
Sparse Cholesky Updates for Interactive Mesh Parameterization

PHILIPP HERHOLZ, ETH Zurich, Switzerland

OLGA SORKINE-HORNUNG, ETH Zurich, Switzerland

We present a novel linear solver for interactive parameterization tasks. Our

method is based on the observation that quasi-conformal parameterizations

of a triangle mesh are largely determined by boundary conditions. These

boundary conditions are typically constructed interactively by users, who

have to take several artistic and geometric constraints into account while

introducing cuts on the geometry. Commonly, the main computational bur-

den in these methods is solving a linear system every time new boundary

conditions are imposed. The core of our solver is a novel approach to effi-

ciently update the Cholesky factorization of the linear system to reflect new

boundary conditions, thereby enabling a seamless and interactive workflow

even for large meshes consisting of several millions of vertices.

CCS Concepts: • Computing methodologies → Mesh models; •
Mathematics of computing;

Additional Key Words and Phrases:Mesh parameterization, boundary

conditions, sparse matrix factorization

ACM Reference Format:
Philipp Herholz and Olga Sorkine-Hornung. 2020. Sparse Cholesky Updates

for Interactive Mesh Parameterization. ACM Trans. Graph. 39, 6, Article 202
(December 2020), 14 pages. https://doi.org/10.1145/3414685.3417828

1 INTRODUCTION

Mesh parameterization has been an active area of research for many

years. During this time a large number of techniques for differ-

ent purposes and applications have been proposed. Most of these

techniques have not yet been adopted by practitioners using 3D

modeling packages liker Blender or 3ds Max. One of the main rea-

sons for this is scalability. For an artist working on a detailed mesh,

a smooth, interactive and predictable workflow might be more im-

portant than geometric guarantees.

For a large class of algorithms, the scalability problem stems

from the need to solve large sparse linear systems whenever the

boundary conditions, interactively imposed by an artist, change.

Since the linear systems usually change in a few coefficients only,

one could ask weather it is possible to reuse information from a

given matrix factorization in order to compute a new one. In fact,

a number of methods exist to update Cholesky factors in such a

way; however, we find most of them to exhibit unfavorable scaling

behavior when applied to typical editing scenarios. Especially for

larger meshes with more than 100k to several million vertices, these

Authors’ addresses: Philipp Herholz, ETH Zurich, Switzerland, philipp.herholz@inf.

ethz.ch; Olga Sorkine-Hornung, ETH Zurich, Switzerland, sorkine@inf.ethz.ch.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

0730-0301/2020/12-ART202 $15.00

https://doi.org/10.1145/3414685.3417828

methods commonly perform even worse than complete refactoriza-

tion. This is because most of these existing methods are targeted

at a very different scenario: They can be very efficient when fre-

quently performing low-rank updates, e.g., symmetric changes to a

row/column pair. The Schur complement based method of Yeung et

al. [2018], for example, is able to efficiently simulate mesh cutting

during physics based animation. The situation for interactive param-

eterization is quite different. Here, the user does not perform small

changes to the boundary at every frame, but rather updates the

boundary conditions much less frequently, affecting a larger num-

ber of vertices each time. The situation is similar for interactively

imposing positional boundary conditions in Laplacian based shape

editing to define a region of interest [Botsch and Sorkine 2008a].

Another limitation of update algorithms is their limited support

for adding new variables representing new vertices in the mesh to

the linear system. The algorithm presented in [Herholz and Alexa

2018] is not capable of changing the system dimension and has only

limited support for iterative updates. The row addition algorithm

implemented in Cholmod [Chen et al. 2008] is capable of adding a

symmetric row/column pair, but the initial factorization needs to

be aware of this future update during construction and store an

empty row and column in its place. This is useful in the context of

linear programming, where constraints have to be switched on and

off during optimization, but prohibits the use of this algorithm for

interactive mesh editing.

We propose a different method, building on partial refactorization

[Hecht et al. 2012; Herholz and Alexa 2018]. The basic idea is to

augment an optimized Cholesky factorization algorithm that typi-

cally constructs the sparse factor column by column. By analyzing

dependencies between numerical values in the Cholesky factor, we

can skip columns that are not affected by a change in the underly-

ing system matrix and selectively update the columns that actually

change. This procedure is less efficient when the change takes place

in only a few columns of the system matrix (less than 10), but it

outperforms competing methods for larger updates. This method

therefore exhibits the performance characteristics we require for

our applications.

We describe how this basic idea can be applied to interactively

impose Dirichlet boundary conditions by removing degrees of free-

dom from the factorization (see Section 4.2). This enables us to

interactively introduce new seams into the mesh. Cutting along a

seam duplicates vertices along the cut, increasing the system dimen-

sion. In Section 5.1 we demonstrate that, in many cases, this does

not require the addition of new degrees of freedom into the factor-

ization. In other cases, however, additional vertices at the newly

introduced seams have to be represented in the factorization. We

describe how to handle this case by explicitly changing the struc-

ture of the Cholesky factor in Section 4.2. In Section 5.2 we present

an example application that imposes linear constraints on seam

vertices requiring such a structural update. For this application we

ACM Trans. Graph., Vol. 39, No. 6, Article 202. Publication date: December 2020.

https://doi.org/10.1145/3414685.3417828
https://doi.org/10.1145/3414685.3417828

202:2 • Philipp Herholz and Olga Sorkine-Hornung

show an example of how to use general linear equality constraints

in conjunction with our Cholesky updates.

This set of techniques allows us to perform very general updates

to the factorization of linear systems, including the addition of

degrees of freedom. We demonstrate that our algorithm improves

upon related work in terms of performance for a large range of

examples, especially if more than just a few degrees of freedom

have to be updated at once. In Section 6 we specify this statement

by comparing and evaluating our algorithms systematically with

respect to previous work. We demonstrate the scalability of our

algorithms using example meshes of up to 14 million vertices.

1.1 Contributions

– We present an algorithm to efficiently update Cholesky fac-

tors to account for changes in Dirichlet boundary conditions

in the context of interactive surface parameterization. The

method efficiently removes degrees of freedom from the sys-

tem (Section 4.1).

– We extend the method to also support the addition of degrees

of freedom to Cholesky factors. The required symbolic up-

date takes advantage of the supernodal factor representation

(Section 4.2).

– We demonstrate the effectiveness of our approach by compar-

ing it to competing methods over a set of meshes at different

scales.

2 RELATED WORK

A number of works address updating sparse Cholesky factors, tar-

geted at various applications. Here we review recent techniques

that can be efficiently used to solve some of the problems we are

considering in this paper.

Low-Rank Updates. Gill et al. [1972] present a set of techniques
to update the Cholesky factorization of a dense matrix A ∈ Rn×n

after a rank-1 modification of the form

A′ = A + vv⊤, (1)

with v ∈ Rn
. The algorithms iterate over the columns of the

Cholesky factor and update them consecutively. If A represents

the system matrix of a least squares regression problem, the update

can be interpreted as adding a data point to the problem. Davis

and Hager [1999] present a variant of this technique applicable to

sparse Cholesky factors. Translating the method to the sparse set-

ting is complicated by the fact that the nonzero pattern of the factor

might change which requires a sophisticated analysis of symbolic

dependencies in the factor. Sorkine et al. [2005] present a specialized

version of rank-1 updates in the context of shape approximation,

where the update matrix contains only a single nonzero element on

its diagonal. Instead of updating the Cholesky factor with the more

general technique of Davis and Hager [1999], they apply Givens

rotations on the matrix A and its Cholesky factor to eliminate the

newly introduced value, which is faster in this special case.

General rank-m updates can be applied as a series of rank-1 up-

dates. Davis and Hager [2000] show that multiple updates can be

handled more efficiently. Unfortunately, this technique only pro-

vides a relatively small constant speedup compared to sequences of

rank-1 updates. In contrast, our algorithm scales much better with

the number of modified columns and is applicable in a more general

setting than Equation (1). In subsequent work, the same authors

describe an efficient implementation using dynamic supernodes

[Davis and Hager 2009], which is implemented in Cholmod [Chen

et al. 2008] and used for comparisons in Section 6.

A symmetric modification of a row and column of A can be inter-

preted as a rank-2 update. This special case allows for a dedicated

approach optimized for this specific scenario [Davis andHager 2005].

The case of row and column addition and removal is handled sepa-

rately. Deleting a row/column pair replaces it by the corresponding

row and column of the identity matrix which is also the case for our

method in Section 4.1. A precondition for adding a row and column

is that an empty row and column already exists in that position. This

is useful in the context of linear programming, where there is a fixed

set of constraints that have to be switched on and off dynamically.

However, in our setting this renders the algorithm impractical, as

we don’t know a priori where and how many additional degrees of

freedom are introduced. Row deletion (chomod_rowdel) is imple-

mented in Cholmod [Chen et al. 2008] and can be used to eliminate

degrees of freedom from the factorization, therefore it constitutes

a direct competitor of the algorithm we describe in Section 4.1.

We also compare to row addition (cholmod_rowadd), despite being
not directly suited for mesh editing, by artificially anticipating the

update during the initial factorization. We demonstrate in Section

6 that our method is significantly more efficient for the types of

updates that occur in the application scenarios we consider. We

also provide a theoretical justification for this drastically different

scaling behaviour.

Schur Complement Approaches. Schur complement basedmethods

are able to reuse the factorization of an initial matrix A to solve a

linear system obtained by appending rows and columns to A. Yeung
et al. [Yeung et al. 2016, 2018] demonstrate how this basic principle

can be used to implement far more general updates. They apply their

approach in the context of interactive mesh cutting and demonstrate

the effectiveness of their incremental updates. As their algorithms

can be used for the applications we are interested in, we provide

a brief overview in Section 3.5 and compare to these methods in

Section 6.

Seletive Solving. By exploiting the properties of the elimination

tree, Herholz et al. [2017] desribe how to compute selected values

of the solution to a linear problem. This allows to efficiently pa-

rameterize local patches of a shape as long as Neumann boundary

conditions, or more generally, boundary conditions that can be for-

mulated in terms of the right hand side, are imposed. The method

can also be employed to efficiently compute smooth exponential

maps [Herholz and Alexa 2019] for local parameterization.

Partial Refactorization. Herholz et al. [2018] present a method

targeted at updating factorizations for mesh deformation. The idea

is to start with the Cholesky factorization L0 of a linear system

defined on the full mesh and use this information to compute the

Cholesky factor of a sub mesh that is supposed to be deformed. This

method performs best if regular and localized regions of the mesh

(for example, an arm of a humanoid shape) are selected, with all

ACM Trans. Graph., Vol. 39, No. 6, Article 202. Publication date: December 2020.

Sparse Cholesky Updates for Interactive Mesh Parameterization • 202:3

other vertices fixed in their position. Enlarging the region of interest

by only one vertex requires a complete, new update starting from

the original Cholesky factor. In the context of dynamically changing

boundary conditions we have exactly the opposite situation: the

constraints are located at vertices that do not form a local region but

span many regions along an edge path; the region of interest is the

full mesh except for a few constrained vertices. Moreover, we would

like to make a large number of iterative changes to the constraints,

which quickly becomes inefficient if we have to reconstruct the

Cholesky factor every time starting at L0. In contrast, our proposed

method modifies the Cholesky factor directly and in-place instead

of constructing it based on initially available information, which

would require copying and manipulating large amounts of data for

every update. Our subsequent updates always start at a situation

where all previously set constraints are already accounted for, which

is especially beneficial for incremental modification of boundary

conditions.

Approximate Methods. For the physically based simulation of de-

formable shapes, Newton’s method is commonly employed, usually

requiring the solution of a linear system defined by the energy

Hessian for each simulation step. Linear methods assume a con-

stant Hessian at the cost of severe artifacts for large deformations.

Co-rotational methods [Müller and Gross 2004] reuse the initial fac-

torization and employ local rotations to mitigate these artifacts. The

method of Hecht et al. [2012] selectively updates the Cholesky factor

for co-rotational methods whenever the current Hessian changes

drastically in a certain region. Similar to our method, they exploit

the structure of the elimination tree, defined in Section 3.2, to find

all columns affected by an update. In contrast to our methods as

well as low-rank updates and Schur based methods, approximate

methods do not maintain a valid factorization at all times. This gives

the method considerably more flexibility which can translate into

performance benefits. However, this depends on the type of the

numerical problem at hand, specifically the stiffness of the system

matrix. Our algorithms maintain a correct representation of the

current Cholesky factor without accumulating error over iterations

due to exact partial refactorization which makes the method more

predictable and arguably easier to use.

3 BACKGROUND

This section presents some key concepts and algorithms required to

compute the sparse Cholesky factorization A = LL⊤ of a symmetric

and positive definite matrix A ∈ Rn×n
. In our case A commonly

represents the cotan Laplacian of a triangle mesh with n vertices.

The k-th vertex corresponds to the k-th row and k-th column in the

matrix. Since the cotan Laplacian is positive semi-definite, we add a

small multiple (ϵ = 10
-8
) of the identity matrix as regularizer. In this

section we only highlight details that are relevant for our method

and refer to textbooks on this topic (e.g., [Davis 2006]) for a more

complete overview.

The Cholesky factor L ∈ Rn×n
is a lower triangular matrix that

enables the fast solution of a linear system Ax = b with x, b ∈ Rn

by means of forward- and backsubstitution. A crucial feature of

the matrix L is that the rows and columns of a sparse matrix A
can usually be reordered using a permutation, such that L is also

Fig. 1. The different steps of the Cholesky algorithm, as detailed in Algo-

rithm 1, with access patterns highlighted. The factorization of the input

matrix (upper left) is built column by column. To compute the k -th column,

information from all columns that have a nonzero in row k are accessed.

sparse. This reordering merely amounts to a reordering of the mesh

vertices and can be done in a preprocess. There are several methods

for finding a useful reordering; prominent examples are approximate

minimum degree reordering or nested dissection. In this paper we

assume that the mesh vertices have already been ordered in a useful

way.

3.1 Sparse Cholesky Algorithm

The factorization algorithm is divided into two phases. During the

symbolic phase, the nonzero structure of the sparse factor is de-

termined and allocated. In the numeric phase, the actual values of

the nonzero elements are computed. Here we focus on the latter.

Figure 1 demonstrates the different steps of the algorithm: Given a

symmetric and positive definite input matrixA (Figure 1a), the factor

is constructed column by column starting from the left. To compute

the k-th column (Figure 1b), the steps detailed in Algorithm 1 have

to be performed. We use matlab notation for parts of a matrix, for

example L(k : n, i) for rows k to n of column i of the sparse matrix

L. The key point here is the access pattern visualized in Figure 1

(the sub figures are also referenced in Algorithm 1). To compute

any column, only a small subset of previously computed columns

is accessed. Moreover, the nonzero pattern of the new column is

directly determined by nonzero positions in columns indexed by Ik
(Algorithm 1, step (2)).

3.2 The Elimination Tree

The elimination tree encodes dependencies among columns in the

Cholesky factor and can be easily constructed during the symbolic

factorization phase. For details on the efficient construction of the

elimination tree we refer the reader to [Davis et al. 2016]. Each

node of this tree represents a vertex of the original mesh and a

column of the sparse matrix A. The elimination tree helps answer

an important question: which columns of L access information

ACM Trans. Graph., Vol. 39, No. 6, Article 202. Publication date: December 2020.

202:4 • Philipp Herholz and Olga Sorkine-Hornung

ALGORITHM 1: Cholesky factorization of a sparse column

Name: CholeskyColumn(A, k , L)
Input: System matrix A, column index k , partial Cholesky

factor L (correct for all columns < k).
Output: Cholesky factor L (correct for all columns ≤ k).

(1) Copy entries from the input matrix (1c)

L(k : n, k) ← A(k : n, k).

(2) Find the set Ik of all column indices < k referencing a

(structural) non zero element in row k . (1d)

Ik ← {i ∈ N | i < k and Lki , 0}

(3) Update the kth column using all columns indexed in Ik (1e)

L(k : n, k) ← L(k : n, k) −
∑
i ∈Ik

L(k, i) L(k : n, i).

(4) Square root of diagonal element (1f)

L(k,k) ←
√
L(k,k).

(5) Divide by the diagonal element (1f)

L((k + 1) : n, k) ← L((k + 1) : n, k)/L(k,k).

ALGORITHM 2: Sparse Cholesky factorization

Name: Cholesky(A)
Input: System matrix A.
Output: Cholesky factor L.

L←− 0.
for k = 0 to n − 1 do

CholeskyColumn(A, k , L)
end

ALGORITHM 3: Sparse Cholesky update

Name: CholeskyUpdate(A, L A′)
Input:Matrix A, Cholesky factor L, modified matrix A′.
Output: Cholesky factor L′ of A′.

I0 ←− set of columns that differ between A and A′.
I1 ←− set of indices visited while traversing the elimination tree

to the root for all i ∈ I0.

for k = 0 to n − 1 do
if k ∈ I1 then

CholeskyColumn(A, k , L′)
end

end

from a given column k of L – directly or indirectly – for their

construction. In other words: if the numerical values in a specific

column k change, we can identify the set of columns that have to

be adapted in order to maintain a valid factorization. To this end

we traverse the elimination tree up to its root starting at node k .
The columns corresponding to all visited nodes have to be updated.

It is also possible to determine column dependencies in the other

direction and find the set of columns Ik that are accessed in order to

compute a specific column k in the Cholesky factor. In this case the

elimination tree is traversed downwards starting at a set of indices

given by the original matrix A. More specifically, we start at nodes

connected to k in the graph structure of the sparse matrix A that

have an index smaller than k :

{i ∈ N | i < k and Aki , 0}.

In order to produce a sparse factor, it makes sense to strive for a

balanced elimination tree by reordering columns and rows of the

input matrix, which would limit the number of

accessed columns while constructing the k-th
column (see Figure 1e). Because the nonzero pat-

tern is determined by the accessed columns (Sec-

tion 3.1), a well balanced elimination tree also

fosters sparsity. However, a balanced elimination

tree is not a prerequisite for sparsity. A diago-

nal matrix, for example, has a degenerate elim-

ination tree but still features optimal sparsity

without fill-in. For general sparse matrices, it

has still proven effective to permute the input

matrix such that a well balanced elimination tree

is achieved. Nested dissection is a prominent re-

ordering strategy based on this observation. For

this paper we use Metis [Karypis and Kumar

1998], a highly optimized nested dissection im-

plementation.

3.3 Updates

Fast updates to sparse Cholesky factors are based on the properties

of the elimination tree discussed above. We assume that we have a

factorization A = LL⊤. If the matrix A′ is identical to A except for

numerical values in a few columns without changes to the nonzero

pattern, we can employ a sparse update algorithm on L to obtain

the Cholesky factor L′ of A′. To this end, we first build a list I0 of
all columns that differ between A and A′. From Algorithm 1, step

(1), we can conclude that all columns in I0 also differ between L and

L′. Using the elimination tree we can now identify all columns that

depend on columns in I0 for their construction. We have to traverse

the elimination tree starting from every index i ∈ I0 and up to its

root, collecting all discovered nodes into the set I1. All columns in

I1 potentially differ between L and L′, while all other columns are

identical. This observation suggests a simple algorithm to update L
in order to construct L′. We can just run the numerical factorization

algorithm (Algorithm 1) on L for each column that is not part of I1
and still end up with the correct factor L′. In Algorithm 3 we list

the necessary steps.

An important observation in this context is that updating e.g.

column 14 in our example requires exactly the same computational

work as updating both 14 and 17, since the union of their paths to

the root is the same as the path for node 14 alone. More generally,

it is quite efficient to simultaneously update columns that are close

in the elimination tree, compared to consecutive updates. Luckily,

ACM Trans. Graph., Vol. 39, No. 6, Article 202. Publication date: December 2020.

Sparse Cholesky Updates for Interactive Mesh Parameterization • 202:5

reordering techniques implicitly organize vertices such that vertices

that are close in terms of graph distance are in most cases also close

in the elimination tree and reside in the same small subtree. For

most meshes it is safe to assume that mesh graph distance between

two vertices correlates with their geodesic distance. This makes

updates to A affecting a local region on the mesh quite efficient (see

[Herholz and Alexa 2018] for further details).

Another important property for updates computed this way is nu-

merical stability. Sequentially updating numeric quantities always

bears the possibility of building up numerical error. For partial refac-

torization we always recompute all values that change from scratch

and reuse information from unaffected subtrees. As a consequence

updating a factor or recomputing it completly will always lead to

exactly the same floating point values.

3.4 Supernodal Implementation

Sparse matrices can be represented in compressed column format,

which stores all nonzero entries of a column in a dense vector, to-

gether with the corresponding row indices. We show an example of

a sparse matrix below, along with its compressed column represen-

tation (2a). Numbers to the left of the vertical bars represent row

indices.

To obtain an efficient implementation of Cholesky factorization

and updates, the concept of supernodes can be helpful. The idea

is to treat neighboring columns that share an identical, or in some

implementations just similar, nonzero pattern in the factor as one

supernode, by storing dense matrices instead of vectors. This comes

at the cost of explicitly representing some zeros, but the row infor-

mation for each supernode is only stored once (2b).

©­­­­­«
1 0 0 0 0

0 2 0 0 0

0 0 3 0 0

6 7 0 4 0

0 0 8 9 5

ª®®®®®¬
t

u

[(
0 1

3 6

)
,

(
1 2

3 7

)
,

(
2 3

4 8

)
,
(
4 5

)]
(2a)

©­«
0 1 0

1 0 2

3 6 7

ª®¬ , ©­«
2 3 0 0

3 0 4 0

4 8 9 5

ª®¬
 (2b)

The efficiency of factorization algorithms can significantly improve

when working with a supernodal representation. It allows consid-

ering several columns at once, which improves the applicability of

highly optimized densemath libraries like Intel’s MKL [Intel 2009] in

different steps of the factorization. The supernodal implementation

can be derived by replacing columns with supernodes in Algorithm

1. The mathematical operations of the algorithm have to be replaced

by corresponding operations on matrices (supernodes). To give just

one example, step (4) becomes

L(k0 : k1, k0 : k1) ← Cholesky(L(k0 : k1, k0 : k1)),

for a supernode spanning columns k0 to k1. Cholesky(.) can be

implemented employing any dense Cholesky factorization. Details

can be found in [Davis 2006]; the most important takeaway for

our work is that columns can be grouped into supernodes that are

processed together during factorization.

3.5 Schur Complement based Methods

The Schur complement is a powerful tool for progressively mod-

ifying linear systems [Yeung et al. 2016] and parallelization [Chu

et al. 2017; Liu et al. 2016]. Suppose we have a positive definite

and symmetric linear system with the following block form where

A ∈ Rn×n
is a square matrix for which a factorization is already

known and A1 ∈ R
n×m ,A2 ∈ R

m×m
:(

A A1

A⊤
1

A2

) (
x1
x2

)
=

(
b1
b2

)
. (3)

Instead of solving the system (3) by factorizing it from scratch, we

can reuse the factorization of A by computing the solution in two

steps using block-wise row elimination. Elimination of A⊤
1
yields

the equivalent system(
A A1

0 A2 − A⊤
1
A−1A1

) (
x1
x2

)
=

(
b1

b2 − A⊤
1
A−1b1

)
. (4)

In order to compute the solution, we first determine x2 by construct-
ing and solving the system(

A2 − A⊤1A
−1A1

)
︸ ︷︷ ︸

B

x2 = b2 − A⊤1A
−1b1, (5)

this requiresm solves using the system A and the construction and

solution of a densem×m system, which is quite efficient form ≪ n.
Moreover, we can use the identity

A⊤
1
A−1A1 = A⊤

1

(
L−1

)⊤
L−1A1 (6)

=
(
L−1A1

)⊤
L−1A1 , (7)

which allows us to limit the computational work to a few back-

substitutions to compute L−1A1, followed by a matrix product to

compute A⊤
1
A−1A1. After x2 has been determined, we can use the

known factorization of A again to solve

Ax1 = b1 − A1x2.

The matrix B can be explicitly constructed and factorized; how-

ever, iterative approaches without the need to construct B explicitly

are possible [Chu et al. 2017]. This basic technique can be used

to incorporate updates to linear systems in several ways. Given a

factorization of a linear system A, for example in the context of

a linear physical simulation, Yeung et al. [2018] describe how to

impose Dirichlet boundary constraints at a few vertices indexed in

B with |B | =m

min

x∈Rn
x⊤Ax

s.t. xi = ci , i ∈ B,

without recomputing the factorization completely by solving the

augmented system (
A HB
H⊤B 0

) (
x̂
y

)
=

(
b
0

)
. (8)

This system can also be derived using Lagrange multipliers y. Here,
HB ∈ R

n×m
contains columns of the identity matrix corresponding

to constrained vertices. x̂ ∈ Rn
contains the correct values for

unconstrained vertices, i.e. xi = x̂i for all i < B. Applying the Schur

complement technique, yields the equation

Ax̂ = b − (H⊤BA
−1HB)

−1(H⊤BA
−1b). (9)

ACM Trans. Graph., Vol. 39, No. 6, Article 202. Publication date: December 2020.

202:6 • Philipp Herholz and Olga Sorkine-Hornung

The main computational work to incorporate new boundary condi-

tions is again the construction and factorization of a system of the

type seen in (6) and solving a linear system; the factorization of A
can be reused for all updates. More general symmetric updates to a

linear system, for example when cutting a mesh during a linear FEM

simulation, might require changes to the matrix itself apart from

just constraining vertices and possibly the addition of new degrees

of freedoms in the form of mesh vertices. Yeung et al. [2018] show

how to employ Schur complements even for this more general case.

The main computational steps are again the construction and fac-

torization of a system of sizem×m wherem refers to the number of

modified and added column/row pairs followed by solving a linear

system involving A.
For both cases, interactively imposing Dirichlet boundary condi-

tions and more general structural changes, the main computational

burden of the update is the construction of a linear system of the

form

H⊤BA
−1HB (10)

where HB contains unit vectors and the solution of two additional

linear systems. For updates of medium size, i.e. 20 < m ≪ n, the
construction of (10) dominates runtime in most of our experiments.

In Section 6 we demonstrate that our method outperforms these

approaches in typical editing scenarios. However, when many small

updates have to be made to a system, for example in the context

of fracture in a physics based simulation, Schur complement based

methods are more efficient. In that sense the methods complement

each other.

4 METHOD

Our central technical contribution consists of two techniques that

are able to update Cholesky factors in order to reflect changes in

the system matrices. The first approach is able to impose Dirichlet

constraints and thereby removing degrees of freedom from the

system. We detail this method in Section 4.1. As many applications

we are targeting require only the removal of degrees of freedom,

we offer this dedicated approach that is more efficient and easier

to implement, at the cost of being less general compared to the

second method. This method allows for the addition and removal of

variables of a linear system, representing a change in the number of

degrees of freedom in the underlying mesh. Section 4.2 describes the

necessary symbolic (i.e. the nonzero pattern) and numeric updates.

Both methods are based on the sparse Cholesky update algorithm

3. While removing degrees of freedom can be accomplished by

changing numerical values only, we need to change the symbolic

structure for adding degrees of freedom too.

4.1 Removing Degrees of Freedom

The removal of degrees of freedom is a common operation when

imposing Dirichlet boundary conditions for parameterization with

a fixed boundary, or in interactive mesh deformation [Botsch and

Sorkine 2008b]. Assuming the Cholesky factorization of a system

matrix A corresponding to a mesh is available, we would like to

solve the following constrained optimization problem:

argmin

U∈Rn×d
Tr

(
U⊤AU

)
,

s.t. Ui = ui for i ∈ B,
(11)

whereB represents a set of constrained vertices with associated fixed

positions ui and U ∈ Rn×d
contains the sought vertex positions. If,

for example, d = 2, the boundary conditions form a convex polygon

and A represents the combinatorial discrete Laplacian, we obtain a

Tutte embedding.

A common way of solving this problem is to consider the set of

interior vertices

I = N \ B with N = {0, . . . ,n − 1} (12)

and solve the linear system

AI IUI = −AI BUB . (13)

Here, the notationAI B selects rows and columns referenced in I and
B, respectively, akin to Matlab’s slicing operation A(I, B) where I
and B are lists of integers.

While previous work [Herholz and Alexa 2018] tries to construct

the factorization of AI I by extracting and updating components

of the Cholesky factor L of A, we take a different approach that is

more efficient for subsequent updates required during interactive

parameterization. In contrast to Schur based methods, we mod-

ify the factorization directly, avoiding scalability issues due to the

construction of (10).

The key idea is that in order to remove degrees of freedom, it

is sufficient to obtain the factorization of the matrix AB
, which is

obtained from A by setting all rows and columns that are indexed

by B to zero and placing the value 1 on the respective diagonals:

AB
i j =


0 if (i ∈ B ∨ j ∈ B) ∧ i , j,

1 if i ∈ B ∧ i = j,

Ai j else.

(14)

This way we effectively detach the constrained vertices from the rest

of the mesh by canceling all interactions. Note that the matrix AB

inherits positive definiteness from A, because all principle minors

of AB
must be non-negative if this is the case for A. Obtaining a

factorization ofAB
is also the strategy employed by the row deletion

algorithm of Davis et al. [Davis and Hager 2005], however, they

follow a very different update strategy to achieve that goal.

The Cholesky factorization

AB = LB
(
LB

)⊤
(15)

can be efficiently computed by updating the given factorization

A = LL⊤. To this end, we apply Algorithm 3, where the set I0
of columns that differ between A and AB

can be deduced from

Equation (14). All columns that depend on these columns in the

Cholesky factor are identified using the elimination tree and updated

subsequently. As we show in Appendix A, rows and columns of

LB corresponding to nodes in B will be identical to the rows and

columns of the identity matrix in the same way as for AB
. This

allows for an even more efficient update procedure as these columns

can be skipped during numerical factorization and replaced by the

ACM Trans. Graph., Vol. 39, No. 6, Article 202. Publication date: December 2020.

Sparse Cholesky Updates for Interactive Mesh Parameterization • 202:7

Fig. 2. Splitting vertex 2 in the input mesh (left) into two new vertices (right)

results in a new Laplacian (second row) with a column and row added.

corresponding unit vector. Because of this property we can conclude

that

AI I = LBI I
(
LBI I

)⊤
, (16)

holds whichmeans that we have access to the Cholesky factorization

of AI I as soon as LB has been constructed using the update algo-

rithm. Using this Cholesky factor we can solve (13), which provides

us with a solution for (11).

It should be noted that the Cholesky factor of LI I obtained from

refactoring AI I is numerically identical to LBI I , but the latter might

contain additional explicit zeros. This is a consequence of ourmethod

to remove degrees of freedom by setting coefficients to zero explic-

itly. We find this effect to be negligible in our experiments (Section

6).

4.2 Adding Degrees of Freedom

Defining new seams in interactive parameterization or simulating

fracture requires adding degrees of freedom. Suppose a mesh is cut

along a vertex path. We have to duplicate all vertices and edges

on that path except for the start and end vertices. The resulting

system has a larger dimension compared to the original matrix,

but most coefficient remain equivalent. Yeung et al. [2018] show

that a solution of the modified system can be obtained using Schur

complements (Section 3.5). Our approach follows a different idea.

Instead of reusing the original factorization in order to compute

a solution to the modified system, we want to update the existing

factorization to become the new factorization. This approach leads

to an algorithm with very different performance characteristics

compared to previous work.

The idea is to actually add rows and columns to the factorization

of A to account for the additional vertices. The key to an efficient

implementation of this idea is the supernodal approach used in

fast Cholesky factorization algorithms (Section 3.4). The update is

divided into a symbolic and a numeric phase.

To illustrate the technique, we assume that vertex k of the mesh

is cut into two, as in Figure 2. The question is how the structure of

the corresponding Cholesky factorization changes and how we can

ALGORITHM 4: Symbolic DOF Addition

Name: AddDegreeOfFredomSymbolic(L, k)
Input: Cholesky factor L.
Output: Symbolic updated factor L.

foreach supernode S do
ShiftIndizesGreaterK(S, k)
if ContainsRow(S, k) then

InsertRow(S, k + 1)
end
if ContainsColumn(S, k) then

AppendColumnToSupernode(S)
end

end

compute the new factorization by updating the old one. The gener-

alization to more than one new boundary vertex is straightforward.

Symbolic Update. Computing the Laplacian of both meshes (sec-

ond row of Figure 2) shows a similar structure, which comes as no

surprise, since splitting a vertex only affects its immediate neigh-

bours. Structurally we can construct the new Laplacian from the

old one by duplicating the kth row and column, which amounts to

labeling the new vertex as k + 1 and shifting all following vertex

labels by one. This way we are introducing coefficients representing

connections between vertices that are not connected in the new

mesh (gray lines and crosses). These coefficients are assigned the

value zero despite being explicitly represented in the sparse matrix.

By following this recipe for all duplicated vertices we guarantee

that the structure of the elimination tree is also changed in a very

predictable way: the new vertex is just inserted after the original

one (top row in Figure 2). As a consequence, the overall structure of

the Cholesky factor changes in a systematic way: again, just a row

and a column are duplicated. In particular, the structure of all other

supernodes not directly affected by the update does not, change

apart from the duplicated rows. From an algorithmic point of view,

the new structure can be created following the steps detailed in

Algorithm 4.

For applications in parameterization as well as for cutting or

fracture simulation of triangle or tetrahedral meshes, it is sufficient

to consider the case of duplicating vertices, as described above, or

merging previously duplicated vertices. Removing vertices by merg-

ing follows the same steps as duplication, by replacing insertion of a

row and column by their removal. Computationally, both operations

require virtually the same amount of work. Our implementation

is capable of duplicating and removing a large amount of degrees

of freedom at once: the required modifications to Algorithm 4 are

straightforward. Instead of shifting row indizes by 1 they are now

shifted according to the number of added and removed rows pre-

ceding it.

More general structural updates beyond duplicating and merging

vertices are possible, albeit more complex, as the structure of the

elimination tree might change in different ways. As a consequence,

structural updates of supernodes not directly affected by the update

ACM Trans. Graph., Vol. 39, No. 6, Article 202. Publication date: December 2020.

202:8 • Philipp Herholz and Olga Sorkine-Hornung

become necessary. As we are focusing on the application of inter-

active mesh editing for parameterization, we did not explore these

more general updates.

Numerical Update. After performing the symbolic update, we

have a factor that has the correct nonzero structure to store the

factorization of the modified system matrix. However, the values

of modified or added rows and columns are not correct and might

represent some structural zeros explicitly. At this point the setting

is exactly the same as for the basic update algorithm described in

Section 3.3: some columns contain invalid values and we have to

traverse the elimination tree starting at these nodes and identify all

nodes that are affected by the update. Running Algorithm 2 only on

these supernodes results in the updated factorization. This makes

the implementation of our dimension modifying update particularly

simple. We can reuse the basic update procedure (Alg. 3), which

is just a slight modification of the basic numerical factorization

algorithm 2, for which highly optimized implementations exist.

Example. Here we illustrate the difference between the original

factor (17) and the updated one (18) using the example from Figure 2.

Both matrices are also given in their supernodal form (17/18 b). The

update introduces a copy 2
′
of vertex 2, which is reflected by a new

row and column in the system matrix and the factor. The update of

column 2 and 2
′
propagates through the factor to nodes 3 and 4, as

can be seen from the elimination tree of the new factor (Figure 2,

top right). Looking at the supernodal form of the new factor (18b),

we can see that the numerical values in the first supernode do not

change, as expected, only row indices are shifted to account for the

newly introduced row. The second supernode is expanded by one

column and row and updated numerically. It is important that we

merely split nodes, which has a very predictable and local effect

on the factor. Introducing a vertex connecting different parts of the

mesh would affect it in a significantly more complicated way.

factor:

©­­­­­«
1.7 0 0 0 0

0 1.7 0 0 0

-0.58 -0.58 1.5 0 0

-0.58 -0.58 -0.44 1.5 0

-0.58 -0.58 -1.1 -1.5 0.022

ª®®®®®¬
(17a)

supernodal structure:
©­­­«
0 1.7

2 -0.58

3 -0.58

4 -0.58

ª®®®¬ ,
©­­­«
1 1.7 0

2 -0.58 1.5

3 -0.58 -0.44

4 -0.58 -1.1

ª®®®¬ ,
(
3 1.5 0

4 -1.5 0.022

) (17b)

modified factor:

©­­­­­­­«

1.7 0 0 0 0 0

0 1.7 0 0 0 0

-0.58 0 1.3 0 0 0

0 -0.58 0 1.3 0 0

-0.58 -0.58 -0.26 -0.26 1.4 0

-0.58 -0.58 -1.0 -1.0 -1.4 0.0077

ª®®®®®®®¬
(18a)

modified supernodal structure:
©­­­«
0 1.7

2 -0.58

4 -0.58

5 -0.58

ª®®®¬ ,
©­­­­­«
1 1.7 0 0

2 0 1.3 0

3 -0.58 0 1.3

4 -0.58 -0.26 -0.26

5 -0.58 -1.0 -1.0

ª®®®®®¬
,

(
4 1.4 0

5 -1.4 0.0077

)
(18b)

Implementation. A key to an efficient implementation of the sym-

bolic update is the supernodal structure (18b). We store each su-

pernode, consisting of row indizes and a dense value matrix, as a

separate instance in contrast to the traditional representation that

uses arrays storing all row indizes and values sequentially. The ben-

efit of this storage scheme is that rows and columns can be inserted

efficiently per supernode without shifting the position of all follow-

ing supernodes in the sparse factor. Moreover, the structure update

can be easily parallelized on a per supernode basis when using this

representation. The structural transformation from (17b) to (18b)

illustrates this property. We have found that our storage scheme

has a negligible performance impact during the numerical phase

even for the full initial factorization despite of possible worse cache

coherency.

5 APPLICATIONS

5.1 Interactive Conformal Parameterization

A natural application for updating Dirichlet boundary conditions

for parameterization are Tutte embeddings, described in Section

4.1. While this is already a practical application, we are interested

in further artistic freedom regarding the mapping of the boundary.

The recent boundary first flattening (BFF) method of [Sawhney and

Crane 2017] can significantly benefit from our update algorithm. The

key idea of this method is to express the solution of several parame-

terization design objectives entirely with respect to the boundary,

and fill in the interior vertices by solving the constrained optimiza-

tion problem (11). Design objectives can be fixed cone angles, a

target boundary shape or minimal area distortion. Here we focus

on parameterizations with minimal area distortion, which can be

characterized as having conformal scaling factors of zero at the

boundary. Shawney and Crane [2017] describe how to compute

corresponding boundary angles by solving another instance of (11)

and integrate them to produce the final boundary. Combined with

our update algorithm, this makes for a very useful interactive pa-

rameterization method. Whenever the user decides to modify the

boundary, our method updates the system matrix that is used to

solve two instances of Dirichlet-constrained quadratic optimization

to compute the new parameterization. Since refactorization is by

ACM Trans. Graph., Vol. 39, No. 6, Article 202. Publication date: December 2020.

Sparse Cholesky Updates for Interactive Mesh Parameterization • 202:9

Fig. 3. These images from our interactive application (based on code pro-

vided with [Sawhney and Crane 2017]) show the initial situation and the

updated one after cutting the mesh (≈100k vertices) and optimizing for

the conformal parameterization with minimal area distortion. Construct-

ing and solving the system from scratch takes 410 milliseconds versus 24

milliseconds with our approach.

Fig. 4. By selecting two vertices our application prototype computes a

seamless orbifold Tutte embedding. Direct solution of the KKT system (20)

requires 3.4 seconds, our algorithm just 320 milliseconds.

far the most expensive operation in BFF, the speedups of about an

order of magnitude or more for reasonable seam lengths reported

in Section 6.1 apply to BFF as well. Other parameterization objec-

tives for BFF might require the computation of conformal scaling

factors from boundary curvature. In these cases the factorization

of the full Laplacian is required, which calls for an update that ex-

plicitly introduces new boundary vertices into the factorization, as

described in Section 4.2. We integrated our update algorithm into

the code provided by the authors of [Sawhney and Crane 2017]

and show an interactive editing session in the accompanying video,

highlighting the achieved speedup in a typical session.

5.2 Orbifold Tutte Embeddings

The second application we consider constructs tileable parameteri-

zations of genus zero meshes. The work of Aigerman et al. [2017]

generalizes the concept of Tutte embeddings in the plane to Eu-

clidean orbifolds, which are flat surfaces except for a discrete set of

cone points. Orbifolds can be used to tile the planeR2
, which makes

them particularly interesting for seamless mesh parameterization.

The resulting parameterization depends on the choice of a seam

and cone vertices along which the surface is cut open (see Figure

4). Since the quality of the resulting map can be vastly different de-

pending on the specific choice of seam, an interactive tool allowing

the user to modify the seam without refactoring a system matrix

can be useful. Moreover, orbifold Tutte embeddings have also been

employed in the context of convolutional neural networks [Maron

et al. 2017], where it is necessary to compute many different em-

beddings of the same object. In contrast to the previous application,

we now need to represent vertices along the seam explicitly as two

separate vertices and cannot just eliminate them from the system.

Figure 4 shows an input mesh that has been cut along a seam (in

red) by splitting each edge along an edge path into a pair of edges.

The orbifold Tutte embedding (right) maps the highlighted points

onto the corners of a square and enforces tileability by ensuring that

edge pairs are related by a rotation of π/2 about one of the fixed
points. Additionally, smoothness across tile boundaries is explicitly

enforced. This makes for three types of linear constraints:

(1) positional constraints on four vertices,

(2) rotational constraints on edge pairs,

(3) smoothness across tile boundaries.

The rotational constraints couple x and y coordinates in the param-

eterization space and prevent us from solving separate problems for

both dimensions, which is possible for regular Tutte embeddings.

All constraints on the coordinates X ∈ Rn×2
in parameterization

space can be expressed in terms of a matrix B ∈ Rm×2n
and a vector

b ∈ Rm
, wherem is the number of linear constraints. We obtain

a Tutte orbifold embedding by minimizing the Dirichlet energy

subject to these linear constraints, which amounts to solving the

following optimization problem:

argmin

X∈Rn×2
Tr

(
X⊤AX

)
s.t. B vec(X) = b,

(19)

where vec(·) stacks the columns of a matrix into a vector; the system

matrix A represents the cotan Laplacian. This optimization problem

can be solved by introducing a vector of Lagrange multipliers λ ∈
Rm

and forming the KKT system

©­«
A 0 B⊤0 A
B 0

ª®¬
(
vec(X)

λ

)
=

©­«
0
0
b

ª®¬ . (20)

For details on this transformation we refer to [Nocedal and Wright

2006]. The authors of the original paper [Aigerman et al. 2017]

directly solve the system (20) using a sparse LU solver every time

boundary conditions change. Unfortunately we cannot immediately

apply our update algorithms, as they are limited to positive definite

matrices; however, we can apply the Schur complement technique

ACM Trans. Graph., Vol. 39, No. 6, Article 202. Publication date: December 2020.

202:10 • Philipp Herholz and Olga Sorkine-Hornung

(Section 3.5) to eliminate the matrix B in the last row, leading to

©­«
A 0 B⊤0 A

0 -C

ª®¬
(
vec(X)

λ

)
=

©­«
0
0
b

ª®¬ , C = B
(
A−1 0
0 A−1

)
B⊤ (21)

With this formulation it is possible to solve the system in three steps.

First, the matrix C is constructed and used to solve for the values λ.
Using these values the actual positions X can be computed.

λ = −C−1b (22)

vec(X) = −
(
A−1 0
0 A−1

)
B⊤λ. (23)

A key benefit here is that we can solve this system based on a

Cholesky factorization of A, which is significantly more efficient to

compute than the LU factorization of the full system. More impor-

tantly for our setting, however, is the fact that we can now employ

structural updates to A in order to account for the definition of new

seams. We implement orbifold Tutte embeddings using the formu-

lation (21) in combination with our update algorithm, described in

Section 4.2. Figure 4 and the accompanying video show our inter-

active application, demonstrating the practical effectiveness of our

update formulation.

5.3 Mesh Deformation

While we developed our solver specifically for the task of mesh

parameterization, it can also be applied in more general settings. We

demonstrate how our techniques can be used for as-rigid-as-possible

mesh deformation [Sorkine and Alexa 2007]. One of the problems in

these types of algorithms is the need to refactor the systemwhenever

the handle or the region of interest is changed by introducing or

removing Dirichlet boundary constraints. This is similar to the

change in boundary conditions during interactive parameterization.

The main difference is that now a larger number of vertices may

be constrained to specific positions and that refactorization is only

sporadically necessary during an editing session. Consequently our

method can only help to improve performance for this particular

part of the algorithm, especially if many incremental changes to

boundary conditions take place. To adapt our algorithm to this new

situation, we exploit the information about which columns have

been replaced by a unit vector. It is easy to see that the corresponding

column in the factor is also a unit vector (see Appendix A for details),

such that we can just replace columns of the factor by a unit vector

instead of running Algorithm 1. Moreover, while computing the

values for a column that needs to be updated via Algorithm 2, we

do not have to take these unit columns into account, since they do

not contribute any values to the update (we remove these columns

from the set Ik in the second step of Algorithm 2).

We have integrated our Cholesky updates into a Blender plugin

demonstrating the use of our algorithm in a production environment.

The accompanying video features an editing session posing the

armadillo model.

6 EVALUATION

We evaluate our solver on a set of meshes of varying sizes and ran-

domly generated cuts to systematically asses the performance of

our algorithms. We start with a closed manifold mesh, randomly

Fig. 5. Meshes used for our experiments. The value of n refers to the number

of mesh vertices.

select two vertices and compute the shortest edge path between

them using Dijkstra’s algorithm. Since the performance of our up-

dates depends on how many paths in the elimination tree have to

be traversed, we expect the performance to degrade in a nonlinear

manner with respect to path length. Tracing shortest paths between

vertices is therefore a worst case scenario, as these paths tend to cut

through nodes belonging to many different subtrees compared to a

set of vertices that is concentrated in a small region on the mesh. We

still see significant speedup factors compared to previous methods:

about one order of magnitude in most situations.

The path lengths cover a wide range of sensible editing scenarios.

Note that the number of vertices forming a seam on a mesh grows

with O(
√
n), where n is the number of vertices, when uniformly

increasing mesh resolution. As an example, a regular mesh of a half-

sphere with 90 vertices has 25% boundary vertices, while a mesh

of the same shape with 200k vertices has 0.5% boundary vertices.

For the buddha mesh with 1M vertices, for example, we consider

path lengths of up to 6,000 vertices. Vertically cutting the mesh

through the center along one of its main axes always results in

seam lengths below 2,500 vertices. Even though cutting a mesh for

parameterization might require many individual seams, we expect

users to introduce them one by one, and therefore believe that our

evaluation even goes beyond typical interaction scenarios. In the

context of mesh deformation (Section 5.3), the position of large

parts of the mesh often has to be constrained, however, in all cases

it suffices to constrain vertices at the interface between the current

region of interest and the rest of the mesh.

For the experiments we sample paths of specific lengths l in the

following way: We select a vertex at random, compute the shortest

graph distance to all others and pick a second vertex with the desired

distance. If all vertices are closer than l , we restart the procedure
with a different seed vertex. If this fails several times, we split the

length and look for k individual random paths of length l/k . We use

this experimental setup to perform various updates, as described in

the following sections.

We compare with different competing methods. For the algo-

rithms described in [Yeung et al. 2018] and [Herholz and Alexa 2018],

we use code provided by the authors. The row/column addition and

deletion algorithm presented in [Davis and Hager 2005] is available

in Cholmod [Chen et al. 2008]. As performance critical code is using

BLAS and LAPACK routines across all implementations, we always

link with Intel’s BLAS and LAPACK implementation provided as

ACM Trans. Graph., Vol. 39, No. 6, Article 202. Publication date: December 2020.

Sparse Cholesky Updates for Interactive Mesh Parameterization • 202:11

Ours
[Davis & Hager, 2005]
Refactorization (Cholmod)

Cholup [Herholz & Alexa, 2018]
AMPS [Yeung et al., 2018]

Removing degrees of freedom

Adding degrees of freedom

Armadilloms

path length

Armadilloms

path length

Buddha
ms

path length

Buddha
ms

path length

path length

ms

path length

msThai Lucy

Fig. 6. Performance comparisons for Cholesky updates and refactorization.

Our algorithm scales very well with mesh and update size while competing

methods are better for relatively small updates.

part of MKL [Intel 2009] for a fair comparison. We use the ICC

compiler with the same settings for all results and comparisons.

6.1 Updating Parameterization Seams

Figure 6 illustrates that our update algorithm compares favorably to

competitively over a large range of mesh sizes and experiments. We

do not include any setup cost for computing the cut mesh or setting

up the Laplacian, which would benefit our method. We use code

provided with [Sawhney and Crane 2017] to introduce cuts and

construct the new mesh. Figure 6 shows results for four different

meshes ranging from 170 thousand to 14 million vertices. For very

small updates, the row deletion algorithm of Davis and Hager [2005]

and Schur complement based updates [Yeung et al. 2018] are usually

more efficient; however, when introducing a new seam with more

than 20 vertices, our method is faster, in many cases even by orders

of magnitude.

As expected, our method is slightly slower for introducing new

degrees of freedom. This is caused by two factors. First, the symbolic

update described in Section 4.2 has to be computed for these types

of updates and secondly, the numeric phase now has to update a

system that is slightly larger. Overall the performance of adding and

removing degrees of freedom is comparable. We observe that our

updates are always faster than full refactorization. This is due to the

fact that in a worst case scenario, our method updates all columns

and therefore degrades to refactorization. While the performance

is not realtime for extremely large meshes and long cuts, we see

updates for the Lucy model with 14 million vertices dropping from

approximately 35 seconds for a full refactorization to 1-3 seconds,

depending on cut length. For a mesh with 3 million vertices we see

a drop from 7 seconds to 100-600 milliseconds. We believe this is a

situation where our method actually enables interactive editing.

Comparison to [Herholz and Alexa 2018]. We compare our method

for incorporating Dirichlet boundary conditions (Section 4.1) with

the update algorithm presented in [Herholz and Alexa 2018]. We

are able to achieve a significant speedup over this method because

our method does not need to copy large portions of the original

factorization. However, both methods are based on partial refactor-

ization and have therefore a similar scaling behaviour with respect

to the number of modified degrees of freedom. A key advantage

of our method is that we can attractively add new seams in con-

trast to [Herholz and Alexa 2018], where each update has to start

from the original factorization. Moreover, this method is limited to

Dirichlet boundary conditions and is not capable of adding degrees

of freedom to a factorization.

Comparison to [Davis and Hager 2005]. Cholmod has a dedicated

implementation for 2-rank updates representing a symmetric addi-

tion or deletion of a row/column pair. Deleting such a pair replaces

the row and column by unit vectors, similar to our algorithm. For

very small updates this methods can outperform our approach, how-

ever, this is usually not in the realm of editing scenarios we are

interested in. In contrast to our approach, this method scales lin-

early with the number of updates. Unfortunately the method cannot

be easily parallelized, but a cache optimized implementation similar

to [Davis and Hager 2000] could be possible, leading to a small

performance boost. Our approach on the other hand can in many

situations update several vertices at the cost of one, as they share

a common path in the elimination tree. For the purpose of this

comparison experiment, when adding degrees of freedom, we add

empty rows and columns during the initial factorization. This is not

useful in practice, as the position of these rows and columns will be

generally unknown.

Comparison to [Yeung et al. 2018]. Updates using this methods are

targeted at mesh cutting in simulations featuring frequent, small

updates. Therefore it comes as no surprise that this algorithm only

performs well for small seam lengths. Because we do not sample

many paths in this realm, the plots seem to indicate that we are

always outperforming Schur based updates, which is only true for

paths with more than about 20 vertices. Similar to Cholmod’s 2-rank

updates, the performance of this method scales at least linearly with

the number of constraintsm because solving the system requires

the construction of the matrix (10), involvingm backsubstitutions.

6.2 Comparison to Iterative Methods

Iterative methods for the solution of linear systems are a viable al-

ternative to direct methods like Cholesky factorization. Their main

ACM Trans. Graph., Vol. 39, No. 6, Article 202. Publication date: December 2020.

202:12 • Philipp Herholz and Olga Sorkine-Hornung

path lengthpath length

Armadillo Buddha
msms

Ours (update + Schur complement solve)
Refactrization (UMFPACK)

Updating orbifold Tu�e embeddings

Fig. 7. Updating seams for orbifold Tutte embeddings is commonly orders

of magnitude faster than solving the underlying system from scratch.

Updates + solve (ours) Hypre (AMG PCG)

Factorization + solve (Cholmod) Eigen (Jacobi PCG)

Armadillo Buddha

Comparing to iterative methods

path lengthpath length

msms

Fig. 8. Comparison of two preconditioned conjugate gradient implementa-

tions to the solution of the linear system using our updates and refactoriza-

tion, followed by forward and backward substitution. We remove degrees

of freedom along a path for parameterization like in Section 6.1. For the

iterative methods the reduced system AI I is solved explaining the slight

slope. Updates and refactorization perform at least an order of magnitude

faster.

advantage over direct methods is their scalability thanks to the low

memory requirements; the system matrix does not even have to be

represented explicitly. In the context of system updates there are

two potential benefits: we can warm-start the solution process with

a previous solution, and there is no factorization to be updated. For

symmetric and positive definite problems (possibly after a small

perturbation) as considered here, the preconditioned conjugate gra-

dient method is one of the most popular and versatile approaches.

However, the convergence rate depends on the specific problem

and the preconditioner. We compare our update method and refac-

torization, both including forward and backward substitution, with

two implementations of preconditioned conjugate gradients on the

example of removing degrees of freedom, see Figure 8. The method

implemented in Eigen [Guennebaud et al. 2010] uses the very basic

Jacobi preconditioner, which is about an order of magnitude slower

than Hypre [Falgout et al. 2006], a highly optimized state-of-the-art

implementation employing an algebraic multigrid preconditioner.

However, both methods are slower than Cholesky factorization for

the problems we consider. We use a threshold of 10
−8

as the conver-

gence criterion for both conjugate gradient implementations. We

action sub fig. our time [Herholz et al. 2018]

move left hand (a) 19ms 56ms

move right hand (b) 13ms 64ms

move left foot (c) 15ms 69ms

release hands (d) 35ms 47ms

Fig. 9. Posing Armadillo in an editing session requires imposing new bound-

ary conditions whenever the handle region changes. Our solver does not

have to update for all current boundary conditions every time but can add

and remove them on the fly, resulting in better performance.

do not observe any substantial performance benefit from warm-

starting the algorithms, which is most likely attributed to the fact

that introducing cuts can result in vastly different parameterizations.

However, there might be scenarios where the parameterization does

not change substantially due to new constraints, which could benefit

from warm starts.

6.3 Orbifold Tutte Embeddings

We evaluate the introduction of more general boundary conditions

at the example of orbifold Tutte embeddings, as detailed in Section

5.2. We compare to the direct solution of (20) using the sparse LU

decomposition implemented in UMFPACK [Davis 2004] in Figure 7.

Our implementation uses the formulation as a Schur complement

(21) in combination with an existing factorization of the system ma-

trix A. For each new cut we update the factorization by introducing

new vertices as described in Section 4.2. For the construction of C
(21) and solution of the system (22) we employ dense linear algebra

procedures from the Intel MKL library. With growing boundary

length we see the benefit of our implementation decrease, which is

due to the dense linear algebra operations; however, in all our exper-

iments our formulation is commonly orders of magnitude faster or

at least as efficient as the LU decomposition based approach, even

on relatively large meshes.

6.4 Mesh Deformation

In Figure 9 we show a short editing session posing the Armadillo

model using as-rigid-as-possible mesh deformation [Sorkine and

Alexa 2007]. This is the setting for which the update algorithm in

[Herholz and Alexa 2018] is designed for. Our algorithm is still able

to be faster in this example because we can iteratively add con-

straints for each step while the competing approach has to extract

and update a Cholesky factor with respect to all active constraints in

ACM Trans. Graph., Vol. 39, No. 6, Article 202. Publication date: December 2020.

Sparse Cholesky Updates for Interactive Mesh Parameterization • 202:13

ms ms

Ours Refactorization (Cholmod)

updated verticesupdated vertices

Randomly removing degrees of freedom
Armadillo Buddha

Fig. 10. Removing random degrees of freedom can result in faster refac-

torization compared to updates, because the effective system dimension

decreases.

every step. For larger meshes and distributed boundary conditions

the difference is expected to be even more pronounced; however,

our method can only provide substantial improvements over [Her-

holz and Alexa 2018] for frequent, incremental changes of boundary

conditions. The total performance improvement for mesh deforma-

tion, especially for ARAP based methods, depends on the number of

iterations and the amount of computation to be performed besides

the factorization of a system matrix, specifically the computation of

the local rotation matrices.

6.5 Scalability

While ourmethods are able to efficiently update a substantial amount

of vertices, they become less efficient when a very large number

of degrees of freedom are modified. This effect is more prominent

if nodes that are far apart in terms of the elimination tree are up-

dated. When removing a large fraction of all degrees of freedom,

refactorization becomes more efficient, because the reduced system

AI I to be factorized is much smaller than the full system we have

to update. To evaluate the behaviour of our method with respect to

update size, we perform a stress test. For a mesh with n vertices we

randomly choose a fraction of the vertices covering the range from

10% to 90% (see Figure 10). We observe that our method is competi-

tive when up to 25% degrees of freedom are removed, even though

the vertices are chosen at random. This is a very artificial scenario,

as it is unlikely that such a large amount of degrees of freedom

is ever removed all at once. However, if many degrees of freedom

in a connected mesh region have to be removed, for example in

mesh deformation, we can make use of the fact that the Cholesky

factor for the affected vertices contains unit vectors, as described in

Section 5.3. If an application indeed requires updating many random

degrees of freedom, our method does not yield a benefit.

7 CONCLUSION

We presented different variants of Cholesky factor updates specif-

ically tailored to the demands of interactive mesh parameteriza-

tion. We demonstrated that our updates scale with mesh size and

outperform competing approaches. The three presented example

applications are just a small sample; every algorithm requiring up-

dates to linear boundary conditions can potentially benefit from our

approach. While our method scales to relatively large updates, it

does not provide a benefit over refactorization if more than about

25% of degrees of freedom are removed, as demonstrated in Section

6.5. Adding degrees of freedom, however, is always competitive

with refactorization because the effective system dimension is not

decreased.

The main difference of our algorithms to most other Cholesky

updating approaches lies in the fact that we are not processing the

update of each degree of freedom individually, but resort to partial

refactorization, leading to drastically different scaling behaviour.

Updating a small seam that cuts the mesh in a local region takes

the same amount of time as cutting just a single vertex, because the

set of columns of the Cholesky factor that have to be modified is

usually almost the same for both cases.

Future Work. In the future we would like to explore more com-

plex mesh modifications and their corresponding Cholesky updates.

Interactively cutting meshes could also be an interesting applica-

tion scenario. Approximate Cholesky update methods [Hecht et al.

2012] for this kind of tasks have to resort to refactorization if the

mesh modifications become too complex. Our methods could re-

place these full refactorizations and form new algorithms combining

approximate and exact Cholesky updates.

ACKNOWLEDGMENTS

We thank Rohan Shawhney and Noam Aigerman for inspiring dis-

cussions. Jacques Lucke helped us tremendously with integrating

our solver into Blender. We are grateful to the anonymous reviewers

for their constructive comments. This work was partially supported

by the Personalized Health and Related Technologies (PHRT) Swis-

sHeart grant.

REFERENCES

Noam Aigerman, Shahar Z. Kovalsky, and Yaron Lipman. 2017. Spherical Orbifold

Tutte Embeddings. ACM Trans. Graph. 36, 4, Article 90 (July 2017), 13 pages. https:

//doi.org/10.1145/3072959.3073615

Mario Botsch and Olga Sorkine. 2008a. On Linear Variational Surface Deformation

Methods. IEEE Transactions on Visualization and Computer Graphics 14, 1 (Jan 2008),

213–230. https://doi.org/10.1109/TVCG.2007.1054

Mario Botsch and Olga Sorkine. 2008b. On linear variational surface deformation

methods. IEEE Transactions on Visualization and Computer Graphics 14, 1 (2008),
213–230.

Yanqing Chen, Timothy A. Davis, William W. Hager, and Sivasankaran Rajamanickam.

2008. Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and

Update/Downdate. ACM Trans. Math. Softw. 35, 3, Article 22 (Oct. 2008), 14 pages.
https://doi.org/10.1145/1391989.1391995

Jieyu Chu, Nafees Bin Zafar, and Xubo Yang. 2017. A Schur Complement Preconditioner

for Scalable Parallel Fluid Simulation. ACM Trans. Graph. 36, 5, Article 163 (July
2017), 11 pages. https://doi.org/10.1145/3092818

Timothy A. Davis. 2004. Algorithm 832: UMFPACK V4.3—an Unsymmetric-Pattern

Multifrontal Method. ACM Trans. Math. Softw. 30, 2 (June 2004), 196–199. https:

//doi.org/10.1145/992200.992206

Timothy A. Davis. 2006. Direct Methods for Sparse Linear Systems. SIAM, Philadelphia,

PA.

Timothy A. Davis and W. Hager. 1999. Modifying a Sparse Cholesky Factoriza-

tion. SIAM J. Matrix Anal. Appl. 20, 3 (1999), 606–627. https://doi.org/10.1137/

S0895479897321076

Timothy A. Davis andWilliamW. Hager. 2000. Multiple-Rank Modifications of a Sparse

Cholesky Factorization. SIAM J. Matrix Anal. Appl. 22, 4 (July 2000), 997–1013.

https://doi.org/10.1137/S0895479899357346

Timothy A. Davis and WilliamW. Hager. 2005. Row Modifications of a Sparse Cholesky

Factorization. SIAM J. Matrix Anal. Appl. 26, 3 (2005), 621–639. https://doi.org/10.

1137/S089547980343641X

Timothy A. Davis andWilliamW. Hager. 2009. Dynamic Supernodes in Sparse Cholesky

Update/Downdate and Triangular Solves. ACM Trans. Math. Softw. 35, 4, Article 27
(Feb. 2009), 23 pages. https://doi.org/10.1145/1462173.1462176

ACM Trans. Graph., Vol. 39, No. 6, Article 202. Publication date: December 2020.

https://doi.org/10.1145/3072959.3073615
https://doi.org/10.1145/3072959.3073615
https://doi.org/10.1109/TVCG.2007.1054
https://doi.org/10.1145/1391989.1391995
https://doi.org/10.1145/3092818
https://doi.org/10.1145/992200.992206
https://doi.org/10.1145/992200.992206
https://doi.org/10.1137/S0895479897321076
https://doi.org/10.1137/S0895479897321076
https://doi.org/10.1137/S0895479899357346
https://doi.org/10.1137/S089547980343641X
https://doi.org/10.1137/S089547980343641X
https://doi.org/10.1145/1462173.1462176

202:14 • Philipp Herholz and Olga Sorkine-Hornung

Timothy A Davis, Sivasankaran Rajamanickam, and Wissam M Sid-Lakhdar. 2016.

A survey of direct methods for sparse linear systems. Acta Numerica 25 (2016),

383–566.

Robert D. Falgout, Jim E. Jones, and Ulrike Meier Yang. 2006. The Design and Imple-

mentation of hypre, a Library of Parallel High Performance Preconditioners. In

Numerical Solution of Partial Differential Equations on Parallel Computers, Are Mag-

nus Bruaset and Aslak Tveito (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

267–294.

Phillip E. Gill, Gene H. Golub,Walter A.Murray, andMichael A. Saunders. 1972.Methods
for Modifying Matrix Factorizations. Technical Report. Stanford, CA, USA.

Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.

Florian Hecht, Yeon Jin Lee, Jonathan R. Shewchuk, and James F. O’Brien. 2012. Updated

Sparse Cholesky Factors for Corotational Elastodynamics. ACM Transactions on
Graphics 31, 5 (oct 2012), 123:1–13. https://doi.org/10.1145/2231816.2231821

Philipp Herholz and Marc Alexa. 2018. Factor Once: Reusing Cholesky Factorizations

on Sub-Meshes. ACM Transaction on Graphics (Proc. of Siggraph Asia) 37, 6 (2018), 9.
https://doi.org/10.1145/3272127.3275107

Philipp Herholz and Marc Alexa. 2019. Efficient Computation of Smoothed Exponential

Maps. Computer Graphics Forum 38, 6 (2019), 79–90. https://doi.org/10.1111/cgf.

13607

Philipp Herholz, Timothy A. Davis, and Marc Alexa. 2017. Localized Solutions of Sparse

Linear Systems for Geometry Processing. ACM Trans. Graph. 36, 6, Article 183 (Nov.
2017), 8 pages. https://doi.org/10.1145/3130800.3130849

Intel. 2009. Intel Math Kernel Library. Reference Manual.

George Karypis and Vipin Kumar. 1998. A Fast and High Quality Multilevel Scheme

for Partitioning Irregular Graphs. SIAM J. Sci. Comput. 20, 1 (1998), 359–392. https:

//doi.org/10.1137/S1064827595287997

Haixiang Liu, Nathan Mitchell, Mridul Aanjaneya, and Eftychios Sifakis. 2016. A

Scalable Schur-Complement Fluids Solver for Heterogeneous Compute Platforms.

ACM Trans. Graph. 35, 6, Article 201 (Nov. 2016), 12 pages. https://doi.org/10.1145/

2980179.2982430

Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope, Nadav Dym, Ersin Yumer,

Vladimir G. Kim, and Yaron Lipman. 2017. Convolutional Neural Networks on

Surfaces via Seamless Toric Covers. ACM Trans. Graph. 36, 4, Article 71 (July 2017),

10 pages. https://doi.org/10.1145/3072959.3073616

Matthias Müller and Markus Gross. 2004. Interactive Virtual Materials. In Proceedings
of Graphics Interface 2004 (London, Ontario, Canada) (GI ’04). Canadian Human-

Computer Communications Society, Waterloo, CAN, 239–246.

Jorge Nocedal and Stephen Wright. 2006. Numerical optimization. Springer Science &
Business Media.

Rohan Sawhney and Keenan Crane. 2017. Boundary First Flattening. ACM Trans. Graph.
37, 1, Article 5 (Dec. 2017), 14 pages. https://doi.org/10.1145/3132705

Olga Sorkine and Marc Alexa. 2007. As-rigid-as-possible Surface Modeling. In Pro-
ceedings of the Fifth Eurographics Symposium on Geometry Processing (Barcelona,

Spain) (SGP ’07). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland,
109–116.

Olga Sorkine, Daniel Cohen-Or, Dror Irony, and Sivan Toledo. 2005. Geometry-Aware

Bases for Shape Approximation. IEEE Transactions on Visualization and Computer
Graphics 11, 2 (2005), 171–180.

Yu-Hong Yeung, Jessica Crouch, and Alex Pothen. 2016. Interactively Cutting and

Constraining Vertices in Meshes Using Augmented Matrices. ACM Trans. Graph.
35, 2, Article 18 (Feb. 2016), 17 pages. https://doi.org/10.1145/2856317

Yu-Hong Yeung, Alex Pothen, and Jessica Crouch. 2018. AMPS: A Real-time Mesh

Cutting Algorithm for Surgical Simulations. arXiv:1811.00328 [cs.CE]

A EXTRACTING LI I
In Section 4.1 we make use of the fact that the factorization of

AI I =

(
A1 A2

A3 A4

)
(24)

can be easily extracted from the factorization of

AB =
©­«

A1 0 A2

0 1 0
A3 0 A4

ª®¬ . (25)

Here we demonstrate that this can be easily achieved by extracting

an appropriate submatrix in the special case of removing the degree

of freedom k , i.e., B = {k}.

By construction the factorization of AB
has the form

LB =
©­­­«

LB
1

0 0

0 1 0

LB
3

0 LB
4

ª®®®¬ , (26)

as can be verified by explicitly forming the product LB
(
LB

)⊤
. By

forming this product it also becomes apparent that

AI I =

(
A1 A2

A3 A4

)
=

(
LB
1

0
LB
3

LB
4

) (
LB
1

0
LB
3

LB
4

)⊤
(27)

= LBI I
(
LBI I

)⊤
(28)

holds, which is the statement in Equation (16). The construction

extends to general sets B by applying this argument recursively.

ACM Trans. Graph., Vol. 39, No. 6, Article 202. Publication date: December 2020.

https://doi.org/10.1145/2231816.2231821
https://doi.org/10.1145/3272127.3275107
https://doi.org/10.1111/cgf.13607
https://doi.org/10.1111/cgf.13607
https://doi.org/10.1145/3130800.3130849
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1145/2980179.2982430
https://doi.org/10.1145/2980179.2982430
https://doi.org/10.1145/3072959.3073616
https://doi.org/10.1145/3132705
https://doi.org/10.1145/2856317
http://arxiv.org/abs/1811.00328

	Abstract
	1 Introduction
	1.1 Contributions

	2 Related Work
	3 Background
	3.1 Sparse Cholesky Algorithm
	3.2 The Elimination Tree
	3.3 Updates
	3.4 Supernodal Implementation
	3.5 Schur Complement based Methods

	4 Method
	4.1 Removing Degrees of Freedom
	4.2 Adding Degrees of Freedom

	5 Applications
	5.1 Interactive Conformal Parameterization
	5.2 Orbifold Tutte Embeddings
	5.3 Mesh Deformation

	6 Evaluation
	6.1 Updating Parameterization Seams
	6.2 Comparison to Iterative Methods
	6.3 Orbifold Tutte Embeddings
	6.4 Mesh Deformation
	6.5 Scalability

	7 Conclusion
	Acknowledgments
	References
	A Extracting LII

