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We present a scalable approach for the optimization of flip-preventing
energies in the general context of simplicial mappings, and specifically for
mesh parameterization. Our iterative minimization is based on the observa-
tion that many distortion energies can be optimized indirectly by minimizing
a simpler proxy energy and compensating for the difference with a reweight-
ing scheme. Our algorithm is simple to implement and scales to datasets
with millions of faces. We demonstrate our approach for the computation
of maps that minimize a conformal or isometric distortion energy, both in
two and three dimensions. In addition to mesh parameterization, we show
that our algorithm can be applied to mesh deformation and mesh quality
improvement.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling—Geometric algorithms, languages,
and systems

General Terms: Mesh Parameterization, Optimization

Additional Key Words and Phrases: parameterization, bijectivity, scalability

1. INTRODUCTION

Mappings are an essential tool in computer graphics and geometry
processing. One of the most basic uses, and the main focus of this
paper, is mesh parameterization. Many practical applications such
as texture mapping, remeshing, shape correspondence and attribute
transfer rely on the computation of a low-distortion parameteriza-
tion. The problem has been extensively studied, and a plethora of
algorithms have been devised. Linear methods were proposed first,
providing efficient ways to compute parameterizations, but only able
to ensure injectivity of the map when the mesh boundary is fixed a
priori, which induces a high distortion. As more powerful processors
became available, nonlinear optimization became tractable, allowing
one to compute free boundary, injective or bijective maps of a very
high quality. Still, current nonlinear approaches typically require
long computation times and do not scale well to large datasets, such
as detailed scanned surfaces like the one in Fig. 1.

In this paper, we propose a simple algorithm that combines the
benefits of the two approaches: it scales well to large datasets with
millions of elements (Fig. 1) and minimizes state-of-the-art non-
linear energies (Fig. 2). In particular, we focus on minimizing flip-
preventing energies and we propose an algorithm that is guaran-
teed to produce optimized maps without any flipped elements. On
medium-sized meshes, our algorithm is two orders of magnitude
faster than competing methods, while being able to minimize many
different energies with minimal code changes.
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Fig. 1. We compare the behavior of our algorithm on progressively simpli-
fied versions of the Lucy model. We observe that the number of iterations
required is not dependent on the resolution of the mesh.

The key idea of our method is to minimize the nonlinear energy
using much simpler proxy functions that permit the use of a lo-
cal/global approach. Our algorithm scales well to large datasets
even using a single core, and it can take advantage of the recent
developments in parallel solution of linear systems to be deployed
on multi-core architectures. While we are unable to provide a strict
bound on the convergence rate, we experimentally found that the
number of iterations required by our method is related to the geomet-
ric surface complexity and is not affected by the tessellation density
(Fig. 1). Since each iteration merely requires solving a sparse linear
system, massive datasets can be parameterized quickly.

2. PREVIOUS WORK

Mappings are one the most researched subjects in computer graphics,
and specifically the problem of generating locally injective 2D and
3D mappings has garnered a lot of attention in the past decades. In
this section, we mention only the most closely related work on the
topic of large scale mesh parameterization and we refer to [Floater
and Hormann 2005; Sheffer et al. 2006] for in-depth surveys.
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Fig. 2. A locally injective parameterization obtained by minimizing the symmetric Dirichlet energy [Smith and Schaefer 2015] on a mesh with over 25 million
triangles, computed with our algorithm in 80 minutes. The algorithm starts from a highly distorted locally injective initialization and in only 40 iterations, each
requiring to solve a sparse linear system, it converges to a map with low isometric distortion that is guaranteed to be free of inverted elements.

Linear methods. Linear methods compute a mesh parame-
terization by solving a linear system, where each mesh vertex is
represented as a weighted average of its neighbors. They have been
proposed to parameterize topological disk patches [Tutte 1963] or
topological spheres [Aigerman and Lipman 2015]. For topologi-
cal disks, linear methods can be guaranteed to produce bijective
parameterizations if the patch boundary is fixed to a convex shape
and the weights are positive [Floater 2003]. Free-boundary methods
exist that minimize a measure of conformal distortion [Desbrun
et al. 2002; Lévy et al. 2002; Zayer et al. 2007; Ben-Chen et al.
2008; Mullen et al. 2008], but they are not guaranteed to produce a
bijective map.

Nonlinear methods. Many nonlinear deformation energies
have been proposed in the literature for both conformal and isometric
distortion. They are typically minimized using standard optimization
methods, such as Newton [Sheffer and de Sturler 2001; Chao et al.
2010; Sanan 2014], Gauss-Newton [Sanan 2014], quasi-Newton
[Smith and Schaefer 2015] and second-order cone programming
[Aigerman et al. 2014]. To simplify implementation and reduce
memory usage, several works [Hormann and Greiner 2000; Labsik
et al. 2000; Schreiner et al. 2004] opt for a block descent optimiza-
tion, where in each iteration only a single vertex is free to move.
Similarly, [Levi and Zorin 2014; Fu et al. 2015] optimize an inde-
pendent subset of vertices in parallel. These methods do not scale
to large datasets, since the number of iterations they need grows
quickly with the size of the mesh. In contrast, we observe that the
number of iterations required by our method is related to the geomet-
ric complexity and not the dataset size (Fig. 1): even datasets with
millions of elements can be parameterized within a few iterations.

The local/global minimization of isometric distortion [Sorkine
and Alexa 2007; Liu et al. 2008] iteratively alternates between
a local step and a global step. In the local step, each element is
individually perfectly mapped (without any distortion), and in the
global step, a linear system is solved to stitch all elements back
together. This process very quickly recovers from a bad initialization,
but it is slow to converge to a local minimum when it is close to it.
The decoupling of a local condition from a global “stitching” has
been successfully used in other parameterization algorithms [Weber
et al. 2012] and to enforce complex constraints [Bouaziz et al. 2012;
Poranne et al. 2013]. Our method uses the local/global paradigm
and enriches it with a reweighting scheme to efficiently minimize
nonlinear, flip-preventing energies.

Non-flipping invariant. A recent series of works [Schüller
et al. 2013; Fu et al. 2015; Smith and Schaefer 2015] have proposed

parameterization energies with a term that goes to infinity when
an element inverts. These flip-preventing energies are minimized
starting from a flipless initialization (e.g., [Tutte 1963]) using line
search to ensure that they never leave the feasible region. This
approach is guaranteed to create a locally injective map given a
feasible starting point, but the energies are numerically difficult to
optimize, leading to high running times. Our algorithm is specifically
designed to optimize these energies and, differently from all existing
methods, quickly recovers from the highly distorted starting point.

Bounding, projections. Another approach to the creation of
locally injective maps is based on directly bounding the distortion.
Similar to the above, a parameterization algorithm is first employed
to generate an initial locally injective map. The energy of the map
is then optimized while adhering to a specified distortion bound
[Lipman 2012; Kovalsky et al. 2014; Sanan 2014; Chen and Weber
2015]. A similar, more recent approach projects any map, possibly
with flips, to the closest map that has no flips [Aigerman and Lip-
man 2013; Kovalsky et al. 2015]. The major limitation with these
approaches is that the elements in the solution they generate have
suboptimal distortion. In fact, their distortion tends to be the highest
possible without violating the bound (Fig. 3). These methods are not
guaranteed to find a valid solution [Myles et al. 2014] and they often
need thousands of iterations to find one. An interesting special case
is the convex energy used in ex-rotated elasticity simulations, for
which Liu et al. [2016] propose a numerical approach that can both
minimize the energy and robustly recover from flipped elements.
However, the ex-rotated energy requires to specify a fixed rotation
per element as input, inhibiting its use for parametrization tasks
and limiting its applicability to a very specific isometric distortion
measure [Liu et al. 2016].

Stiffening. Another strategy is the so-called stiffening, where
the idea is to try and coerce inverted elements to reorient correctly.
Examples include [Irving et al. 2004], where an added force acts on
inverted elements in a simulation, and [Martin et al. 2011], where
a volume term is added to the energy of each element. Another
method related to ours is found in [Bommes et al. 2009]: there, the
inverted elements are progressively reweighted in the parameteri-
zation energy, as opposed to minimizing the original energy in the
space of locally injective maps. Finally, the IRLS algorithm [Pighin
and Lewis 2007] can be similarly considered as a special form of
stiffening. All these methods can be enriched with a line search to
ensure the generation of locally injective maps, but they get stuck
before reaching a local minimum and thus produce maps that are
considerably inferior in quality when compared with the results of
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[Lipman 2012] AMIPS [Fu et al.] AMIPS (Ours)

Fig. 3. The bounded ARAP energy (left, result taken from [Fu et al. 2015])
pushes the triangles to the distortion bound, while a direct minimization of
the AMIPS energy [Fu et al. 2015] evenly distributes the distortion over the
surface (middle). Our approach can also optimize the AMIPS energy (right),
further reducing the energy to a local minimum. This model has 11K faces
and took our method less than 20 iterations to converge. Bottom row: the
distortion magnitude is visualized by the saturation of the red color.

our algorithm (Fig. 4). We discuss these methods in more details in
Sec. 4.

Large scale. Computing locally injective maps with a large
number of elements is a challenging numerical problem that has
been tackled in surprisingly few research papers in graphics. Apart
from linear methods that scale well since they only involve the
solution of a linear system, the only other works we are aware of are
ABF++ [Sheffer et al. 2005] and [Kovalsky et al. 2015]. The former
uses a multiresolution hierarchy to make the problem tractable at the
expense of a higher distortion compared to the original ABF [Sheffer
and de Sturler 2001], and it can only optimize for angle preservation.
The algorithm of Kovalsky et al. [2015] is a projection method to the
space of conformal maps. It does not minimize map distortion (Fig.
3), it cannot generate isometric parameterizations [Kovalsky 2016]
and it often fails to find a valid map, making it impractical for many
applications. Our method is the first algorithm that can robustly and
efficiently compute locally injective maps that contain millions of
elements and minimize a conformal or isometric distortion measure.

Other applications. In addition to parameterization, our algo-
rithm can be used to deform 3D objects, and we can also adapt our
method to minimize mesh improvement energies, as suggested in
[Lipman 2012; Aigerman and Lipman 2013; Fu et al. 2015]. “Seam-
less” rigid and conformal parameterizations (i.e., parameterizations
whose gradients match across seams, see [Myles and Zorin 2012;
Myles et al. 2014; Diamanti et al. 2015]) are also supported, al-
though we cannot enforce the integer translations that are necessary
for remeshing applications [Bommes et al. 2012].

3. ALGORITHM

Denote the input triangle or tetrahedral mesh byM = (V, F ), where
V is the set of vertices and F is the set of elements. A common
way to define a distortion energy of a mapping is via a function of
its Jacobians, measuring the distance of each Jacobian to its closest
rotation. We denote the Jacobian of element f ∈ F by Jf . Then the

Stiffening [Bommes 2009]
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Fig. 4. We compare different numerical methods to minimize the symmetric
Dirichlet energy (Eq. (11)) starting from a Tutte’s initialization (top left): the
greedy stiffening [Bommes et al. 2012] (top right), Iteratively Reweighted
Least Squares (bottom left) and our approach (bottom right). See Sec. 4 for
a detailed explanation of these techniques.

energy we wish to minimize is

min
x
E(x) =

∑
f∈F

Af D(Jf (x)), (1)

where D(·) is the distortion measure, x ∈ R|V |×d contains the
mapping coordinates of the vertices (d = 2, 3) and Af is the area
(or volume) of element f . A popular choice is the As-Rigid-As-
Possible (ARAP) measure [Liu et al. 2008], which is defined by

DARAP(Jf (x)) = ‖Jf (x)−R(Jf (x))‖2F , (2)

where R(Jf (x)) is the closest rotation to Jf (x) in the Frobenius
norm, and ‖·‖F denotes the Frobenius norm.

Local/Global optimization. Liu et al. [2008] proposed to
minimize the ARAP energy using a local/global algorithm, an iter-
ative process that alternates between two steps. At iteration k, the
local step greedily pushes the Jacobian of each element towards the
closest minimum, which is a rotation. That is,

Rk
f := R(Jf (xk−1)) = UV>, (3)

where Jf (xk−1) = USV> is the signed SVD of Jf (xk−1). The
global step that follows minimizes the deviation from those rotations,
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essentially averaging the distortion among all elements in order to
stitch them together. This is done by solving

xk = arg min
x

∑
f∈F

Af‖Jf (x)−Rk
f‖2F + λ

∥∥x− xk−1
∥∥2
. (4)

The second term is a proximal term that makes the solution unique,
removing the invariance of the energy to rigid transformations, and
it is equivalent to adding hard constraints to remove these degrees of
freedom. We used λ = 10−4 in this paper. Since the Jacobians are
linear functions of x, the above is a simple quadratic minimization
that can be computed by solving a linear system (see [Liu et al.
2008]), which is always full rank by construction due to the proxi-
mal term. A notable property of the ARAP formulation is that the
local/global scheme decreases the energy in each iteration, both in
the local and the global step [Sorkine and Alexa 2007; Liu et al.
2008].

While the ARAP energy softly penalizes degenerate and inverted
elements, they commonly appear in practice [Civit-Flores and Susin
2014; Martinez Esturo et al. 2014], making the resulting parameteri-
zations unusable in many geometry processing tasks, such as texture
mapping and remeshing (Fig. 5). However, the local/global optimiza-
tion strategy itself is general and has the very interesting property
of making large steps in the minimization when initialized with a
point far from the solution. This well-known property makes the
local/global approach attractive, since a few iterations are sufficient
to obtain a result that is good enough for many practical purposes.
In addition to parametrization, this technique has been successfully
applied to shape deformation [Sorkine and Alexa 2007; Jacobson
et al. 2012], architectural design [Bouaziz et al. 2012], and physical
simulation [Bouaziz et al. 2014], where its fast progress in the initial
iterations is paramount to achieving interactive performance.

To better understand how the local/global algorithm works and
why it progresses quickly in the first iterations, let us first trivially
rewrite it as a descent algorithm. The local step remains the same
(Eq. (3)), and then the global step generates a search direction dk:

dk = x̃k − xk−1, (5)

where x̃k is computed as in Eq. (4) and xk−1 is the previous iterate.
Then the algorithm simply takes a full step in the search direction:

xk = xk−1 + αdk, α = 1, (6)

and the iterations are continued for the next value k := k + 1.

ARAP Symmetric
Dirichlet

Fig. 5. The ARAP energy (left) introduces 6K inverted triangles in the
parametrization (highlighted in magenta), which cause highly distorted re-
gions around the neck and the wing of the Gargoyle. Our algorithm avoids
this problem by minimizing a flip-preventing symmetric Dirichlet energy
(right). This model has 99K faces and took our algorithm 20 iterations and 3
seconds to optimize.

We observe that Eq. (4) minimizes the energy (1) with the ARAP
distortion in (2) for a specific set of rotations. We suggest another
point of view by introducing a family of proxy functions

PRf (Jf ) = ‖Jf −Rf‖2F (7)

and equivalently rewriting Eq. (4) as

xk = arg min
x

∑
f∈F

Af P
Rk

f (Jf (x)) + λ
∥∥x− xk−1

∥∥ . (8)

Note that the proxy in Eq. (7) is almost identical to the ARAP
energy itself in Eq. (2), and they are in fact equal at the current
iterate. Furthermore, we observe that

∇JP
Rk

f (J) = ∇JDARAP(J), (9)

that is, the proxy and the energy have matching gradients w.r.t. the
Jacobian. Since J(x) is a linear function of x, the following also
holds:

∇xP
Rk

f (J(x)) = ∇xDARAP(J(x)). (10)

Since the proxy is quadratic and the gradients match, dk must point
towards a descent direction for Eq. (2).

The reason for the local/global algorithm’s superior performance
when compared with gradient descent or Newton iterations is that
the quadratic proxy used by the local/global algorithm is customized
to be a close fit to the original energy in a more global sense, while
generic optimization methods only fit locally. The rotations Rk

f are
the parameters of the proxy and are strongly tied to the problem at
hand, instead of being coefficients of a generic polynomial.

Flip-preventing energies. We use the observation above to
extend the local/global approach to minimize energies other than
ARAP, such as the challenging flip-preventing distortion energies,
i.e., energies that become infinite when an element degenerates. We
show in Sec. 5 that our algorithm can be easily used to minimize
any rotation invariant distortion energy, but, for the sake of clarity,
we first restrict our discussion to isometric distortion energies, such
as the symmetric Dirichlet energy [Schreiner et al. 2004; Smith and
Schaefer 2015]:

D(Jf (x)) = ‖Jf (x)‖2F + ‖J−1
f (x)‖2F . (11)

The key difference of our approach to all existing methods is that
we rely on an ad-hoc proxy function to find the descent direction at
every step, instead of using the gradient descent direction or relying
on the generic quadratic approximation used in Newton iterations.

Weighted proxy functions. The challenge in extending the
local/global method to a more general energy D is to define a proxy
function P that satisfies a similar condition to Eq. (9), that is, it has
the same gradient as the energy itself. More concisely, that

∇JP(J) = ∇JD(J). (12)

This condition is important, since it directly implies that every de-
scent direction obtained using the proxy is also a descent direction
for D. We propose the following family of proxy functions:

PR
W(J) = ‖W(J−R)‖2F , (13)

where W is a 2 × 2 matrix. The idea is to use something that is
similar to the ARAP proxy (Eq. (7)), with the only difference being
the term W, which is the affine transformation required to warp the
proxy to locally match the gradient of the distortion energy. This
enhanced proxy energy is quadratic (with fixed R and W) and can
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Fig. 6. Minimization of the symmetric Dirichlet energy on the Octopus model. Note how quickly the boundary of the UV map recovers from the distorted
starting point. This model has 299K faces and took 20 iteration and 5.6 seconds to optimize.

be rewritten in matrix form and minimized (see details in Appendix
A).

Given xk−1 and Rk
f , we can find a weight matrix Wk

f , such that
Eq. (12) holds for PR

W:

∇Jf

∥∥Wk
f (Jf −Rk

f )
∥∥2

F
= ∇Jf

D(Jf ), at Jf = Jf (xk−1).
(14)

For brevity, we drop the indices and simply write Eq. (14) as
∇J ‖W(J−R)‖2F = ∇JD(J). We can then expand the l.h.s:

∇J ‖W(J−R)‖2F =

∇Jtr(W>W(J−R)(J−R)>) =

(W>W + WW>)(J−R).

Assuming J−R is invertible, we can manipulate this equation and
find that W must satisfy

W>W + WW>= ∇JD(J) (J−R)−1. (15)

If (J − R)−1 does not exist, we take the pseudo-inverse instead.
Since the left-hand side is semi-positive definite, a solution to Eq.
(15) exists if and only if the right hand-side is semi-positive definite,
which is always the case for isometric energies such as the one in
Eq. (11) (see Sec. 5 for more details). The unique solution can be
found explicitly:

W =

(
1

2
∇JD(J) (J−R)−1

)1/2

, (16)

where the square root is a matrix principal root, which we compute
via diagonalization. Alternatively, this equation can be rewritten to
sidestep the diagonalization to improve performance, as detailed in
Sec. 5 (see Eq. (23)).

Note that ∇JDARAP(J) = 2(J − R), reducing the previous
equation to W = I. Thus, our algorithm reduces to [Liu et al. 2008]
when used on DARAP.

Line search. The proxy function P allows us to find a good
descent direction during the minimization: at each step our algorithm
alternates the computation of optimal rotations (local step) with
the minimization of the proxy function to find a descent direction.
Similarly to Eq. (8), we use the weighted proxy and solve,

pk := arg min
x

∑
f∈F

Af P
Rk

f

Wk
f

(Jf (xk−1)) + λ
∥∥x− xk−1

∥∥ . (17)

Then we use pk to define the search direction,

dk := pk − xk−1 (18)

and we use this direction for the next step,

xk = xk−1 + αdk,

where α is the step size to be determined by a line search minimizing
the original energy (1), without the proximal term. To ensure that
the generated map is flip-free, we start from a locally injective map
(Tutte’s embedding) and we use a line-search strategy similar to
[Smith and Schaefer 2015]. The idea is to choose α such that we
never cross the the point where an element flips. We thus initially set
α = min {0.8αmax, 1}, where αmax is the maximal step size with
no foldovers. We then proceed with a bisection line search, where
the initial interval is [0, αmax], until we find a point that satisfies
Wolfe’s conditions (see [Nocedal and Wright 2006], section 3.4).
Our algorithm is guaranteed to generate a descent direction at every
iteration, and therefore decrease the energy at each iteration. We
have found experimentally that the cosine of the angle between dk

and the gradient of E is always bounded away from zero, although
we lack a formal proof. Assuming this is always true, then by the
Zoutendijk theorem ([Nocedal and Wright 2006] section 3.2) global
convergence could be guaranteed.

Reweighted local/global for isometric energies. Enrich-
ing the local/global algorithm with the matrix reweighting scheme
and line search leads to our algorithm, which is simple to imple-
ment and scales to datasets with millions of elements. Algorithm 1
sketches the pseudocode of our algorithm, and we provide the source
code of our reference implementation on GitHub [Rabinovich 2016].

We analyze the method’s properties in Sec. 4 and we show how
it can be easily extended to various distortion energies and to 3D
locally injective maps in Sec. 5.

Algorithm 1: Reweighted local/global
Input:

A mesh M with a set of vertices V and elements F
Output:

A set of mapping coordinates x minimizing Eq. (1)

Initialization:
x0 = Tutte(V, F )

Optimization:
for k = 1 to max iterations do

Compute closest rotation Rk
f for each Jacobian Jf (xk−1)

Update the weights Wk
f for each f ∈ F using Eq. (16)

Solve Eq. (17) to find pk

Set dk using Eq. (18)
Find αmax, as in [Smith and Schaefer 2015](Section 3.3)
Define α = min {1, 0.8αmax} and interval [0, αmax]
Perform bisection line search in the interval to find α
xk = xk−1 + αdk
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Fig. 7. Minimization of the symmetric Dirichlet energy on the Buddha model. Despite the massive the dataset (470K faces), our algorithm produces an
optimized locally injective parametrization in 14 seconds.

4. ANALYSIS

We apply our algorithm to a series of challenging parametrization
problems (using the symmetric Dirichlet energy) to observe its prop-
erties and scalability to large datasets. We also provide a comparison
against Newton descent and L-BFGS [Nocedal and Wright 2006] to
demonstrate that our algorithm outperforms classical optimization
techniques.

Qualitative convergence behavior. We observed that the
convergence behavior in our case is similar to local/global opti-
mization of the ARAP energy, that is, the algorithm progresses
very rapidly at the beginning, but then slows down when close to
a minimum (see Figures 6, 7, 8). Uneven meshing does not alter
the performance of our method (Fig. 9). We demonstrate this by
parametrizing two copies of the same surface, one with an homoge-
neous triangulation and another with an uneven triangulation with
hundreds of slivers.

Initialization 20 iterations10 iterations Converged (196)

Fig. 8. Our algorithm quickly progresses towards the minimum of the en-
ergy. If sufficiently many iterations are executed, our algorithm numerically
converges to a minimum, but the differences in quality compared to earlier
iterations are negligible. This figure shows the result after 10, 20, and finally,
196 iterations, where the optimization has converged to a minimum.

Our algorithm is extremely robust, and it succeeds even when
initialized with a map made of slivers, as demonstrated in Fig. 16
— the resulting parameterization after 20 iterations is very close to
being isometric, as can be seen in the texture, even if the algorithm
needs many more iterations to reach a numerical minimum. New-
ton’s method is much slower, and only after 2000 iterations does the
quality of the parameterization start to resemble ours.

Newton Ours Ours - UniformInitialization

Reg. Newton

Fig. 9. Our algorithm is robust and consistently produces high quality
locally-injective maps in as little as 20 iterations, even in presence of low-
quality triangulations. Note that our algorithm reaches similar minima re-
gardless of the mesh quality. In this case, Newton’s method stopped before
reaching a minimum, while the regularized Newton did very little progress
after 500 iterations.

Comparison with standard numerical methods. In Fig.
10 (top) we compare our iterations against L-BFGS. Since the L-
BFGS iterations are faster than ours, we plot the time on the x-axis
to ensure a fair comparison. Our method is considerably faster and
produces a high quality map in a fraction of the time. In Fig. 10 (bot-
tom), we compare against Newton’s method. This method can get
stuck if the Hessian is not positive semidefinite (PSD). A common
remedy in simulation applications is to regularize the Hessian by
projecting the Hessian of each face on the set of PSD matrices (see
e.g. [Teran et al. 2005]). We observe that for parameterization it is
not clear which method performs better, as cases vary. We report the
results of both the normal and the regularized version of Newton’s
method. In both cases, our algorithm is considerably faster. Another
example of this behavior is shown in Fig. 16.
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Fig. 10. Our iterations are slower than those of L-BFGS, since we have
to solve a sparse linear system, but overall, they progress much faster (top).
Our iterations are also making considerably more progress than Newton
iterations when we are far from the minimum (bottom). This model has
386K faces, and in both cases we minimize the symmetric Dirichlet energy.
See Fig. 16 for another comparison with Newton’s method.

Scalability. The efficiency of our method stems from the ex-
perimental observation that the number of iterations is related to
the geometric complexity of the model, instead of depending on the
density of the tessellation. We show evidence supporting this claim
in Fig. 1, where we plot the energy on a progressive input mesh
(Lucy), sampled with 0.6-6 million faces. Note that the majority of
the competing methods become impractically slow for models larger
than 100K vertices. The only exception is [Kovalsky et al. 2015], but
this method does not minimize a distortion energy, often fails to find
a solution and cannot be used to create isometric parameterizations
[Kovalsky 2016].

Why not ARAP with Line search?. Our approach relies
on the line search proposed by [Smith and Schaefer 2015] to
ensure the local injectivity of the map. It is tempting to sim-
ply add the line search to e.g. ARAP parametrization algorithm,
obtaining a method that is also guaranteed to produce locally
injective maps. However, the quality of the map will be poor
because the line-search will lock the algorithm whenever one
triangle degenerates, and further progress will not be allowed.

In the inset, we repeat the experi-
ment shown in Fig. 4 using the ARAP
parametrization algorithm with the the line
search proposed by [Smith and Schaefer
2015]. The algorithm is not able to make
much progress, producing a result with a
much higher distortion than ours (Fig. 4).

Relationship to IRLS and greedy stiffening. Our ap-
proach is loosely related to the stiffening methods, which are often
used in global parameterization [Bommes et al. 2009], where Eq.
(4) is modified to include a per-element scalar weight wf , i.e.,

min
x

∑
f∈F

Af w
k
f‖Jf (x)−Rk

f‖2F . (19)

The rationale is to increase this weight for the elements that flip,
hoping that this will lead to a locally injective map. This approach
is a heuristic that is not guaranteed to succeed, since increasing
the weight of an element to remove a flip could cause a flip in a
neighboring element, and this could (and does in practice) repeat
indefinitely. We tried using this approach in our formulation, replac-
ing our matrix weights with a scalar weight and updating it using
the update rule proposed in [Bommes et al. 2009], but this is not
guaranteed to generate a descent direction, and the algorithm gets
stuck, as shown in Fig. 4.

Another related algorithm is iterative reweighted least squares
(IRLS), which also uses scalar weights for the purpose of locally
matching the energy value. This is sufficient to ensure convergence
for the specific case of Lp norms. We tried to adapt this idea to our
framework, using scalar weights and the update rule proposed in
[Yoshizawa et al. 2004; Pighin and Lewis 2007]:

wkf =
D(Jf (xk−1))

‖Jf (xk−1)−Rk
f‖2F

. (20)

If, in a given iteration, an element is mapped to an almost degenerate
one, the symmetric Dirichlet energy in the numerator becomes huge,
while the proxy in the denominator does not, and so in the next
iteration the IRLS scalar weight strategy penalizes more on this
element by giving it a larger weight. This could prevent it from
flipping in the next iteration, and one could expect it to produce
a result that is closer to the actual energy that we would like to
minimize. If an element is scaled, we could expect the weight to be
lower than 1, since the proxy tends to penalize it too much. However,
our experiments show that this update rule (which turned out to be
conceptually similar to the stiffening of [Bommes et al. 2009]) is
not sufficient to guarantee convergence, and in fact eventually often
fails to find a descent direction (Fig. 4).

Intuitively, the expressivity of scalar weights is limited, for in-
stance when a triangle is stretched very heavily along just one axis,
while not being stretched along the other axis. In this case, a single
scalar weight per-triangle cannot distinguish between the axes, and
both of them are penalized the same. A more proper choice is to
penalize each axis separately, and this can only be expressed by
using matrix weights. We elaborate on this in the next section.

5. GENERAL DISTORTION ENERGIES

We proceed with the treatment of specific isometric distortion mea-
sures, as well as generalizing to other types of distortions. From now
on, we assume that D(J) is any rotation invariant distortion mea-
sure, as we define below. Additionally, we fill the gap that remains
from the previous section, that is, ensuring that Eq. (15) is indeed
valid, and that its right hand side is positive semidefinite. We start
with the latter, as it naturally leads to the derivation of the relevant
formulas.

SVD viewpoint. A common property of many useful distortion
measures is that they are rotation invariant:

Definition 1. A distortion measure D(J) is rotation invariant if

D(J) = D(UJV>)
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for any rotation matrices U and V.

All rotation invariant distortion measures can be written solely in
terms of the singular values of J, as shown in the following lemma.

LEMMA 2. Let J = USJV
> be the singular value decomposi-

tion of J (we use SA to denote the diagonal matrix containing the
singular values of A). Then,

D(J) = D(SJ), (21)

∇JD(J) = U∇SJ
D(SJ)V>. (22)

Proof. See Appedix B.1.
For example, the ARAP distortion measure, which is rotation

invariant, can be written as

‖J−R‖2F = ‖SJ − I‖2F =

d∑
i=1

(σi − 1)2,

where σi are the singular values of J.
Using Lemma 2, we can write Eq. (16) in SVD form:

W = U

(
1

2
∇SJ

D(SJ)(SJ − I)−1

)1/2

U>= USWU>. (23)

This expression shows that the matrix weights in fact act as scalar
weights per singular value of each Jacobian, that is, a single weight-
per-axis. Since the matrix expression inside the square root is diag-
onal, it is trivial to take the root. From Eq. (23) we can clearly see
that

∇SD(SJ)(SJ − I) � 0 (24)

is required in order to take the root. In other words,
∇SJ

D(SJ)(SJ − I) must be PSD, which is always the case for
isometric distortion measures, as we show in the following.

Isometric energies. We applied our algorithm to a variety
of isometric distortion measures. In our context, a true isometric
distortion measure is one that is rotationally invariant, minimal only
for rotations, and is separable in terms of the singular values. In
other words, a true isometric distortion measure can be written as

D(SJ) = D(σ1, . . . , σd) =
∑
i

fi(σi), (25)

where fi(σi) convex and minimal when σi = 1. This condition
makes it is easy to show that Eq. (24) holds.

Without loss of generality, we demonstrate the solution to Eq.
(23) using the symmetric Dirichlet energy. The same steps can be
used for any other isometric distortion measures (see Table I and
Figure 11). The symmetric Dirichlet energy in terms of the singular
values is

D(J) = ‖J‖2F + ‖J−1‖2F =

d∑
i=1

(σ2
i + σ−2

i ).

Hence,

(∇SJ
D(SJ))i = 2(σi − σ−3

i ), (26)

where we introduce the notation (D)i to refer to the i’th diagonal
entry of the diagonal matrix D. Thus, plugging Eq. (26) in Eq. (23)
we obtain

(SW)i =

√
σi − σ−3

i

σi − 1
(27)

Symmetric Dirichlet Hencky strain Exponential Dirichlet

Fig. 11. Minimizing isometric distortions for the Bear model. Our approach
is general and supports many distortion energies such as Symmetric Dirichlet
(left), Hencky strain (middle) and Exponential Dirichlet (right). This model
has 296K faces and required an average of 9 seconds to optimize.

when σi 6= 1, and (SW)i = 4, which is the limit, otherwise. The
expression under the root is always nonnegative, so we can always
find weights to match the gradients.

General distortion measures. To extend this construction
to energies that are rotation invariant, but not true isometric distor-
tions (i.e., do not satisfy Eq. (25)), we need to slightly change our
algorithm. Consider for example the AMIPS energy E?iso from [Fu
et al. 2015] (see the paper for the reasoning behind this definition),
that is defined using the distortion measure

D?
iso(J) = exp (s ·Diso(J)) (28)

where

Diso(J) =
1

2

[(
tr(J>J)

det(J)

)
+

1

2
(det(J) + det(J−1))

]
. (29)

Algorithm 1 fails to minimize this energy, because (24) might not
hold, and it thus may be impossible to compute weights that locally
match the gradients. To address this issue, we generalize the local
step (Eq. (3)) by replacing the closest rotation R with another matrix
Λ, which depends on the energy that we wish to minimize. Note that
the local step is only used in the proxy energy, which becomes

PΛ
W(J) = ‖W(J− Λ)‖2F . (30)

The modification of the local step changes the formula for W in Eq.
(23), replacing the identity with the matrix SΛ, and the requirement
in Eq. (24) becomes

∇SJ
D(SJ)(SJ − SΛ) � 0. (31)

The condition on the local step is now clear: The sign of each ele-
ment of SJ−SΛ must match the sign of each element of∇SJ

D(SJ).
The computation in the local step can then be easily adapted on a
case-by-case basis. Note that this construction is a generalization of
[Liu et al. 2008].

General construction. Given an arbitrary distortion energy,
it is easy to find a matrix Λ that satisfies Eq. (31). For the special
(and very general) case of separably strictly convex energies, we
found a simple construction.

Definition 3. A function D(x1, ..., xn) is separably
strictly convex, if for each i the single variable function
D(x1,..,xi−1,xi+1,.,xn)(xi), which is constructed by freezing all of
the other variables, is strictly convex.

In this case, we can set each (SΛ)i to be the solution of

∂

∂σi
D(σ1,...,σi−1,σi+1,...,σd)(σi) = 0. (32)
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In other words, we set SΛ such that each entry of SΛ minimizes
the corresponding entry of D(SJ), assuming the other singular
values are fixed. We show in Appendix B.2 that this choice always
satisfies Eq. (31). The reasoning behind this choice is to always push
each singular value towards its closest minimum. It is also a direct
generalization of the isometric case shown above, as the choice of
the closest rotation exactly satisfies Eq. (32).

As an example, we derive the expressions for the AMIPS energy
(Eq. (28)) in Table I and show the resulting parameterization in Fig.
3. The complete algorithm is summarized in Algorithm 2.

Conformal distortions. While the above construction is gen-
eral and guaranteed to create weights that match the gradients, it
might be suboptimal for certain energies. For example, if we con-
sider the conformal distortion energy proposed (for arbitrary dimen-
sion d) in [Fu et al. 2015]

D(J) =
tr(J>J)

det(J)2/d
, (33)

our general construction produces a matrix in the local step that is
not a similarity. We experimentally observed an increase in perfor-
mance by defining Λ = σ̄UV>, where σ̄ is a scalar, i.e., by finding
the closest conformal transformation. We show in Appendix B.3
how to compute σ̄ for the 2D and 3D case. Similarly to [Fu et al.
2015], we can also minimize the exponential of this energy (Fig.
14).

Algorithm 2: Generalized Reweighted local/global
Input:

A mesh M with a set of vertices V and elements F
Output:

A set of mapping coordinates x minimizing Eq. (1)

Initialization:
x0 = Tutte(V, F )

Optimization:
for k = 1 to max iterations do

Compute the SVD USJV
>= Jf (xk−1) for each face f

Update Wk
f = USΛU

>, taking SΛ from Table I
Solve Eq. (17) to find pk

Set dk using (18)
Find αmax, as in [Smith and Schaefer 2015](Section 3.3)
Define α = min {1, 0.8αmax} and interval [0, αmax]
Perform bisection line search in the interval to find α
xk = xk−1 + αdk

6. APPLICATIONS

We ran our experiments on a 12-core Xeon clocked at 2.7 GHz, using
the PARDISO solver [Schenk et al. 2007; Schenk et al. 2008; Kuzmin
et al. 2013] for the linear system solve. We report the running times
in Table II, using both a single- and multi-core implementation. The
sparsity pattern of the linear system in every iteration never changes,
allowing us to reuse the symbolic factorization between iterations.
Our method requires a feasible, i.e., inversion free starting point:
for 2D, we use Tutte’s parametrization with cotangent weights;
if they produce a flipped element, we resort to uniform weights
which are guaranteed to give us a valid starting point. For the mesh
improvement and deformation examples in 3D, the rest pose is used
as the starting point.

Initialization Iteration 10 Iteration 20

Fig. 12. Minimization of a conformal energy using our method. Note that
visually the difference between 10 and 20 iterations is already quite small,
and after 20 it becomes negligible.

Initialization Paremeterization Seam constraints

Fig. 13. An example of “seamless” global parameterization computed with
our method. Starting from Tutte’s embedding (left), we minimize the symmet-
ric Dirichlet energy first, and then activate seamless soft constraints to make
the parametrization’s derivatives match on the seams, up to permutation.

Single-patch 2D parametrization. Single-patch 2D
parametrization is ubiquitously used in modeling software to
generate UV maps given a predefined set of cuts. Our approach
improves upon existing algorithms, providing superior quality and
higher efficiency, in addition to supporting extremely detailed
models with millions of elements. We show the quality of our results
on several meshes with different energies throughout the paper. We
highlight that our method is not tied to a specific parametrization
energy, and can minimize all rotation invariant energies, provided
that the local step satisfies Eq. (31).

Seamless 2D parametrization. “Seamless” parameteriza-
tions, i.e., parameterizations whose derivatives agree on the seams
up to a rotation of multiples of π/2, are commonly used for remesh-
ing purposes [Bommes et al. 2012]. Our algorithm can generate
them by adding compatibility constraints [Bommes et al. 2009] to
the seams, as shown in Fig. 13. Note that we currently do not support
integer optimization in our framework and we thus cannot produce
integer-grid maps [Bommes et al. 2013].
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Table I. Energies we used in this paper, expressed also in terms of the singular values, with their derivatives and our choice for the
local step. The entries of this table are used in Algorithm 2.

Name D(J) D(σ) (∇SD(S))i (SΛ)i

Symmetric Dirichlet ‖J‖2F + ‖J−1‖2F
∑n
i=1(σ

2
i + σ−2

i ) 2(σi − σ−3
i ) 1

Exponential
Symmetric
Dirichlet exp(s(‖J‖2F + ‖J−1‖2F )) exp(s

∑n
i=1(σ

2
i + σ−2

i )) 2s(σi − σ−3
i ) exp(s(σ2

i + σ−2
i )) 1

Hencky strain
∥∥logJ>J∥∥2

F

∑n
i=1(log

2σi) 2( logσi
σi

) 1

AMIPS
exp(s · 1

2
(
tr(J>J)

det(J)

+
1

2
(det(J) + det(J−1)))

exp(s(
1

2
(
σ1

σ2
+
σ2

σ1
)

+
1

4
(σ1σ2 +

1

σ1σ2
))

s · exp(s · ( 1
4
(σi+1 −

1

σi+1σ2
i

)

+
1

2
(

1

σi+1
− σi+1

σ2
i

))

√
2σ2

i+1+1

σ2
i+1+2

Conformal AMIPS 2D tr(J>J)
det(J)

σ2
1+σ2

2
σ1σ2

1
σi+1

− σi+1

σ2
i

√
σ1σ2

Conformal AMIPS 3D tr(J>J)

det(J)
2
3

σ2
1+σ2

2+σ2
3

(σ1σ2σ3)
2
3

−2σi+1σi+2(σ2
i+1+σ2

i+2−2σ2
i )

(3σiσi+1σi+2)
5
3

√
σ2
1+σ2

3
2

Table II. Size of the input datasets and running times with and
without multi-core parallelization.

Model (Figure) #Faces #Vertices Time (s) Time (s)
Multi core Single core

Bimba (3) 11K 5.6K < 1 < 1

Bunny (4) 108K 54K 3.7 9.8
Gargoyle (5) 99K 49K 2.8 6.5
Octopus (6) 300K 151K 5.6 18.4
Superman (8) 190K 95K 5.2 14.6
Buddha (7) 470K 235K 13.9 43.2
Max Planck (9) 84K 42K 2.2 6.2
Dragon head (10) 387K 194K 12.3 36.8
Bear (11) 296K 148K 9.1 25.2
Vase Lion (12) 99K 49K 2.6 6.2

Source Conformal Isometric

Fig. 14. Our method can be used to deform tetrahedral meshes, minimizing
a conformal energy (middle) or the exponential symmetric Dirichlet isomet-
ric energy (right). The cubes have 48K (top) and 350K (bottom) tetrahedra,
and our algorithm took 5 and 80 seconds, respectively. We picked 4 edges
of the cube (shown as cylinders) and manipulated them. The right image in
each pair shows the interior of the deformed cube.

3D deformation. Volumetric deformation energies can be
minimized with our method, benefiting in a similar way as 2D
parametrization. In Fig. 14, we demonstrate an example of a cube
deformation with two different discretization resolutions (48K and

250K tetrahedra) and two different distortion energies (exponential
Dirichlet and exponential of the conformal AMIP). The running
time of our algorithm is 0.5 and 8 seconds per iteration, respectively,
and we used 10 iterations.

Mesh improvement. Maps can be used to improve the qual-
ity of meshes, and we compare our algorithm against two recent
methods [Aigerman and Lipman 2013; Fu et al. 2015] in Fig. 15.
We use the exponential Dirichlet energy, which is inspired by the
exponential AMIPS energy proposed in [Fu et al. 2015]. As can be
seen in Table III, our approach outperforms the competing methods
in all cases except one. We performed 10 iterations for all models,
which on average took 3 seconds each.

Table III. Comparison of mesh improvement.

Name Init. Dihed. BD AMIPS Our Method

Duck (10,163) (16,148) (19.6,161.5) (19, 138.16)
Elephant (8,167) (16,148) (13.7,161.3) (20.2,141.2)
Elephant2 (15,157) (18,147) (19,150) ( 23.1,142.3)
Hand (9,162) (16,148) (18,156) (21.1, 143.3)
Max (21,151) (14,153) (27.2,137.3) (29,141.5)
Rocker (10,163) (16,148) (21.6,148.7) (22.8,139.4)
Skull (0.8,178) (14,153) (21.1,147.6) (17.4,157.8)
Dragon (31,140) (28,139) (27.8,139.37) (31.8, 137.6)

Comparison of mesh improvement achieved by running [Aigerman and Lipman 2013]
(BD) and [Fu et al. 2015] (AMIPS). In each entry in the table we show the minimal and
maximal dihedral angle, where the second column shows the initial values. As can be seen,
in all cases except for the Skull dataset, our method outperforms the competing methods.

7. LIMITATIONS AND FUTURE WORK

We presented a general approach to simply and efficiently minimize
practical distortion energies commonly used in geometry processing.
The major theoretical limitation and advantage of our approach
are both inherited from the local/global method: our algorithm is
extremely fast while approaching a local minimum but requires
many iterations to converge to a numerical minimum. This problem
stems from the slow propagation of the rotations in the local step,
making a small rotation over a large part of the parameterization
hard to recover from. This is however not a practical limitation,
since the difference between the result we obtain after 20 iterations
and the converged result is negligible (Figures 8, 12). On the other
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Source Improvement

Fig. 15. An example of 3D mesh improvement computed with our method
minimizing the Exponential Dirichlet energy. The elephant has 33.5K tetra-
hedra and the rocker arm 35.5K. Our entire optimization took 3 and 3.2
seconds, respectively.

hand, the fast progress of our method in the first few iterations is an
extremely valuable property for many applications (Fig. 10).

We exemplify this property in a stress test similar to [Smith and
Schaefer 2015] (see Fig. 16). The challenge in this test is to recover
from Tutte’s embedding of a Hilbert-curve-shaped developable sur-
face, which is flipless, but highly distorted. We observed that our
first iteration makes the same progress as around 2000 Newton it-
erations — by combining the two algorithms, we reconstruct the
Hilbert curve in less than 200 iterations.

Our algorithm requires a locally injective initialization, which we
construct using Tutte’s embedding in 2D, but we are not aware of
any general construction for 3D maps. This limitation is ameliorated
by the fact that maps are mostly used for deformations in 3D, where
the rest shape itself is a perfectly valid initial map which we directly
use as a locally injective initialization.

A final limitation is that our proxy energy definition only works
for rotation invariant distortion energies. It is an interesting venue
for future work to extend our local/global method to a wider family
of energies, such as those used in finite element simulations.
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Initialization 20 iterations 20 iter. + 80 Newton iter. 20 iter. + 160 Newton iter.

200 iterations 500 iterations 1000 iterations

2000 iterations

10K iterations
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1500 Iterations

1900 Iterations

Ours + Standard Newton

Regularized Newton

Standard Newton

Fig. 16. Example of running our algorithm on a stress test. The highly distorted Tutte’s embedding is quickly unrolled by our algorithm in about 20 iterations,
producing a map close to being isometric. However, from this point on the progress of our algorithm slows down considerably, although the minimum is still
reached after ca. 500K iterations. The regularized Newton method is much slower (middle row) and the system is severely ill-conditioned due to the extremely
distorted triangles. The standard, non-reguralized Newton fails to find a descent direction after 1900 iterations. By combining our method with the standard
Newton’s method, we are able to reach the global minimum in a total of 180 iterations. Note that we used Newton iterations with our method as an initialization
only in this figure. All the other results in the paper are produced using solely our algorithm.
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APPENDIX

A. SOLVING EQ. (13)

In order to solve Eq. (13), we write it in matrix form, and in terms
of the coordinates x. Then Eq. (13) is transformed into

min
x
‖Ax− b‖2 (34)

where the structure of A and b in the 2D case is as follows. Assum-
ing a set of orthogonal frames per element are prescribed, we let
Dx,Dy be the FE gradient matrices of the mesh w.r.t. the frames.
Additionally, we define four diagonal matrices, Wij for i, j = 1, 2,
where the diagonal of Wij holds the (i, j) entries of all of the
weights Wf . In other words, Wij = diag({Wf (i, j)}f ). Sim-
ilarly, we define Rij to be the column vector holding the (i, j)
entries of all of the Rf

A = WD =

W11 W12 0 0
W21 W22 0 0

0 0 W11 W12

0 0 W21 W22


Dx 0

0 Dy
Dx 0
0 Dy

 (35)

b =

R11

R21

R12

R22

 (36)

This can be readily solved by any least squares minimization
algorithm.

B. SECTION 3 PROOFS

B.1 Lemma 3.1

Lemma 3.1 Let J = USJV
> be the Singular Value Decomposition

of J. Then,

D(J) = D(SJ) (37)

∇JD(J) = U∇SJ
D(SJ)V> (38)

PROOF. Eq. (37) is immediate from the definition in Eq. (1). As
for Eq. (38), we use the formula for the derivative of the singular
values (see [Giles 2008])

∇JD(SJ) = U∇SJ
D(SJ)V> (39)

B.2 Local step, general construction: proof of Eq.
(32)

For a rotation invariant D(J) that is separably strictly convex in
singular values, Eq. (31) can be satisfied by setting (SΛ)i such that:

∂

∂σi
D(σ1,...,σi−1,σi+1,...,σd)(σi) = 0 (40)

In particular, in the case of a true isometric distortion measure, (31)
is satisfied by setting the local step as the closest rotation Λ = UV>.
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This can be seen from the fact that every partial func-
tion of D(σ) is strictly convex on R>0, and therefore has
a single minimum, (SΛ)i. Hence, for every σi < (SΛ)i,
∂
∂σi

D(σ1,...,σi−1,σi+1,...,σd)(σi) < 0, and for every σi > (SΛ)i,
∂
∂σi

D(σ1,...,σi−1,σi+1,...,σd)(σi) > 0. This is also true for (SJ −
SΛ)i and so Eq. (32) is satisfied.

B.3 Conformal energy local step derivation

Let D(J) = tr(J>J)

det(J)2/d
. D(J) is rotation invariant and can be written

as D(σ) =
∑d

i=1 σ
2
i

σ1...σd
. By differentiating the distortion measure w.r.t.

the singular values in the 2D case, we find that

(∇SJ
D(SJ))1 =

1

σ2

− σ2

σ2
1

,

and similarly, (∇SJ
D(SJ))2 = 1

σ1
− σ1

σ2
2

. Assuming J is not a
similarity already, then, since σ1 > σ2 > 0, the first entry is
negative, while the second is positive. By choosing σ1 > (SΛ)i >
(σ2), this holds true for (SJ − SΛ)i and so Eq. (31) is satisfied.

For the 3D case,

(∇SJ
D(SJ))i =

−2σi+1σi+2(σ2
i+1 + σ2

i+2 − 2σ2
i )

(3σiσi+1σi+2)5/3
,

where the index i cycles from 1 to 3 (i.e., σ4 = σ1). This is

zero only for σi =

√
σ2
i+1+σ2

i+2

2
, and so (∇SJ

D(SJ))1 < 0,

(∇SJ
D(SJ))3 > 0. We note that σ̄ =

√
σ2
1+σ2

3
2

satisfies σ3 < σ̄ <

σ1. Therefore, by choosing SΛ = σ̄UV>, we get (SJ − SΛ)1 < 0,
(SJ − SΛ)3 > 0, and by construction, same as the proof for Eq.
(32), we get that the sign of (SJ − SΛ)2 is equal to the sign of
(∇SJ

D(SJ))2.


