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Abstract

This supplemental material describes the computation of mass
properties of triangulated solids and their derivatives w.r.t. surface
vertices. We start by briefly reviewing the volume integrals for
mass, center of mass, and moment of inertia. Thereafter, we re-
duce the volume to surface integrals using the Divergence theorem,
resulting in analytical expressions for a volume bounded by a tri-
angulated surface. We then discuss derivatives of these analytical
surface integrals w.r.t. vertices. We provide pseudo code for both
mass properties and their derivatives for the reader’s convenience.
The resulting routines serve as fundamental building blocks for op-
timizing moment of inertia for spinnable objects.

1 Mass Properties

For a modelM, the mass properties are mass M , center of mass c,
and the 3×3 symmetric moment of inertia tensor I. Assume that the
surface ofM encloses a region Ω ∈ R3 that corresponds to a solid
object with constant density ρ. We express the above quantities by
collecting the monomials t of degree ≤ 2 in the 10-vector

t =
[

1 x y z xy yz xz x2 y2 z2
]
,

then taking the integrals over Ω:

sΩ(ρ) = [s1, sx, sy, sz, sxy, syz, sxz, sx2 , sy2 , sz2 ]T ,

where st = ρ

∫
Ω

t dV, e.g., sxy = ρ

∫
Ω

xy dV.

We obtain the following expressions for the mass and center of
mass:

M = s1 and c =
1

M
[sx, sy, sz]

T ,

andM’s inertia tensor:

I =

 sy2 + sz2 −sxy −sxz
−sxy sx2 + sz2 −syz
−sxz −syz sx2 + sy2

 .
2 From Volume to Surface Integrals

Next, we reduce the volume to surface integrals. To this end, we
identify a vector field T for each component t in the 10-vector t s.t.
∇ · T = t, resulting in

T =

 x x2

2
0 0 x2y

2
0 0 x3

3
0 0

0 0 y2

2
0 0 y2z

2
0 0 y3

3
0

0 0 0 z2

2
0 0 xz2

2
0 0 z3

3

 .
We can then apply the Divergence Theorem to reduce our volume
integrals sΩ over the region Ω to surface integrals over ∂Ω

sTΩ(ρ) = ρ

∫
Ω

t dV = ρ

∫
Ω

∇TT dV = ρ

∫
∂Ω

nTTdS

with the unit normal n at point [x, y, z]T .

If ∂Ω consists of a union of consistently oriented triangles T , our
integrals can be split into a sum of integrals over the individual faces

sΩ(ρ) =
∑
i∈T

si with si = ρ

∫
i

TTni dS

with the unit triangle normals ni. In the following, we are omitting
the triangle index i.

Because T has a single non-zero component T per column, the
remaining integrals are of the form ek · n

∫
T dS where ek is a

column of the unit matrix E = [ex, ey, ez] and k denoting the row
index of the non-zero T .

If we assume consistently oriented triangles whose vertices a,
b, and c are ordered counterclockwise, the set of triangle points
[x, y, z]T is

a + αu + βv

with limits α, β ∈ [0, 1] and α+ β < 1, and the face normal n and
surface element dS are

u× v

|u× v| and |u× v|dαdβ,

respectively, where u = b − a and v = c − a denote the two
triangle side vectors. With the above parameterization, our surface
integrals become ek · n

∫ 1

0

∫ 1−β
0

Tdα dβ where n denotes the un-
normalized normal u× v and T is expressed with the two triangle
parameters α and β.

By calculating the analytical integrals (see, e.g., [Eberly 2003]),
we can derive Alg. 1 (see next page) where ∗ denotes component-
wise multiplication, += and ∗= addition and multiplication as-
signment, respectively, and v̄ equals [vy, vz, vx]T for a vector
v = [vx, vy, vz]

T . Further, o10 denotes the zero 10-vector.

3 Taking Derivatives

For the derivatives w.r.t. the column vector V collecting all n sur-
face vertices (Alg. 2), we also define the operators [v]× (conversion
to skew-symmetric matrix) and [v]∗:

[v]× =

 0 −vz vy
vz 0 −vx
−vy vx 0

 , [v]∗ =

 0 vx 0
0 0 vy
vz 0 0

 .
We use di,v to refer to the diagonal of the derivative ∂hi

∂v
and Hi

to refer to matrix [hi,hi,hi]. Because d1,a = d1,b = d1,c =

[1, 1, 1]T and d4,a = h5, d4,b = h6, d4,c = h7, we directly
use the respective right-hand sides in Alg. 2. Further, we use curly
brackets to group similar expressions. E.g., we group expressions
∂w
∂v1

= w1 and ∂w
∂v2

= w2 as ∂w
∂{v1,v2}

= {w1,w2}. ∂w
∂v

+= A

adds the 3×3 block A to the rows corresponding to w and columns
corresponding to the global indices of vertex v. O10×3n denotes
the zero matrix with 10 rows and 3n columns.
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Algorithm 1 Mass properties of a triangulated solid
sΩ = o10

for all i ∈ T do
u = (b− a)
v = (c− a)
n = u× v
h1 = a + b + c
h2 = a ∗ a + b ∗ (a + b)
h3 = h2 + c ∗ h1

h4 = a ∗ a ∗ a + b ∗ h2 + c ∗ h3

h5 = h3 + a ∗ (h1 + a)
h6 = h3 + b ∗ (h1 + b)
h7 = h3 + c ∗ (h1 + c)
h8 = ā ∗ h5 + b̄ ∗ h6 + c̄ ∗ h7

s1 += ex · (n ∗ h1)
[sx, sy, sz] += n ∗ h3

[sxy, syz, sxz] += n ∗ h8

[sx2 , sy2 , sz2 ] += n ∗ h4

end for
s1 ∗= 1

6

[sx, sy, sz] ∗= 1
24

[sxy, syz, sxz] ∗= 1
120

[sx2 , sy2 , sz2 ] ∗= 1
60

sΩ ∗= ρ

Algorithm 2 Mass property derivatives of a triangulated solid
∂sΩ
∂V

= O10×3n

for all i ∈ T do
∂n
∂a

= [v]× + [u]T×,
∂n
∂b

= [v]T×,
∂n
∂c

= [u]×
d3,a = 2a+b+c, d3,b = a+2b+c, d3,c = a+b+2c
d5,a = 6a + 2b + 2c
d6,b = 2a + 6b + 2c
d7,c = 2a + 2b + 6c
d5,b = d6,a = 2a + 2b + c
d5,c = d7,a = 2a + b + 2c
d6,c = d7,b = a + 2b + 2c
d8,a = ā ∗ d5,a + b̄ ∗ d5,b + c̄ ∗ d5,c

d8,b = ā ∗ d6,a + b̄ ∗ d6,b + c̄ ∗ d6,c

d8,c = ā ∗ d7,a + b̄ ∗ d7,b + c̄ ∗ d7,c

∂s1
∂{a,b,c} += eTx

(
∂n

∂{a,b,c}H
T
1 + diag(n)

)
∂[sx,sy,sz ]

∂{a,b,c} += ∂n
∂{a,b,c}H

T
3 + diag(n∗{d3,a,d3,b,d3,c})

∂[sxy,syz ,sxz ]

∂a
+= ∂n

∂a
HT

8 + diag(n ∗ d8,a) + [nh5]∗
∂[sxy,syz ,sxz ]

∂b
+= ∂n

∂b
HT

8 + diag(n ∗ d8,b) + [nh6]∗
∂[sxy,syz ,sxz ]

∂c
+= ∂n

∂c
HT

8 + diag(n ∗ d8,c) + [nh7]∗
∂[s

x2 ,sy2 ,sz2 ]

∂{a,b,c} += ∂n
∂{a,b,c}H

T
4 + diag(n ∗ {h5,h6,h7})

end for
∂s1
∂V
∗= 1

6
∂[sx,sy,sz ]

∂V
∗= 1

24
∂[sxy,syz ,sxz ]

∂V
∗= 1

120
∂[s

x2 ,sy2 ,sz2 ]

∂V
∗= 1

60
∂sΩ
∂V
∗= ρ


