
Stretchable and Twistable Bones for Skeletal Shape Deformation

Alec Jacobson Olga Sorkine
New York University & ETH Zurich

Original LBS DQS STBS
Figure 1: Left to right: the Beast model is rigged to a skeleton in its rest pose. The neck is stretched and the arms are twisted and stretched
using linear blend skinning. LBS relies solely on per-bone scalar weight functions, resulting in the explosion of the head and hands. The
candy-wrapper artifact of LBS is also noticeable at the elbows. The dual quaternion skinning (DQS) solution [Kavan et al. 2008] correctly
blends rotations, avoiding the candy-wrapper artifact, but reliance on bone weights alone unnaturally concentrates the twisting near the
elbows. DQS also does not alleviate the stretching artifacts. Our solution, stretchable, twistable bones skinning (STBS), uses an extra set of
weights per bone, allowing stretching without explosions and smooth twisting along the entire length of each arm.

Abstract

Skeleton-based linear blend skinning (LBS) remains the most popu-
lar method for real-time character deformation and animation. The
key to its success is its simple implementation and fast execution.
However, in addition to the well-studied elbow-collapse and candy-
wrapper artifacts, the space of deformations possible with LBS is
inherently limited. In particular, blending with only a scalar weight
function per bone prohibits properly handling stretching, where
bones change length, and twisting, where the shape rotates along
the length of the bone. We present a simple modification of the LBS
formulation that enables stretching and twisting without changing
the existing skeleton rig or bone weights. Our method needs only an
extra scalar weight function per bone, which can be painted man-
ually or computed automatically. The resulting formulation sig-
nificantly enriches the space of possible deformations while only
increasing storage and computation costs by constant factors.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: shape deformation, articulated character animation,
linear blend skinning

Links: DL PDF WEB VIDEO

1 Introduction

Skinning and skeletal deformation remain standard for character
animation because the associated deformation metaphor is directly
intuitive for many situations: most characters are creatures or hu-
mans who ought to behave as if a skeleton was moving underneath
their skin. The motion capture pipeline, for example, explicitly
relies on this metaphor to build a subspace representation of hu-
man motion [Anguelov et al. 2005]. At the cost of performance,
some applications demand physical accuracy, ensuring preservation
of volume or simulating muscles [Teran et al. 2005]. Other applica-
tions, such as video games, crowd simulation and interactive anima-
tion editing, cannot afford to compromise real-time performance, so
they trade accuracy for speed and often adopt the simplest and most
efficient implementation of skeletal deformation.

The long-standing standard real-time skeletal deformation method
is linear blend skinning (LBS), also known as skeletal subspace de-
formation or enveloping [Magnenat-Thalmann et al. 1988; Lewis
et al. 2000]. In a typical workflow, a trained rigging artist manually
constructs and fits a skeleton of rigid bones within the target shape.
The skeleton is bound to the shape by assigning a set of correspon-
dence weights for each bone, a process which can be tedious and
labor-intensive. To deform the shape, animators assign transforma-
tions to each skeleton bone, either directly or with the assistance of
an inverse kinematics engine or motion capture data. These trans-
formations are propagated to the shape by blending them linearly
as matrix operations according to the bone weights.

Linearly blending matrix transformations with scalar weight func-
tions has a number of limitations. Many improvements of LBS
focus on the problems arising from linearly blending rotations as
matrices, which results in shape collapses near joints. Multi-weight
enveloping (MWE) [Wang and Phillips 2002; Merry et al. 2006]
and Dual Quaternions [Kavan et al. 2008] have been proposed as
alternative rotation blending methods. However, a different set
of limitations arises from the fact that using only a single scalar
weight function per bone limits the space of possible deformations.
We show that neither LBS nor its improvements properly handle
stretching, where bones change length, nor twisting, where the skin

http://doi.acm.org/10.1145/2024156.2024199
http://portal.acm.org/ft_gateway.cfm?id=2024199&type=pdf
http://igl.ethz.ch/projects/stretchable-twistable-bones/
http://igl.ethz.ch/projects/stretchable-twistable-bones/stretchable-twistable-bones.mp4


twists along the length of a bone, as in the human forearm (see
Fig. 1).

Our goal is to expand the space of deformations possible with skin-
ning to include stretching and twisting. We achieve this by using
an additional set of weights for each bone. We call them end-
point weights as they reveal correspondences between the shape
and the endpoints of each bone. These additional weights allow
us to modify standard skinning formulas — in particular, LBS and
dual quaternion skinning (DQS) — to explicitly expose stretching
and twisting of bones. We hence term our method “stretchable,
twistable bones skinning” (STBS). Deformation computation re-
mains embarrassingly parallel, and the involved extra storage and
computation costs are minimal. Unlike other methods that employ
additional weights, our endpoint weights have a clear and intu-
itive geometric meaning and thus may be painted manually. Al-
ternatively, capitalizing on recent methods like [Baran and Popović
2007] that build skeletons and compute bone weights automatically,
our endpoint weights may similarly be computed automatically,
keeping pipelines fully automatic if desired.

Many artists will be hesitant to change to a new skinning scheme.
Our solution complements the typical skinning environment with-
out changing the rigid skeleton metaphor or interfering with exist-
ing controls: if bones are not stretched or twisted, the deformation
remains the same as defined by the underlying skinning method.
We also take advantage of existing skinning rigs, allowing users to
opt in without modifying their existing skeletons or bone weights.

Problem context. Skeletal skinning with bone weights works
well because bones as deformation handles properly capture the
natural rigidity of body parts. Linearly blending bone trans-
formations via bone weight functions efficiently expresses rigid-
ity along bones during bending, packing smooth transitions near
joints, where the weights briefly overlap [Magnenat-Thalmann
et al. 1988]. Unfortunately, bone weights that produce natural bend-
ing are insufficient for producing plausible stretching and twisting,
because they are poor at controlling the subspace along the bone.

Works like [Wang and Phillips 2002; Merry et al. 2006] improve
LBS by supplying additional weights per bone. These extra weights
are additional degrees of freedom which can alleviate joint collapse,
and perform twisting better. However, these additional weights do
not retain an immediate or intuitive geometric meaning, since they
essentially correspond to individual transformation matrix entries.
As a result, they cannot be easily painted or adjusted manually, but
only computed automatically via fitting example poses of the target
shape. Often such example poses do not exist or are difficult to de-
sign, making these improvements challenging to apply in practice.

Even with the reliance on example poses aside, the deformation for-
mulations of multi-weight enveloping methods do not sufficiently
expand the space of deformations to capture stretching. Consider
for example a single bone within a cigar-like shape, as in Fig. 2.
In order to maintain good properties such as reproduction of the
identity transformation and translational and rotational invariance,
the bone’s LBS weights and any of the extra weights of [Wang and
Phillips 2002; Merry et al. 2006] must equal 1 everywhere on the
shape. This means that if the bone changes its length, the only
choice is to scale the whole shape by the same transformation, re-
sulting in “explosion” past either endpoint.

To overcome LBS artifacts, riggers often manually subdivide bones
or add special anatomically incorrect bones. Painting weights for
these special bones is difficult because their intuitive meaning is
less clear. The method of [Mohr and Gleicher 2003] uses example
poses to determine such extra bones and their weights automati-
cally. With enough extra bones with proper weights, twisting and

Original

LBS/DQS/MWE

STBS

Figure 2: A single bone controls a cigar shape (top). With only one
bone, the weights of LBS and [Wang and Phillips 2002; Merry et al.
2006] must equal 1 everywhere. When the bone is stretched, these
methods must scale the entire shape, resulting in explosion past the
bone’s endpoints (center). While the bone weights in our method
must also be 1 everywhere, the endpoint weights are allowed to
vary, such that proper stretching is achievable (bottom).

stretching can be achieved, but at the sacrifice of an anatomically
meaningful skeleton.

Other works such as [Forstmann and Ohya 2006; Yang et al. 2006;
Forstmann et al. 2007] use curve or spline skeletons to cope with
LBS artifacts. These methods share a similar foundation as our
method, but focus on fixing joint collapse and do not explicitly treat
stretching. To define correspondences between their curved skele-
ton “bones” and points on the shape, they rely on inverse Euclidean
distance schemes which ignore the geometry of the shape being
animated. The new rigging tools and controls needed for curved
skeletons are inconsistent with the existing rigging pipeline [Kavan
et al. 2008].

Instead of relying on additional weights or alternative rigging
metaphors, Kavan et al. [2008] directly solve the joint collapse and
candy-wrapper artifacts by blending rigid bone transformations as
dual quaternions rather than matrices, leaving the skeleton and bone
weights metaphor untouched. However, DQS still relies on a single
set of bone weights, so stretching remains unsolved and twisting
must still be concentrated near joints (see Fig. 3).

Recent works in 2D and 3D have successfully demonstrated the
flexibility of point handles with associated weight functions (see
e.g. [Langer and Seidel 2008; Jacobson et al. 2011]). Point weights
by construction vary over the shape more than bone weights, and
typically, much of the shape is significantly affected by two or more
points. This means they are unsuitable for bending limbs rigidly,
but properly capture stretching (see Fig. 4). Many works on shape
editing and deformation advocate the point handle metaphor (see
e.g. [Igarashi et al. 2005] or the survey in [Botsch and Sorkine
2008]), albeit at much higher computational costs of surface de-
formation due to the involved global optimizations.

Contributions. Our contribution is to combine the notions of
point weights and bone weights, allocating each to the tasks they
do well, while maintaining the standard skeleton skinning frame-
work. In our technique, bone weights continue to enforce rigid-
ity and control smooth bending. In addition, we introduce point
weights at bone endpoints to enable proper stretching and twisting.
Since our goal is orthogonal to fixing the rotation blending artifacts
of LBS, our method complements techniques like DQS and works
with any underlying skinning method. We show that our method
extends the space of deformations available for skinning in a use-
ful way, demonstrate 2D and 3D examples of bending, stretching
and twisting, and discuss several options for obtaining the required
endpoint weight functions.



Original LBS/DQS/MWE STBS Original LBS STBS (1)DQS STBS (2)

Figure 3: Left: A single bone controls a box in 3D. The bone’s weights in LBS, DQS, and MWE must equal 1 everywhere. If the bone twists
about its axis by 315 degrees, these methods must twist the entire shape uniformly, i.e. simply rigidly rotate it. The bone weights in our method
must also be 1 everywhere, but the endpoint weights are allowed to vary, so interesting twisting may be spread over the entire shape. Right:
Two bones control a box in 3D. In order to bend properly, the bone weights in an LBS or DQS rig must only overlap close to the joints. As a
result these methods must pack interesting twisting near joints. LBS linearly blends rotation matrices, resulting in the candy-wrapper effect.
DQS corrects this artifact by blending rotations as quaternions, but twisting is still concentrated near the joint. Our method keeps the same
bone weights, but our extra endpoint weights enable twisting to be spread across the length of one bone or both bones.

Original

Bone weights Point weights STBS

Figure 4: Bones properly capture rigidity necessary to bend a leg
(upper left), but stretching with bone weights explodes the foot and
knee unintuitively (lower left). Point-handles properly treat stretch-
ing as blended translations (lower center), but blending rotations
causes limbs to lose their rigidity (upper center). Our stretch-
able bones solution uses bone weights and point weights, allocating
each to the tasks they do well. Our bones bend smoothly at joints
(upper right) and stretch intuitively (lower right).

2 Stretchable, twistable bones

Our goal is to derive a simple skinning equation, capable of
deforming 2D and 3D shapes by a skeleton whose bones may
stretch and (in 3D) twist. Let S ⊂ Rd denote our target shape
in dimension d = 2, 3. We denote the set of (possibly dis-
joint and unordered) bones in the skeleton by the line segments
Bi = {(1− t)ai + tbi | t ∈ [0, 1]}, i = 1, ...,m. We derive our
skinning equation by first decomposing the basic linear blend skin-
ning equation. Here, the user defines affine transformations Ti for
each boneBi. The new positions for all points p ∈ S are computed
as the weighted combinations:

p′ =

m∑
i=1

wi(p)Tip, (1)

where wi : S → R is the scalar bone weight function associated
with bone Bi. If the bone transformations Ti are rigid, they can be
intuitively decomposed into translation and rotation parts, yielding:

p′ =

m∑
i=1

wi(p)
{
a′i +Ri (−ai + p)

}
, (2)

where Ri is the user-defined rotation that takes the bone Bi’s rest
vector (bi−ai) to its pose vector (b′i−a′i). If the bones are allowed

to change length then a scaling term is needed to make sure that
the bone endpoints reach their pose positions. The decomposition
becomes:

p′ =

m∑
i=1

wi(p)
{
a′i +Ri (Si (−ai + p))

}
, (3)

where Si performs anisotropic scaling in the reference frame of
Bi, namely, Si = X−1

i AiXi, where Xi rotates (bi − ai) to the
x-axis and Ai scales anisotropically along the x-axis by a factor of
‖b′i − a′i‖/‖bi − ai‖.

Notice that for each bone Bi, Si and Ri are constant over S, so
that there is no choice for each bone but to rotate and stretch all
points uniformly. For stretching this means that if p lies beyond an
endpoint of a bone, it will get overly stretched, as shown in Fig. 2.
This effect is not removed even when multiple bones deform an area
(e.g. around a joint), resulting in unwanted bulging (see Fig. 4). As
for twisting, a bone twists all attached points around its axis rigidly
(see Fig. 3), relying on the weighted average to blend twists from
different bones. This effectively packs any interesting twisting near
the joints where bone weights overlap.

The above problems are due to missing information: a point p ∈ S
does not “know” where on each bone Bi it is attached, i.e., it does
not know its position relative to either of the bone’s endpoints. This
causes the excessive stretching (instead of localizing it to the bone
area) and prevents gradual twisting along the bone.

We now insert this missing information in the form of endpoint
weight functions ei(p) for each bone. These functions vary from 0
to 1 as p’s correspondence shifts from endpoint ai to bi. With these
extra weight functions we have enough information to fix Eq. 3 to
handle stretching and twisting correctly. First, we replace the scal-
ing term Si with a weighted translation along the bone direction:

p′ =

m∑
i=1

wi(p)
{
a′i +Ri (ei(p) si + (−ai + p))

}
, (4)

where si = (
‖b′

i−a′
i‖

‖bi−ai‖
− 1)(bi − ai), the full stretch vector at bi.

To allow twisting along bones, we insert an additional rotation term:

p′ =

m∑
i=1

wi(p){a′i + (5)

RiKi (ei(p)) (ei(p) si + (−ai + p))},

where Ki(t) is the twisting rotation about the axis (bi − ai) by
angle (1 − t)θai + tθbi . The angles θai and θbi are the user-
defined twists at the endpoints ai and bi, respectively. The new



STBS with LBSOriginal STBS with DQS LBS DQS

Figure 5: Left to right: A human model is rigged to a skeleton using bounded biharmonic bone and endpoint weights. Its arm is twisted by
180 degrees, spreading the twist along the length of the upper and lower arm. In its twisted state, the arm is bent at the elbow. Joint collapse
artifacts are corrected by switching to DQS as the underlying skinning formulation. Finally, the neck and arm are stretched; notice that the
head and hand do not explode. In contrast, using LBS results in joint collapse, isolated twisting and shape explosion. DQS prevents joint
collapse, but twisting is still packed near joints and proper stretching is not achieved.

rotation Ki(ei(p)) is a function of p and thus is not constant over
S, enabling interesting twisting along each bone. Notice that if
bone Bi is not stretched or twisted at its endpoints, its contribution
is the same as in the original skinning equation (1).

2.1 Dual-quaternion skinning

Since we are blending rigid transformations, by applying the dis-
tributive property, Eq. 5 may be simplified into a deformation equa-
tion that consists of a single rotation and translation per bone:

p′ =

m∑
i=1

wi(p) {Ti (ei(p)) +Ri (ei(p))p} . (6)

Both the translations Ti and the rotations Ri are functions of the
endpoint weight functions ei, evaluated at p, but they are constant
w.r.t. the bone weight functions wi. Thus far our skinning equation,
like LBS, treats these translations and rotations as matrix operators
and linearly combines them across bones as a sum of each matrix
element weighted by the respective bone weights wi.

Instead, we may blend Ti and Ri in their dual quaternion
forms [Kavan et al. 2008]. As expected, DQS eliminates collapses
near joints when bones are rotated. Combining DQS with our
stretchable, twistable bones makes for a powerful and expressive
skinning equation, as can be seen in Fig. 5.

2.2 Properties of good endpoint weights

For the stretchable, twistable bones deformation equation (5) to
produce visually good deformations, care must be taken in defining
both the bone weight functions wi and the endpoint weight func-
tions ei. The desirable properties for a bone weight wi are the same
as in standard skinning (see e.g. [Jacobson et al. 2011] for a de-
tailed discussion): the weight function should be shape-aware (i.e.,
dependent on the distance measured in the shape, as opposed to
the ambient Euclidean space), should equal 1 on the rigid region
corresponding to the bone and smoothly fall off toward 0, reaching
exactly 0 on rigid parts corresponding to other bones; the weights
should be bounded between 0 and 1, since negative weights lead
to unintuitive “opposite” deformation effects and weights greater
than 1 exaggerate the prescribed transformations; the bone weights
should partition unity at all points on the shape.

The list of desirable properties for endpoint weights is similar to
that of bone weights, namely they should vary smoothly on S,
be shape-aware, and bounded between 0 and 1. In addition, the
Lagrange (interpolation) property must be fulfilled, to ensure that
user-defined positions and twists applied at endpoints are met:
ei(ai) = 0 and ei(bi) = 1. Furthermore, in 2D, since bones

lie directly on the shape they control, the endpoint weight func-
tions should provide linear interpolation along their bone segments,
i.e., ei(p(t)) = t for p(t) = (1 − t)ai + tbi, t ∈ [0, 1]. In
3D, bones are typically inside the volume enclosed by the shape,
so this requirement becomes a “convergence” requirement: end-
point weight functions should approach linear interpolation as the
shape approaches the bones. Notice that (in 2D) linear interpola-
tion combined with the boundedness property contradicts smooth-
ness exactly at the bone endpoints, where ei will only be C0. The
importance of linear interpolation over smoothness depends on the
application. Note also in (5) that ei is completely independent of
the other endpoint and bone weights. Therefore, endpoint weights
do not need to partition unity between themselves or with any of
the bone weights.

2.3 Defining endpoint weights

Endpoint weights, like bone weights, may be painted manually.
This is feasible because, unlike the extra weights of [Wang and
Phillips 2002] and [Merry et al. 2006], our extra weights have a
clear geometric meaning: for each bone they tell each point in the
domain how much it should stretch and twist. The desired weight
properties are intuitive and conceivably specifiable by a user as-
sisted with sufficient 2D and 3D weight painting tools (e.g. Maya).
As with LBS, both the bone weights wi and the point weights ei
may be edited interactively, so a user can make changes to the
weights and see the results immediately.

Strictly speaking, the endpoint weights of different bones are unre-
lated. However, we have found that it is sufficient to supply tradi-
tional point-based weight functions for each joint in the skeleton.
Then the endpoint weights for each bone become a combination of
that bone’s incident joint weights:

ei =
1

2
((1− jai) + jbi) , (7)

where jai and jbi are the weight functions at the joints incident on
bone Bi at its respective endpoints ai and bi.

Still, painting weights manually can be tedious and time-
consuming. In the case that bone weights were assigned automati-
cally, manually painting endpoint weights would disrupt a fully au-
tomatic rigging pipeline. Thus, we would like the option to define
endpoint weights automatically.

There are many existing automatic methods for computing such
weights. One simple method is to project each point p onto the
nearest point of each bone, taking the fraction of where it falls be-
tween the bone’s endpoints as its weight:



Figure 6: The left image visualizes bone weights for a skeleton in a human model. Each bone is assigned a color. The color at a point
on the shape is the weighted average of each bone’s color according to the bone weights. The series of images on the right visualizes the
endpoint weights of each bone. Red and white correspond to weights of 1 and 0 respectively. Both the bone weights and endpoint here were
automatically computed using BBW.

eproji(p) =
‖proji(p)− ai‖
‖bi − ai‖

, (8)

where proji(p) is the projection of point p onto Bi. These weights
satisfy the boundedness and linear interpolation properties, but they
largely ignore the shape of S and are only C0 where they reach the
values of 1 and 0. Variants of this type of weight function were used
for the curved skeletons in [Forstmann and Ohya 2006; Yang et al.
2006; Forstmann et al. 2007] to associate a frame with each point
p that corresponds to the curve’s local frame.

Another immediate method would be to use inverse Euclidean dis-
tance weighting to define weights for the set of joint points:

jIEDWi(p) =
1

di(p)α
, (9)

where di(p) is the Euclidean distance from p to the rest position
of joint i. While endpoint weights derived from these joint weights
may be smooth (for α ≥ 2) and bounded, they again ignore the
shape of S, and their locality diminishes beyond the endpoints as
the ratio of distances to the two endpoints regresses to 0.5.

The above methods are easy to implement and computationally
lightweight. They are unsatisfactory to be used directly but serve
well as initial guesses for manually painting the endpoint weights.

The automatic bone weights method presented in Section 4 of
[Baran and Popović 2007], also known as Bone Heat (BH), may
be trivially adapted to define joint weights (by considering a bone
shrunk to a point). These weights require visibility computation
and solving of large sparse linear systems of equations, but we have
found that the quality of these weights in many cases justifies the
computation costs. The methods of [Weber et al. 2007] and [Wang
et al. 2007] may similarly be adapted to define joint weights. How-
ever, they only consider the surface of the shape rather than its vol-
ume, so the shape-awareness property is not fully achieved. Fur-
thermore, these methods also require example poses, which often
do not exist.

The bounded biharmonic weights wBBW of [Jacobson et al. 2011]
(BBW) minimize the Laplacian energy subject to the constraint
wBBW ∈ [0, 1] (and additional interpolation constraints, as re-
quired). This method may be used to compute joint weights or end-
point weights directly. The weights have been shown to be smooth,
localized and shape-aware. The Lagrange and linear interpolation
properties are satisfied by imposing appropriate boundary condi-
tions. These weights are the solution to a quadratic programming
problem, which means they are somewhat slower to compute than
the previous methods. Another limitation of this method is that
it requires a volume discretization, which is often difficult to ob-
tain for surfaces in 3D. The auxiliary interior vertices of the vol-
ume discretization increase the complexity of the precomputation.
Nevertheless, we have found that when a volume discretization is
available, these weights produce the highest quality results.

Original eproj eIDW eBH eBBW

Figure 7: Left to right: A single bone controls the Giraffe’s
head and neck in 2D. Projecting onto the bone to obtain endpoint
weights eproj results in a nonsmooth and shape-unaware deforma-
tion. Endpoint weights eIDW derived from inverse Euclidean dis-
tance joint weights are smooth, but shape-unaware and suffer from
the fall-off effect (the top of the head sags too low). In this 2D ex-
ample, BH endpoint weights eBH and BBW endpoint weights eBBW

are virtually indistinguishable, producing appealing deformations.

eBH eBBWOriginal

Figure 8: A single bone controls a box in 3D (left). A 360 degree
twist is applied to an endpoint using BH endpoint weights eBH (mid-
dle). Notice the fall-off effect in the regions beyond each handle: the
full twist is not reached. The same twist is applied using BBW end-
point weights eBBW (right). These weights have proper locality, so
the full twist is achieved.

When computing both bone weights and endpoint weights from
scratch, BBW may be preferred since the same implementation
produces high quality weights for both bones and endpoints (see
Fig. 6). When bone weights already exist, the additional endpoint
weights obtained by BBW and by extending BH are both high qual-
ity. In many cases deformations using the endpoint weights ob-
tained with these methods and the same bone weights are virtually
identical (see Fig. 7 and Fig. 9). However, the extension of BH
may suffer from the fall-off effect in regions beyond endpoints (see
Fig. 8).

3 Implementation and results

We implemented stretchable, twistable bones skinning (STBS) us-
ing LBS and DQS as the underlying transformation blending mech-
anisms. Our implementation supports manually painting bone and
endpoint weights or automatically computes them using [Baran and
Popović 2007] (BH) or [Jacobson et al. 2011] (BBW). Our tim-
ings for computing endpoint weight functions are similar or faster
than the bone weight computation times originally reported in those
works. When using BH our precomputation time per endpoint



wBH, eBH wBH, eBBW wBBW, eBH wBBW, eBBW

Original

Figure 9: Left to right: The Ogre (inset) is deformed with BH bone weights wBH and BH endpoint weights eBH. Switching to BBW endpoint
weights eBBW improves the deformation only slightly (e.g. see the shoulder). Changing endpoint weights cannot fix problems arising from
insufficient bone weights. Instead, switching to BBW bone weights wBBW noticeably improves the deformation around the head, shoulder and
belly. With same bone weights, the endpoint weights of these methods produce visually similar results (comparing the first and final pairs).

Figure 10: A typical skinning rig must break the spine into many
smaller bones in order to capture twisting. Here, a human model is
twisted along the spine by applying twists at the top endpoint of a
single bone. The endpoint weights smoothly blend the twist along
the torso. They may be filtered through a spline curve to adjust
their effect interactively. Filtered endpoint weights concentrate the
twist in the abdomen, keeping the chest more rigid (right). Insets
visualize the identity and user-defined spline filters, respectively.

Figure 11: A dog’s yawn is exaggerated with stretchable bones.
Refer to the accompanying video for an animation of this figure.

weight function is on the order of milliseconds in 2D and seconds
in 3D. When using BBW our precomputation time per endpoint
weight function is less than a second in 2D and on the order of tens
of seconds in 3D, where we use heavily graded tetrahedral meshes
for the volume discretization. Endpoint weights can be computed
faster than bone weights by taking advantage of the fact that we
only care about a bone’s endpoint weights in regions of the domain
where the bone’s bone weight function is greater than zero. In our
examples, we limit the optimization to the portion of the domain
with corresponding bone weights greater than 1e-7.

A vertex shader implementation of STBS does not differ much from
that of LBS or DQS. It requires loading the additional endpoint
weights into constant memory once per deformation session, and in
3D transferring the new per-endpoint twist parameters along with
the usual bone transformations. Finally, the skinning equation is
replaced with either (5) or the dual quaternion form of (6).

The automatic weights are precomputed before the user begins ap-
plying transformations to the bones. In terms of efficiency at de-
formation time, our method requires twice as many weights as LBS
or DQS: it stores the same bone weights and the extra endpoint
weights per bone. The original LBS or DQS require respective 8
or 12 shader operations per shape vertex per bone [Kavan et al.
2008]. Because the transformations in (6) are not constant over the
shape, using STBS with LBS or DQS as the underlying blending
method requires the extra operations need to build the transforma-
tion at each shape vertex. In our implementation we count this as
an extra 12 operations per shape vertex per bone.

Twisting and stretching bones richly expands the space of possi-
ble deformations without forfeiting the rigid skeleton metaphor or
modifying existing bones and bone weights. In Fig. 5, a skeleton
rigged to a human properly twists, stretches and bends its arm us-
ing STBS. Blending transformations between bones as dual quater-
nions corrects rotational artifacts when bending at joints.

In 2D, the ability to stretch bones without worrying about “explo-
sions” near endpoints enables real-time creation and playback of
animated of images. Fig. 12 shows stretchable bones deforming a
single image into a life-like series of poses.

Endpoint weights allow interesting twisting in 3D to occur over
large regions of a shape controlled by a single bone. In Fig. 10,
a human’s entire torso is twisted smoothly using a single twistable
bone. The endpoint weights in our system may be filtered inter-
actively to alter their effect. The original weights, automatically
computed using BBW, twist the human’s chest too much. Using a
spline filter, the endpoint weights are interactively adjusted so that
the twist is concentrated in the abdomen.

Exaggeration is a cornerstone principle in animation. Stretchable
bones facilitate stylized and exaggerated actions. In Fig. 11, stretch-
ing the bones in a dog’s mouth emphasizes a yawning action, avoid-
ing distracting shape explosion artifacts.



Figure 12: With our method, bone joints may be freely dragged about by the user without worry that changes in bone length will cause
explosion artifacts. Here an old photograph of Max Schmeling is brought to life.

4 Conclusion

We have shown that with only slight modifications to existing skin-
ning equations, we are able to expand the space of deformations
possible with standard rigid skeleton rigs. Our method does not
change the rigid skeleton metaphor, nor does it modify existing
skeletons or bone weights. The additional endpoint weights re-
quired by our technique are feasibly painted by the user or com-
puted using automatic point weight methods.

Though our skinning formula and extra weights expand the space
of possible deformations, our method is still inherently limited by
its simplicity. Like all skinning methods, STBS cannot prevent self-
collisions, maintain global properties (e.g. total volume), minimize
non-linear deformation energies, or respond to physically based
forces. An obvious extension would be to use STBS as a reduced
deformable model for more complicated methods.

In future work, we would like to explore further the role of extra
weight functions. For example, the weights used to control stretch-
ing and twisting do not have to be the same. It would be interesting
to expose these as separate parameters. We would also like to con-
sider the orthogonal problem of specifying stretchable, twistable
bone transformations with inverse kinematics or procedural anima-
tion. Our endpoint weights have a clear geometric meaning, such
that their computation does not require example poses, but fitting to
example poses could allow more accurate weights and enable skin-
ning animations with stretchable, twisting bones as in, e.g. [James
and Twigg 2005; Kavan et al. 2010]. Finally, it would be interest-
ing to control advanced effects such as muscle bulging by applying
simple filters to existing endpoint weights.

Acknowledgements

We are grateful to Ofir Weber and Ilya Baran for illuminating dis-
cussions, to the United States Library of Congress for its collection
of public domain photographs including the half-portrait of Max
Schmeling and to Felix Hornung for beautifying the teaser image.
This work was supported by an SNF award 200021 137879.

References

ANGUELOV, D., SRINIVASAN, P., KOLLER, D., THRUN, S.,
RODGERS, J., AND DAVIS, J. 2005. SCAPE: shape completion
and animation of people. ACM Trans. Graph. 24, 3, 408–416.

BARAN, I., AND POPOVIĆ, J. 2007. Automatic rigging and ani-
mation of 3D characters. ACM Trans. Graph. 26, 3, 72:1–72:8.

BOTSCH, M., AND SORKINE, O. 2008. On linear variational sur-
face deformation methods. IEEE TVCG 14, 1, 213–230.

FORSTMANN, S., AND OHYA, J. 2006. Fast skeletal animation by
skinned arc-spline based deformation. In Proc. Eurographics,
short papers volume.

FORSTMANN, S., OHYA, J., KROHN-GRIMBERGHE, A., AND
MCDOUGALL, R. 2007. Deformation styles for spline-based
skeletal animation. In Proc. SCA, 141–150.

IGARASHI, T., MOSCOVICH, T., AND HUGHES, J. F. 2005. As-
rigid-as-possible shape manipulation. ACM Trans. Graph. 24.

JACOBSON, A., BARAN, I., POPOVIĆ, J., AND SORKINE, O.
2011. Bounded biharmonic weights for real-time deformation.
ACM Trans. Graph. 30, 4.

JAMES, D. L., AND TWIGG, C. D. 2005. Skinning mesh anima-
tions. ACM Trans. Graph. 24, 3, 399–407.

KAVAN, L., COLLINS, S., ZARA, J., AND O’SULLIVAN, C. 2008.
Geometric skinning with approximate dual quaternion blending.
ACM Trans. Graph. 27, 4, 105:1–105:23.

KAVAN, L., SLOAN, P.-P., AND O’SULLIVAN, C. 2010. Fast and
efficient skinning of animated meshes. Comput. Graph. Forum
29, 2, 327–336.

LANGER, T., AND SEIDEL, H.-P. 2008. Higher order barycentric
coordinates. Comput. Graph. Forum 27, 2, 459–466.

LEWIS, J. P., CORDNER, M., AND FONG, N. 2000. Pose
space deformation: a unified approach to shape interpolation and
skeleton-driven deformation. In Proc. SIGGRAPH, 165–172.

MAGNENAT-THALMANN, N., LAPERRIÈRE, R., AND THAL-
MANN, D. 1988. Joint-dependent local deformations for hand
animation and object grasping. In Graphics Interface, 26–33.

MERRY, B., MARAIS, P., AND GAIN, J. 2006. Animation space:
A truly linear framework for character animation. ACM Trans.
Graph. 25, 4, 1400–1423.

MOHR, A., AND GLEICHER, M. 2003. Building efficient, accurate
character skins from examples. ACM Trans. Graph. 22, 3.

TERAN, J., SIFAKIS, E., BLEMKER, S. S., NG-THOW-HING, V.,
LAU, C., AND FEDKIW, R. 2005. Creating and simulating
skeletal muscle from the visible human data set. IEEE TVCG
11, 3, 317–328.

WANG, X. C., AND PHILLIPS, C. 2002. Multi-weight enveloping:
least-squares approximation techniques for skin animation. In
Proc. SCA, 129–138.

WANG, R. Y., PULLI, K., AND POPOVIĆ, J. 2007. Real-time
enveloping with rotational regression. ACM Trans. Graph. 26, 3.

WEBER, O., SORKINE, O., LIPMAN, Y., AND GOTSMAN, C.
2007. Context-aware skeletal shape deformation. Comput.
Graph. Forum 26, 3, 265–274.

YANG, X., SOMASEKHARAN, A., AND ZHANG, J. J. 2006. Curve
skeleton skinning for human and creature characters. Comput.
Animat. Virtual Worlds 17, 3-4, 281–292.


