles and appearance of folds for human or 
animal shapes. Our system accepts such examples in the 
form of D additional mesh geometries V1,...,VD (the connec-
tivity F is shared by all the shapes), coupled with corre-
sponding skeleton poses, specified by joint transformations 
Pj = {Rj,1, Rj,2, ..., Rj,K} for each example Vj. Only a small 
number of examples are needed to produce highly realistic 
deformations; an example shape can exhibit several charac-
teristic behaviors simultaneously (for instance, all the limbs 
of the character may bend). In addition to providing the 
example shapes, the user can specify the desired tradeoff 
between efficiency (i.e., space and time complexity) and 
quality of deformation by controlling the compactness of 
the example shape representation; this is described in more 
detail in Sec. 3. 

2.2.   Basic skeletal surface deformation 
Once the joint handles Hk are specified, the surface of the 
rest shape S0 can be deformed to conform to any given 
skeleton pose. For this purpose we associate a continuous 
scalar field wk with each joint bk, which assigns an influ-
ence value wk(v) to each mesh vertex v. The vertices that 
“belong” to the joint handle are assigned the value 
wk(v) = 1, while vertices belonging to other joint handles 
are assigned wk(v) = 0. All other vertices are assigned val-
ues wk(v) ∈ [0,1] obtained as discrete harmonic functions 
over the mesh. We compute these values for each mesh 
vertex by solving the Laplace equation: 

0,k =Lw  (1) 

subject to the Dirichlet boundary conditions wk(v) = 1 for 
v ∈ Hk and wk(v) = 0 for v ∈ Hl where l ≠ k. The operator L 
is the Laplace-Beltrami operator associated with the rest 
shape S0, discretized using the cotangent weights [PP93]. 
After computing the values of wk for the mesh vertices, we 



O. Weber, O. Sorkine, Y. Lipman & C. Gotsman / Context-Aware Skeletal Shape Deformation 

© The Eurographics Association and Blackwell Publishing 2007. 

compute corresponding scalar fields, h1,...,hK for the mesh 
triangles by averaging the values at the three vertices of 
each triangle. Since the joint handles are mutually exclu-
sive, w1,...,wK are a partition of unity over the mesh. As a 
result, h1,...,hK sum to unity on each face. 

The influence fields hk are computed once and can then 
be used to perform arbitrary deformations of the shape: 
they serve as blending weights to distribute the transforma-
tion of the joints to the skin mesh. Given an arbitrary skele-
tal pose P = {R1, R2, ..., RK}, where Rk are relative joint 
transformations with respect to the rest pose, each mesh 
face f is assigned a blended transformation, expressed as 
R( f ) = h1( f )R1 ⊕ h2( f )R2 ⊕...⊕ hK( f )RK. We assume that 
the transformations Rk are rotations, as this is a common 
case in skeletal animation (although arbitrary transforma-
tions can be easily handled via polar decomposition). 

 
Figure 1: Painting joint influences and deforming the skin. 
(left) The colored regions designate the joint handles that 
are under the influence of corresponding joints (the knee 
and the thigh), as painted by the user. (right) The detail-
preserving deformation uses these regions as modeling 
constraints that move rigidly with the joints; the rest of the 
skin deforms according to the optimization process. 

To correctly blend between rotations, the operator ⊕ 
cannot be a simple addition – this would lead to the well-
known artifacts of linear blend skinning (as in SSD). In-
stead, we represent the rotations using log-quaternions 
[Gra98]; these are 3-vectors whose direction is the axis of 
rotation and the magnitude is the rotation angle. Linear 
combinations of log-quaternions still represent rotations, 
and are therefore able to efficiently blend between more 
than two rotations. Note that in general, when linearly in-
terpolating log-quaternions, the interpolation path is not a 
geodesic on the sphere of unit quaternions. Thus, interpola-
tion of log-quaternions is sensitive to the initial orientation 
of the quaternions involved. This means that the mesh is 
not invariant to a common rotation of all skeleton joints. In 
addition, in order to avoid the singularities of the quater-
nion’s logarithm, we prefer to use log vectors with smaller 
magnitude. Therefore, when blending several rotations 
R1, ..., RK, we think of one of them (say, R1) as the identity 
and represent the other rotations relative to it. The result is 
a new set of rotations: R'1, ..., R'K = I, R1

-1R2, ..., R1
-1RK. 

After blending these relative representations, we multiply 
back by R1 to obtain the absolute result. Such relative 
blending of rotations is insensitive to the skeleton orienta-

tion. When blending between the identity and another rota-
tion, linear combination of the log-quaternion representa-
tion gives the same effect as spherical linear interpolation 
(slerp). This means that when only 2 joints are involved, 
the resulting interpolation technique is equivalent to slerp. 

Once the blended rotations R( f ) are computed per face, 
they are applied to the rest shape triangles, transforming 
each of them independently. To obtain the final connected 
mesh, we apply Poisson stitching to these transformed 
triangles [SP04, YZX*04], namely, we compute the gradi-
ents of the transformed triangles and solve the Poisson 
equation for the deformed mesh vertices: 

[ ] div[ ],x y z=L x y z g g g  (2) 

where x, y, z are the deformed mesh coordinate functions 
and gx gy gz are the 3×3 stacked gradient matrices of the 
transformed triangles. L is the same Laplace operator used 
in Eq. (1). Note that the Poisson equation requires bound-
ary conditions because the gradients are translation-
invariant; we use the positions of the vertices associated 
with the root joint of the skeleton as Dirichlet boundary 
conditions. Botsch et al. [BSPG06] recently showed that 
instead of plugging the triangles gradients to the right-hand 
side of Eq. (2), it is sufficient to use the so-called deforma-
tion gradients [SP04]. This will lead to the following, 
equivalent, linear system: 

[ ] div[ ],L x y z S=  (3) 

We simply treat the triangle rotations, R( f ) as 3×3 defor-
mation gradient S matrices and plug them into the right-
hand side of Eq. (3). This eliminates the need to constantly 
compute the gradients during deformation. For details on 
the Poisson system setup and the equivalence of the two 
linear systems, see [BSPG06]. Figs. 2 and 3 compare what 
we get vs. SSD skinning. 

The deformation technique described above is a variant 
of the method proposed by Zayer et al. [ZRKS05] and 
Lipman et al. [LCOGL07], adapted to the skeletal deforma-
tion setup. Zayer et al. [ZRKS05] did not explicitly discuss 
the limitations of transformation blending when more than 
two handle regions are involved; Lipman et al. [LCOGL07] 
used a non-linear system to correctly blend the transforma-
tions. A somewhat similar approach to skeletal deformation 
was demonstrated by Shi et al. [SYBF06]; however, they 
rely on a manual assignment of skin vertices to bones and 
joints and require an augmented volumetric mesh structure, 
which increases the complexity of the solution. 

2.3.   Using context: example shapes 
When example shapes are provided, our system incorpo-
rates the additional information about the shape's character-
istic behavior, as contained in the examples. Since the 
geometric deformation method described in the previous 
section is detail-preserving, and thus faithful to the local 
geometric texture of the shape, the difference between an 
example shape and the rest shape deformed into the pose of 
the example, is typically smooth and varies slowly across 
the surface. We use a differential representation of this 



O. Weber, O. Sorkine, Y. Lipman & C. Gotsman / Context-Aware Skeletal Shape Deformation 

© The Eurographics Association and Blackwell Publishing 2007. 

difference, on a per-face basis, and enable its blending for 
arbitrary poses. The low-frequency nature of this additional 
deformation information also allows compact representa-
tion, as described in the next section. 

 
Figure 2: Skinning using SSD and our method without 
examples. (top row) SSD. Notice the artifacts in the elbow 
area. (bottom row) Our method. 

 
Figure 3: Skinning using SSD and our method without 
examples. (top) SSD. Notice the artifacts in the shoulder 
area. (bottom) Our method. 

To extract the deformation nuances from an example 
shape Vj, we first compute a rotation for each triangle of the 
example. The rotations are computed according to the algo-
rithm described in Sec. 2.2, using the example pose Pj as 
input. We apply the inverse rotation to each of the exam-
ple’s triangles. This can be thought of as a process of trans-
forming the example into the pose of the rest shape. The 
result is a set of new normalized examples, all in a unified 
coordinate system. We then compute the relative transfor-
mation between the rest shape triangle and the correspond-
ing triangle in the normalized example (we use two triangle 
edge vectors and the normal to disambiguate the transfor-
mation). We obtain the so-called deformation gradient Tj,m 
(for the j'th shape and m'th triangle) which encodes the 
example shape in a rotation-invariant manner, because the 
rotation due to pose has been factored out. The full repre-
sentation of the characteristic behavior present in the j'th 
example shape is, therefore, its skeleton pose Pj and the set 
of relative transformations {Tj,1,...,Tj,M}. 

When an arbitrary pose P is given, we would like to de-
form the shape in such a way that it benefits from all the 
examples, proportionally to the similarity between the 

skeleton poses. In other words, we would like to create 
meaningful interpolations and extrapolations of the exam-
ples in the parameter space of skeletal joint transforma-
tions. The similarity metric should be local, in the sense 
that when only part of P (say, the elbow configuration) is 
close to an example pose, then the corresponding part of 
the shape is significantly influenced by the example, 
whereas the rest of the shape is not. This allows the use of a 
very small number of example shapes that exhibit several 
characteristic behaviors of different limbs simultaneously. 

We employ the weighted pose-space deformation 
(WPSD) ideas [KM04] to compute the similarity metric 
between poses and the blending weights. In a nutshell, 
WPSD accepts a set of poses {Pj} described by the Euler 
angles of the joint transformations, and K scalar fields de-
fined on the skin mesh elements, defining the influence of 
each joint on each mesh element. Traditionally, these joint 
influences were manually painted and tweaked by the ani-
mator; we replace them by the harmonic influence fields hk 
described earlier, significantly simplifying the process. 
Then, for a given pose P and triangle fm , WPSD computes 
D weights aj,m that describe how close that element is to its 
counterpart in each of the examples. The weights aj,m are 
computed using RBF interpolation on the example poses; 
in addition, we incorporated the linear extrapolation tech-
nique proposed by [SCFRC01] for simple pose-space de-
formation (PSD) and adapted it to WPSD. 

The final construction of the deformed shape is per-
formed by computing the total deformation gradient of 
each triangle, applying the geometric deformation method 
R( fm) to the triangle augmented by the blend of the exam-
ple representations. Since Tj,m may contain rotational com-
ponents, linear blending may lead to visual artifacts. For a 
precise combination, we compute the polar decomposition 
of each relative example transformation Tj,m = Qj,mSj,m and 
separately combine the rotations Qj,m and the skew compo-
nents Sj,m. The final transformation for the m’th triangle is 
then given by: 

, , , ,
0 0

( )T' R A

A Q S

m m m

DD

m j m j m j m j m
j j

f

a a
= =

=

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

∑⊕
  (4) 

We again use log-quaternions to represent and combine the 
rotations Qj,m. By applying the transformations T'm to the 
right-hand side of Eq. (3) and solving the Poisson stitching, 
we arrive at the final deformed shape. Note that only one 
Poisson stitching process is needed, since we do not actu-
ally solve for the intermediate shape obtained by purely 
geometric deformation, but only use its transformations 
R( fm) obtained by combining the pre-computed harmonic 
fields hk. See Fig. 4 for an example. 

3.   Compact representation of examples 
As mentioned above, the characteristic deformation behav-
ior of a shape tends to have a low-frequency nature, mean-
ing that the difference between a basic skeletal deformation 
and the given example shape is a smooth function over the 
surface. Thus there is significant coherence within the rep-



O. Weber, O. Sorkine, Y. Lipman & C. Gotsman / Context-Aware Skeletal Shape Deformation 

© The Eurographics Association and Blackwell Publishing 2007. 

resentation of an example mesh, i.e. between {Tj,m}, the 
relative transformations of the individual mesh triangles 
and also between {Am}. We exploit this fact to “compress” 
the example representation, expressing each Am as a com-
bination of a small number of basis functions, centered 
around particular mesh elements called anchors. This way 
only the relative transformations of the anchors need to be 
stored, instead of the entire set of D·M matrices Tj,m. A 
conceptually similar approach was used in [SCOIT05] for 
geometry compression; here we apply it to deformation 
compression. 

 
Figure 4: Deformation using characteristic shapes. (top 
row) Rest shape and 3 examples. (bottom two rows) De-
formations of the rest shape in arbitrary poses. 

Assume that instead of storing all the matrices Tj,m we 
choose a subset of triangles { fi}, i∈C = {c1,...,cM'}, M'<<M 
for which we store this information. At run time, we can 
approximate the entire set of Am’s by smoothly interpolat-
ing this subset across the mesh. Since the Am’s contain both 
a rotational component and a skew component, we could 
have used the polar decomposition again in order to per-
form the interpolation on the two components separately. 
In practice, if the subset of anchors is nicely distributed 
over the mesh, linear interpolation will suffice. In total we 
have 9 scalar values to interpolate over the mesh. Denote 
by (d1,d2,...,dM)T = d one of these scalar fields; the values 
di, i∈C  are known. We can approximate the rest of d by 
solving a Laplace problem for d': 

0,Ld' =  (5) 

with the boundary conditions d'i = di on the anchors. The 
operator L is the triangle-based Laplacian operator, defined 
on the graph dual to the mesh. For simplicity, we define L 
with uniform weights. The quality of approximating d by 
d' depends of course on the number and position of the 
anchors C. We employ a greedy algorithm to choose these 
anchors in the preprocess stage, as proposed in [SCOIT05]. 
We use the rotation-skew decomposed components of the 

Tj,m’s separately in an attempt to optimize the approxima-
tion of both components of the Tj,m’s. In the beginning, we 
initialize C with a small number of randomly distributed 
anchors. Then we solve (5) for the 3 rotational (log-
quaternion) scalar fields and find the triangle whose entry 
in d' has the maximal error with respect to its counterpart 
in d. The error is defined as the angle of the relative rota-
tion between the element in d' and the element in d. This 
triangle is added to C and the process repeats. After the 
desired number of rotational anchors is obtained, we pro-
ceed to compute the skew anchors in the same fashion. 
Since the skew matrix is symmetric, we have 6 independent 
scalar fields to solve for. The error metric for the skew 
component is the Frobenius matrix norm. The process is 
then repeated for all example meshes. The total number of 
anchors M' is limited by the space consumption constraints 
provided by the user (we need to store 9·D·M' scalars to 
sparsely represent all the examples). 

At run-time, the D sets of anchor values for the rotational 
and the skew components are blended using the WPSD 
weights, as described in Sec. 2.3, resulting in a single set of 
blended anchors. The transformations Am are then com-
puted for the entire mesh by solving (5) with the blended 
anchor boundary constraints. 

Our experiments show that for natural shape examples, 
only a small fraction of the mesh triangles need to be des-
ignated as anchors; typically up to 5% is enough to obtain 
an excellent approximation; a significantly reduced number 
of anchors leads to smoothed incorporation of example 
behavior since the harmonic interpolation over-smoothes 
the relative transformations. The advantage of such a 
sparse representation is two-fold: it drastically reduces the 
memory consumed by the examples by at least a factor of 
20, and reduces the time spent on computing WPSD 
weights and evaluating Eq. (4) at run-time, since the com-
putation is performed only on the anchors. The price paid is 
the solution of an additional linear system; however, this 
can be significantly accelerated, as explained in the next 
section. 

4.   Implementation issues 
The main computational bottleneck in our approach is the 
solution of sparse linear systems. In the preprocess stage 
we compute the harmonic fields wk (Eq. (1)), as well as the 
greedy choice of the anchors for sparse example represen-
tation (solving Eq. (5) with varying constraints). At run-
time, given a skeleton pose, solving a sparse system is re-
quired in order to reconstruct the blended examples infor-
mation (solving Eq. (5) for 9 right-hand sides) and in the 
final Poisson stitching (Eq. (3)). Naturally, it is desirable to 
optimize the run-time performance, even at the expense of 
a longer pre-processing stage. 

We use a direct sparse solver [Tol03] to precompute the 
Cholesky factorization of the Laplacian matrix involved in 
the Poisson stitching; since the system matrix does not 
change at run-time, the factorization can be reused to solve 
for multiple right-hand sides by back substitution, which is 
very fast compared to standard iterative solvers [BBK05]. 



O. Weber, O. Sorkine, Y. Lipman & C. Gotsman / Context-Aware Skeletal Shape Deformation 

© The Eurographics Association and Blackwell Publishing 2007. 

Solving the linear system (5) for the anchors can be 
avoided altogether at run-time by representing the solution 
d' as an affine combination of M' harmonic basis functions 
ui, i∈C, constructed as in Sec. 2.2: 

0,i =Lu  

subject to ui(cj)=δij. Then: 

d' ui i
i

d
∈

= ∑
C

 

We only need to pre-compute the ui’s and combine them at 
run-time, which is cheaper than back-substitution. For ad-
ditional speedup and space conservation, we selectively 
reduce the amount of ui values stored per triangle: we sort 
them in descending order and keep only the larger values 
(e.g., such that they sum to 0.95; we then rescale them to 
sum to 1). The cut-off parameter may be exposed to the 
user for better quality control. Typically most of the origi-
nal values are nearly zero because each triangle is mostly 
affected by the closest anchors. We also use the same proc-
ess to reduce the amount of joint influence weights hk 
stored per triangle. Hence, at run-time only one equation 
(Eq. (3)) needs to be solved (using back-substitution only). 

5.   Experimental results 
Our mesh deformation system has been fully implemented 
as a plugin to the Maya® commercial animation system. 
The code is not optimized, although it does use the accel-
eration methods described in Sec. 4. 

Our system can generate deformations without the use of 
any example meshes, thus we can compare our results to 
traditional linear weighted blending of transformations 
(SSD). As Figs. 1-3 demonstrate, our method produces 
much smoother and more natural results on a humanoid 
model. The muscles contract naturally although only the 
shoulder joints rotate. Notice the self intersections near the 
scapula region and the over-stretching of the shoulder area 
when SSD is applied (Fig. 3). 

When presented with example shapes, the deformation 
captures the context illustrated by the examples and repro-
duces it. Moreover, it has significant extrapolation capabili-
ties, as illustrated in Fig. 5. When the example shows how 
a muscle bulges slightly and the fingers bend slightly as the 
arm and wrist are bent, the same muscle continues to bulge 
more dramatically as the arm is bent further and the fingers 
continue to rotate as the wrist is bent further. Note that 
there is no skeletal structure whatsoever in the fingers! The 
conventional PSD method [LCF00, SCFRC01], which is 
based on displacement vectors, cannot handle the large 
rotation of the fingers correctly. SCAPE [ASK*05] will 
also fail on this data since its regression model is linear. 

Cloth deformations that do not exhibit strong dynamic 
effects can be modeled with our system. We use three ex-
amples to guide the deformation of a shirt, controlled by 
the spine joints. Fig. 4 shows the application of our defor-
mation technique to the shirt. This exhibits quite complex 
deformations with large local rotations. 

Another scenario is depicted in Fig. 6. Here the rest mesh 
is a flat mesh with sinusoidal waves on it. These waves are 

the fine details. An example is presented which shows the 
mesh folded over in a circular shape by approximately 
180°. This example suffices to indicate what the mesh 
should look like when it is bent by 360°. The result is ex-
actly as we would expect – a cylindrical form with no dis-
tortion of the fine detailed sinusoidal waves.  

The example meshes which supply the context can oc-
cupy a large amount of memory. This can be a serious 
problem for many applications. We represent our examples 
in a compact manner using a small subset of the mesh tri-
angles – so-called anchors. Even when a very small amount 
of anchors are used, the fine geometric details of the mesh 
are preserved. The flat mesh in Fig. 6 is a classic example 
of a very smooth and uniform deformation. This leads to 
extreme compression capabilities where only 30 anchors 
among 24,000 triangles were used. 

Fig. 7 shows what happens when we bend the Armadillo 
leg by rotating the knee joint. On the left is an example 
mesh. When we ignore it, the deformation preserves the 
fine details of the mesh but does not deform as expected 
and the muscles do not bulge. When we use the example, 
the results are improved. The same figure shows the de-
formation achieved when all or just some of the triangles of 
the example are used as anchors. Using fewer anchors leads 
to less memory consumption and better performance. Note 
that the 2% anchor image is almost indistinguishable from 
the 100% anchor image, even though only 290 anchors 
were used instead of 14,606. Even when only 73 anchors 
(0.5%) are used, the fine scale details of the original mesh 
are not harmed. 

5.1.   The video 
The video that accompanies this paper (which can be found 
at www.cs.technion.ac.il/~gotsman/shape/EG07.zip and 
should be played using QuickTime 7.0) depicts an interac-
tive session with our system and shows how the results 
described in the previous section were obtained. The inter-
action is easy and natural. Influence regions of the various 
joints may be painted onto the mesh. Then the mesh is 
deformed by posing its skeleton. After a pre-processing 
step, real-time performance is obtained during the deforma-
tion process. The video shows a comparison between using 
SSD and our method to deform a humanoid figure without 
examples, the deformation of the arm model using our 
method with and without examples, and the deformation of 
a shirt and a flat mesh using our method based on a small 
number of examples. 

5.2.   Complexity 
A main component in our computation is solving a linear 
system involving the sparse mesh Laplacian matrix. We do 
this by factoring the matrix by a Cholesky decomposition 
in a pre-process, which allows to solve the system faster 
during interaction by back-substitution only. Cholesky 
factorization takes less than a second on the arm mesh con-
taining 10,000 triangles, and back-substitution can be done 
in real-time for meshes containing up to 60,000 triangles. 
We are optimistic that significant speedups can still be 



O. Weber, O. Sorkine, Y. Lipman & C. Gotsman / Context-Aware Skeletal Shape Deformation 

© The Eurographics Association and Blackwell Publishing 2007. 

obtained by performing much of these computations on the 
GPU (see next section). 

Our anchor selection process is greedy and quite slow, 
since it checks the quality of each selection by solving the 
equation associated with it. This, of course, is linear in the 
size of the example meshes and their number. Despite us-
ing the fast factorization update scheme [SCOIT05], it can 
take up to a minute per example mesh, but since this is also 
done in a pre-process, it is not critical. We are also sure that 
a more efficient procedure is possible. 

 
Figure 5: Deformation using characteristic shapes. (a) left 
to right - Rest shape; one example with slight bend of fin-
gers; two deformations of the rest shape based on the ex-
ample. Note the significant bend of the fingers. There are 
no skeleton joints in the fingers! (b) left to right - Rest 
shape; one example with slight muscle bulge; two deforma-
tions of the rest shape based on the example. Note the sig-
nificant and natural bulge of the muscle. (c) Comparison of 
(left) our deformation and (right) that of [LCF00, 
SCFRC01]. Note the shrinkage in the fingers. 

6.   Discussion and future work 
We have presented a system for skeletal shape deformation 
that operates within the context of given deformation ex-
amples – so-called characteristic shapes. The system has a 
very simple set-up compared to traditional skinning tech-
niques, and it is robust: small variations in the specified 
joint handle regions lead to only small changes in the de-
formation results. Our system uses a differential detail-
preserving deformation technique as its underlying defor-
mation core, and thus produces plausible results even when 

the desired skeleton pose is very different from the pro-
vided example poses. The differential encoding of the 
characteristic behavior exhibited in the examples enables 
high-quality interpolation and extrapolation for arbitrary 
poses. Moreover, only a small number of example meshes 
is sufficient thanks to the WPSD-based interpolation which 
takes advantage of partial matching between poses. The 
computational cost of WPSD is significantly reduced by a 
compact representation of the example deformations, since 
it is applied only to representative triangles (anchors) 
which are a small fraction of the entire mesh. 

 
Figure 6: Deformation using characteristic shape. (left to 
right) Rest shape of flat mesh with waves; one example 
with bend; deformation of the rest shape based on the ex-
ample. Note the significant extrapolation of the bend. Only 
30 anchors out of 24,000 triangles were used. 

The compact representation of examples allows the sav-
ing of precious storage space and also offers a viable trade-
off between deformation quality and space- and time-
efficiency. We use a simple greedy algorithm for the an-
chors selection which is far from being optimal and also 
quite slow, requiring re-solving of Eq. (5) with an increas-
ing number of constraints. Although not the bottleneck in 
our computations, this aspect of our system could definitely 
be improved. 

The first stage in our deformation algorithm is a detail 
preserving gradient-based technique. We approximate the 
gradients field of the deformed mesh using harmonic func-
tions guided by the skeleton joints rotations. In some cases, 
this could lead to a translational gap between a limb and its 
corresponding joint (see Fig. 7 – NO EXAMPLES image). A 
possible solution is to constrain the positions of the han-
dle’s vertices, found in the Hk’s, to the joints by adding 
additional boundary conditions to Eq. (3). Since gradients 
are translation-insensitive, using positional constraints will 
not alter the gradients any further and may lead to visual 
artifacts. We chose not to use positional constraints in all 
the examples being presented in the paper and the video. A 
more sophisticated solution may use a deformation mecha-
nism that handles translations correctly; this will probably 
lead to a non-linear system and will complicate the solu-
tion. The main reason that we were satisfied with the linear 
system behavior is the fact that, as soon as examples are 
added, the approximation of the gradients, achieved by the 
first stage, is dramatically improved and naturally elimi-
nates the artifact (see Fig.7 and the video). 

(a) 

(b) 

(c) 



O. Weber, O. Sorkine, Y. Lipman & C. Gotsman / Context-Aware Skeletal Shape Deformation 

© The Eurographics Association and Blackwell Publishing 2007. 

A possible future direction is to implement the algorithm 
on the GPU. In fact, apart from the linear system solver, the 
entire algorithm maps perfectly to the GPU. For the linear 
solver, we currently use a Cholesky factorization and per-
form back-substitution during interaction. Back-
substitution is a sequential process, hence it does not map 
well to the GPU. A solver based on multigrid methods 
could be used, and since multigrid can be easily parallel-
ized, this is suitable for GPU implementation [BFGS03, 
GWL*03]. However, typical multigrid methods assume 
that the mesh is structured, which is not the case for arbi-
trary mesh data, such as the inputs we deal with, so this 
aspect of the problem requires some additional research. 

 
Figure 7: The effect of using different amount of anchors 
when deforming the original mesh using one example. Us-
ing just 2% of the triangles as anchors produces a muscle 
bulging effect almost indistinguishable from that produced 
with 100% anchors. 

Acknowledgments 
We thank Tamir Shemesh for valuable help with the art-
work and Debbie Miller for her help with the video narra-
tive. The models of the arm, leg and beast body are cour-
tesy of Autodesk®. This research has been partially funded 
by European FP6 IST NoE grant 506766 (AIM@SHAPE) 
and the Alexander von Humboldt foundation. 

References 

[ACP03] ALLEN B., CURLESS B., POPOVIĆ Z.: The space of 
human body shapes: reconstruction and parameterization 
from range scans. ACM Trans. Graph. 22, 3 (2003), 
587–594. 

[ASK*05] ANGUELOV D., SRINIVASAN P., KOLLER D., 
THRUN S., RODGERS J., DAVIS J.: SCAPE: shape comple-
tion and animation of people. ACM Trans. Graph. 24, 3 
(2005). 

[BBK05] BOTSCH M., BOMMES D., KOBBELT L.: Efficient 
linear system solvers for mesh processing. IMA Mathe-
matics of Surfaces XI, Lecture Notes in Computer Sci-
ence 3604 (2005). 

[BFGS03] BOLZ J., FARMER I., GRINSPUN E., SCHRÖDER 
P.: Sparse matrix solvers on the GPU: conjugate gradi-
ents and multigrid. ACM Trans. Graph. 22, 3 (2003), 
917–924. 

[BPGK06] BOTSCH M., PAULY M., GROSS M., KOBBELT 
L.: PriMo: Coupled prisms for intuitive surface model-
ing. In Proceedings of the Symposium on Geometry 
Processing (2006), pp. 11–20. 

[BSPG06] BOTSCH M., SUMNER R., PAULY M., GROSS M.: 
Deformation transfer for detail-preserving surface edit-
ing. In Proceedings of VMV (2006), pp. 357–364. 

[DSP06] DER K. G., SUMNER R. W., POPOVIĆ J.: Inverse 
kinematics for reduced deformable models. ACM Trans. 
Graph. 25, 3 (2006), 1174–1179. 

[Gra98] GRASSIA F. S.: Practical parameterization of rota-
tions using the exponential map. Journal of Graphics 
Tools 3, 3 (1998). 

[GWL*03] GOODNIGHT N., WOOLLEY C., LEWIN G., 
LUEBKE D., HUMPHREYS G.: A multigrid solver for 
boundary value problems using programmable graphics 
hardware. In Proceedings of Graphics Hardware (2003), 
pp. 102–111. 

[HSL*06] HUANG J., SHI X., LIU X., ZHOU K., WEI L.-Y., 
TENG S., BAO H., GUO B., SHUM H.-Y.: Subspace gradi-
ent domain mesh deformation. ACM Trans. on Graph. 
25, 3 (2006). 

[KJP02] KRY P. G., JAMES D. L., PAI D. K.: Eigenskin: 
real time large deformation character skinning in hard-
ware. In Proceedings of the Symposium on Computer 
Animation (2002). 

[KM04] KURIHARA T., MIYATA N.: Modeling deformable 
human hands from medical images. In Proceedings of 
the Symposium on Computer Animation (2004), pp. 355–
363. 

[KS06] KRAEVOY V., SHEFFER A.: Mean-value geometry 
encoding. International Journal of Shape Modeling 12, 1 
(2006), 29–46. 

[LCF00] LEWIS J. P., CORDNER M., FONG N.: Pose space 
deformation: a unified approach to shape interpolation 
and skeleton-driven deformation. In Proceedings of 
ACM SIGGRAPH (2000), pp. 165–172. 

[LCOGL07] LIPMAN Y., COHEN-OR D., GAL R., LEVIN D.: 
Volume and shape preservation via moving frame ma-
nipulation. ACM Trans. on Graph. 26, 1 (2007). 

[MG03] MOHR A., GLEICHER M.: Building efficient, accu-
rate character skins from examples. ACM Trans. Graph. 
22, 3 (2003). 

[PP93] PINKALL U., POLTHIER K.: Computing discrete 
minimal surfaces and their conjugates. Experiment. 
Math. 2, 1 (1993). 

[RLN06] RHEE T., LEWIS J., NEUMANN U.: Real-time 
weighted pose-space deformation on the GPU. Computer 
Graphics Forum 25, 3 (2006), 439–448. 

[SCFRC01] SLOAN P.-P. J., CHARLES F. ROSE I., COHEN 
M. F.: Shape by example. In Proceedings of I3D (2001). 



O. Weber, O. Sorkine, Y. Lipman & C. Gotsman / Context-Aware Skeletal Shape Deformation 

© The Eurographics Association and Blackwell Publishing 2007. 

[SCOIT05] SORKINE O., COHEN-OR D., IRONY D., TOLEDO 
S.: Geometry-aware bases for shape approximation. 
IEEE TVCG 11, 2 (2005), 171–180. 

[SP04] SUMNER R. W., POPOVIĆ J.: Deformation transfer 
for triangle meshes. ACM Trans. Graph. 23, 3 (2004), 
399–405. 

[SYBF06] SHI L., YU Y., BELL N., FENG W.-W.: A fast 
Multigrid algorithm for mesh deformation. ACM Trans. 
Graph. 25, 3 (2006), 1108–1117. 

[SZGP05] SUMNER R. W., ZWICKER M., GOTSMAN C., 
POPOVIĆ J.: Mesh-based inverse kinematics. ACM Trans. 
Graph. 24, 3 (2005), 488–495. 

[Tol03] TOLEDO S.: TAUCS: A Library of Sparse Linear 
Solvers, version 2.2. Tel-Aviv University, Available 

online at http://www.tau.ac.il/~stoledo/taucs/, Sept. 
2003. 

[WPP07] WANG R. Y., PULLI K., POPOVIĆ J.: Real-Time 
Enveloping with Rotational Regression. ACM Trans. 
Graph. 26, 3 (2007). 

[YHM06] YAN H.-B., HU S.-M., MARTIN R. R.: Skeleton 
based shape deformation using simplex transformations. 
In Proceedings of CGI (2006), pp. 66–77. 

[YZX*04] YU Y., ZHOU K., XU D., SHI X., BAO H., GUO 
B., SHUM H.-Y.: Mesh editing with Poisson-based gradi-
ent field manipulation. ACM Trans. Graph. 23, 3 (2004), 
644–651. 

[ZRKS05] ZAYER R., RÖSSL C., KARNI Z., SEIDEL H.-P.: 
Harmonic guidance for surface deformation. In Com-
puter Graphics Forum (2005), pp. 601–609. 

 


