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Abstract—We introduce a template fitting method for 3D
surface meshes. A given template mesh is deformed to closely
approximate the input 3D geometry. The connectivity of the
deformed template model is automatically adjusted to facilitate
the geometric fitting and to ascertain high quality of the mesh
elements. The template fitting process utilizes a specially tailored
Laplacian processing framework, where in the first, coarse fitting
stage we approximate the input geometry with a linearized bi-
harmonic surface (a variant of LS-mesh [39]), and then the
fine geometric detail is fitted further using iterative Laplacian
editing with reliable correspondence constraints and a local
surface flattening mechanism to avoid foldovers. The latter step is
performed in the dual mesh domain, which is shown to encourage
near-equilateral mesh elements and significantly reduces the
occurrence of triangle fold-overs, a well known problem in mesh
fitting. To experimentally evaluate our approach, we compare
our method with relevant state-of-the-art techniques and confirm
significant improvements of results. In addition, we demonstrate
the usefulness of our approach to the application of consistent
surface parameterization (also known as cross-parameterization).

Index Terms—Template-based fitting, dual mesh, local surface
flattening, consistent parameterization, Laplacian coordinates,
cross-parameterization, inter-surface mapping

I. INTRODUCTION

TEmplate fitting has been used in many geometry pro-
cessing applications, such as surface reconstruction from

point clouds and geometry completion [1]–[3], [8], [17],
[33], [41], [44], surface cross-parameterization and corre-
spondence [42], [47], remeshing and subdivision [4], [26].
Template meshes essentially provide a good “initial guess” for
the surface fitting or reconstruction process since they have
valid connectivity and are assumed to be of the appropriate
topological type. In some cases, the geometry of the template
mesh is known to resemble the target 3D data, which further
facilitates the reconstruction process. Moreover, a template
mesh can be conveniently used as the base domain for a se-
quence of shapes, for instance, when processing time series of
moving geometry: having a single template adapted to multiple
shapes allows to establish and maintain cross-correspondence
between them.

The quality of the template-based fitting result depends
on two factors: geometric approximation and mesh quality.
Deforming an arbitrary mesh to fit irregularly sampled and
possibly partially missing geometric data is clearly a difficult
problem. In some settings, simplifying assumptions can be
made, such as the template and the target geometry belonging
to the same restricted class of shapes (e.g., humans) or
having the same pose [17], [33], [41], [42]. In the absence
of these assumptions it is challenging to establish dense

correspondence between the template and the target shape;
spurious and conflicting point correspondences may easily lead
to self-intersections as the template deforms. In the general
case, however, a suitable template mesh that fits the above
criteria may not be available, and the goal is to reduce the
restrictions on the fitting as much as possible. Mesh quality,
i.e., proper sampling rate, the shape of the elements and valid
manifoldness, is of equal importance since the template fitting
process is typically only an intermediate stage followed by fur-
ther processing. Most digital geometry processing applications
perform better when acting on well-constructed meshes with
near-quadrilateral elements [5] (for example, lower parametric
distortion and better approximation quality is achieved in
global parameterization and multiresolution analysis [14]).

In this paper, we propose an iterative template-based fitting
scheme that is capable of deforming an arbitrary template
mesh to approximate the given geometric data, which comes
in the form of a polygonal mesh. In contrast to previous work,
the major contribution of this paper is to design a specially tai-
lored Laplacian processing framework for the template fitting
process. Specifically, our method consists of two stages: coarse
and fine fitting, as shown in Fig. 2. The coarse fitting step relies
on several point correspondences between the template mesh
and the target geometry and creates a rough approximation by
converting the template model into a least-squares mesh [39],
which is a linearized bi-harmonic surface. At this stage, we
additionally design a WYSIWYG (What You See Is What You
Get) kneading system to help the users interactively specify
the correspondences between the template and target shapes
in an intuitive manner. In the fine fitting stage, additional
reliable correspondences are determined automatically and
the template mesh is further iteratively adjusted to the target
geometry. The fine fitting is performed using the dual domain
mesh, which leads not only to high approximation quality
but also encourages inner fairness of the mesh in the primal
domain. While fitting the target, many methods such as [41],
[47] automatically find extra correspondences based on the
shortest Euclidean distance via normal projection or nearest
neighbor search, and filter out unreliable correspondences via
additional rules. However, these fine correspondences are still
fragile and easily lead to many triangle foldovers, especially
if the meshes have drastically different geometries. To better
solve this problem, we propose a local surface flattening mech-
anism for unreliable correspondences after the above filtering
step. This novel method is particularly useful for extremely
concave or protruding regions where triangle foldovers are
always generated. In addition, we allow subdivision of the
template model to adjust the sampling rate and decrease the
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approximation error in cases where the template mesh is
coarser than the target shape.

Thanks to the above design, our framework enables deform-
ing 2-manifold templates of the same genus as the target shape
while posing fewer restrictions on their shape or pose. In prac-
tice, this allows establishing dense correspondence between
different shapes, which is useful for such applications as con-
sistent surface parameterization. Additionally, since the fine
fitting step maintains well-formed mesh elements and reliable
point correspondences, the occurrence of self-intersections
and fold-overs is significantly reduced. We demonstrate the
effectiveness of our method with experimental results on cross-
parameterization and show that it compares favorably with
other related works [42], [47].

II. RELATED WORK

We classify the previous work about template-based fitting
for 3D models into four categories: surface completion, non-
rigid shape registration, cross-parameterization and surface
subdivision according to the application of the fitting ap-
proaches.

Surface completion: Many approaches have been pro-
posed to fill the missing parts of the incomplete point cloud
model by utilizing the geometry information of the template
model [1]–[3], [8], [17], [33], [41], [44]. Theses approaches
establish a mapping between the point and template models
to appropriately fill the holes. Most of these methods assume
that the template is very similar to the point model in terms
of shape [1], [3], [17], [41] or even pose [2], [8], [33],
[44]. Pauly et al. [33] present an example-based completion
framework that treats surface completion as a case of mesh
merging. Several templates are warped to align with the point
model, and then blended together to fill the holes. Similarly,
Kraevoy and Sheffer [17] select a template model to merge
an incomplete target model. To establish the correspondence
between the template and the target models, they embed them
onto a base mesh. This approach is very robust even for an
incomplete model containing large complex holes or multiple
components. However, the completion results may sometimes
be unnatural, even if the shapes of the input models are
very similar, due to a large difference in geometry resolution
between the input models. On the other hand, Stoll et al. [41]
directly deform the template model to approximate the in-
complete point model. However, the selected template model
must be similar to the point model in shape and even geometry
details. In addition, this approach requires users to align the
local frames of the corresponding feature points, which might
be a tedious and unintuitive process. Sharf et al. [38] present
a coarse-to-fine deformable model for reconstructing surfaces
from point clouds with arbitrary genus. This interesting work
can automatically adjust mesh resolution for surface recon-
struction. However, it is not suitable for establishing consistent
correspondence between multiple targets.

Non-rigid registration: Automatic non-rigid registration
is a recent popular research topic, especially for real-time
range scan data. Without user intervention, most of the existing
algorithms [7], [13], [22], [23], [43] depend on good initial

match or similarity of the initial shape and the local details
between source and target models. Chang et al. [7] propose
an unsupervised algorithm for registering articulated objects
without prior correspondence required. On modern hardware,
their system still requires over one hour to obtain the final
result. Similar to [7], Li et al. [23] design a novel registration
system for scanned shapes based on the fact that both the
source and target surfaces are already parameterized on the
depth image, i.e., without extra cost for parameterization. In
a recent work, Li et al. [22] further propose a template-based
dynamic registration algorithm based on a few assumptions
on the geometry and motion of the scanned objects. This
work provides a detail synthesis method that employs a spatio-
temporal analysis of the detail vectors to propagate detail into
occluded regions and remove high-frequency acquisition noise.
However, these two methods [22], [23] require the input data to
be sampled very densely in both time and space. Additionally,
both are specifically designed for single view reconstruction.

Huang et al. [13] present an efficient algorithm to align
point clouds by enforcing preservation of geodesic distances
between sets of corresponding points. This algorithm works
well only when both source and target models are similar in
geometric appearance. Similarly, Winter et al. [43] present a
reconstruction system for continuous and time-varying data.
By sliding the template mesh along the space-time surface
in an as-rigid-as-possible manner, this algorithm can retrieve
an identical mesh with a rigid motion for all time frames.
However, it requires the input data to be sampled very
densely in both time and space. Recently, Zhang et al. [46]
developed a deformation-driven algorithm that automatically
finds corresponding feature pairs between two models with
large, non-rigid shape variations. The system obtains good
correspondence for the extremities of the models, though at a
significant computational cost. This approach may potentially
fail to align detailed features and incorrectly align two models
with different number of protrusions. Steinbrecher et al. [40]
present an iterative and partial fitting algorithm for dental inlay
construction. This system is particularly useful for spherical
objects and uses significant domain knowledge for the specific
dental application.

Cross-parameterization: In this category, the general
approach is to establish the correspondence by parameterizing
the closed input meshes on an intermediate common domain
such as a sphere [21], [25] or another canonical base mesh
domain [16], [17], [19], [35]–[37]. Sumner et al. [42] propose
an alternative solution which deforms one input model to fit
the other model and therefore establishes their correspondence.
This method requires the source and target models to be
similar in shape and pose. Zhang et al. [47] used least-squares
meshes (LS-meshes) introduced by Sorkine and Cohen-Or [39]
to compute cross-parameterization between models directly on
the primal domain. However, in [47], both source and target
meshes are required to be similar in shape and pose as well.
We perform thorough experiments in Sec. V to compare our
work with the above two most related techniques [42], [47].

Without careful treatment, poor mesh quality and fold-
overs can easily occur in cross-parameterization. Therefore,
in the work of Kraevoy et al. [16], each corresponding patch
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has triangular shape to guarantee that there are no folds in
the parameterization. Schreiner et al. [37] propose a vertex
optimization technique to improve mesh quality and resolve
foldovers simultaneously. Our approach avoids these problems
by encouraging equilateral triangles throughout the fitting
process, and is capable of establishing cross-correspondence
between very different shapes. We adapt a dual mesh Laplacian
formulation to enhance mesh quality and eliminate artifacts in
the iterative mesh-fitting process. Dual Laplacians have been
introduced in recent works on mesh editing and deforma-
tion [12], [15], [28], where they are exploited for surface detail
representation and preservation.

Surface subdivision: In this category, most of the ap-
proaches begin with an initial base mesh (also called control
mesh) which is generated from the input point data [8], [11],
[24], [29], [44]. The base mesh is subdivided and fitted to
approximate the point data using e.g. Loop [27] or Catmull-
Clark subdivision [6]. Generally, if a base model with narrow
faces is used, a subdivision surface with narrow faces will
be created. In contrast, the model faces generated by our
method are near-equilateral even if a template model with
narrow faces is used. Martin et al. [29] presented a method to
generate a novel subdivision surface to approximate scattered
data. Based on the procedure of unconditionally convergent
parameter correction, this approach iteratively optimizes the
control mesh with respect to the L2 metric by adding control
vertices. More recently, Li et al. [24] introduced a new
surface reconstruction technique to automatically generate an
anisotropy-adapted T-Spline surface to mimic the mesh that
a designer would create manually. An interactive system can
help the user to refine the T-Spline surface directly. In these
above two parametric surface fitting techniques [24], [29], one
can regard the parameter domain of a parametric surface as its
topology and the positions of its control points as its geometry;
as such, these methods are related to our approach, although
we do not build on a parametric surface domain.

III. SYSTEM OVERVIEW

Fig. 2 schematically illustrates the proposed template fitting
scheme (see our accompanying video). Our fitting scheme
consists of two major steps: (1) coarse fitting using an LS-
mesh [39] and (2) fine fitting that employs iterative estimation
of reliable point correspondences and operates in the dual
mesh domain to improve mesh element quality. After the
fitting procedure is completed, an optional subdivision step
can be performed to improve the approximation quality in
cases where the resolution of the template is initially lower
than that of the target model.

For the coarse fitting step, we require several point corre-
spondences between the template and the target model in order
to compute the LS-mesh that roughly approximates the target.
These sparse point correspondences may be supplied by the
user or automatically computed by one of the recent techniques
(e.g., [7], [46], when the conditions permit that). Note that
our method poses no restraints on the shape of the template
mesh: it can be completely different from the target shape,
provided that several correspondence pairs can be reasonably

specified The subsequently constructed LS-mesh provides an
initial guess to the automatic fine fitting procedure, as it passes
close to the selected points on the target shape and constitutes
a smooth (linearized bi-harmonic) surface.

When using LS-meshes [39], all the information about the
template except for connectivity is discarded. The motivation
behind this is avoiding transferring the geometric details of the
input template to the target fitted model such as in the work
of Stoll et al. [41]. A comparison example in Fig. 1 clearly
shows the advantage. Furthermore, the proposed technique
is specially tailored for the application of consistent surface
parameterization, where multiple mesh models may be config-
ured with very different geometric details and connectivity or
even poses. In such scenario, it is not necessary to maintain the
original geometric details of the template mesh; retaining the
original connectivity of template mesh is useful, on the other
hand, to build a compatible model for these input models. In
addition, throwing away geometric information of the template
mesh offers us more flexibility in the proposed fitting method
to facilitate the adjustment of triangle shapes for better quality
in the final fitting result. In other words, the fitted mesh quality
is less dependent on the quality of the input template mesh in
our case. For example, in Fig. 10, a bad-quality Cat mesh
(i.e., with foldovers) used as a template, can still lead to a
good result when fitting the Bunny model using the proposed
method.

(a) template mesh (b) target shape (c) fitting by [32] (d) our fitting result

Fig. 1. Comparison of our method with Stoll et al. [41]. The images in (a),
(b) and (c) are cited from [41]).

IV. TEMPLATE-BASED FITTING

We begin by introducing the notation to be used in the
remainder of the paper. We denote the template mesh by
S = (V,K), where V ⊂ IR3 is the set of vertex positions
and K represents the connectivity. Similarly, T is the target
model. We denote the individual vertex locations by vs

i , vt
i ,

where the superscripts s and t indicate template and target
geometry, respectively. The total number of vertices and faces
is denoted by nv and nf , respectively (again, with the appro-
priate superscripts).

A. Coarse Fitting

To obtain a rough approximation of the target shape, we
compute a least-squares mesh MC = (VC ,K) from the
template S = (V,K) and the specified point correspondences.
We essentially discard the geometry of the template model,
only using its connectivity as the base domain for the bi-
harmonic surface, such that a crude approximation of the pose
of the target model is obtained, without the fine geometric
details. Without loss of generality, let us assume that the first
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Template Mesh Target Model

(a)
Specifying feature
correspondences

A smooth and rough approximate
‧with aligned pose
‧without original  geometric details

Final Result

(b) Coarse Fitting (c) Fine Fitting (d) Subdivision

Retrieve Detail

Fig. 2. System overview. (a) The input data with several user-specified feature correspondences (Male is the template mesh model and Armadillo is the target
model); (b) coarse fitting step; (c) automatic iterative refinement adds geometric details to the coarse approximation (d) finally, executing mesh subdivision if
necessary.

k vertices of S are the ones marked as corresponding to the
points {vt

1, vt
2, . . . , vt

k} on T . The geometry of the LS-mesh
is obtained by minimizing the bi-Laplacian energy:

VC = argmin
v
‖Lv‖2F (1)

subject to constraints vi = vt
i , i = 1, 2, . . . , k. Here, ‖ · ‖F is

the Frobenius norm and L is the uniform ns
v × ns

v Laplacian
matrix corresponding to the connectivity K, i.e.,

(L)ij =

 −1/di, vertices i and j are neighbors
1, i = j
0, otherwise

(2)

The di refers to the valence of vertex i. Choosing the uniform
Laplacian over a geometric discretization (e.g., the cotan
Laplacian [34]) results in a smooth mesh that also optimizes
inner fairness: each vertex strives to lie in the centroid of its
1-ring neighbors and thus the edge lengths are strive to be
locally equalized [30], [31].

The minimization in Eq. (1) amounts to solving the sparse
bi-Laplacian equation

LTLv = 0, subject to positional constraints vi = vt
i ,

which can be done efficiently using modern linear solvers (for
details, see [39]).

Our practical experience with the system leads to the
following guidelines for the feature correspondence specifi-
cation process. First, landmark points with clear semantic
correspondence are used (such as the legs and heads of human
or animal models). These landmark points serve to coarsely
approximate and align the target shape and pose. If the
quality of this coarse approximation is already sufficient, the
user may stop specifying further landmark points. Otherwise,
we suggest placing more landmark points in locations with
high-curvature and the largest distance between the template
and target models. These point correspondences improve the
approximation of the target shape and make the convergence
of the surface fitting more efficient. The user can continuously
add landmark points until a predefined error threshold has been
reached.

Generally, the user should specify points with similar se-
mantic features as the corresponding landmark points using
above two simple rules. However, in cases where the source
and target shape have little in common (such as the Sphere and
the Head model), no clear semantic feature correspondences
exist. For these cases, we provide a WYSIWYG kneading
system. The proposed interactive system helps users freely
add, remove and modify correspondences while observing the
result on the fly.

Fig. 2(b) shows an example of the coarse fitting by using the
Male connectivity and several feature pairs to obtain a rough
approximation of the Armadillo model. Fig. 3(c) shows the
kneading process of the template mesh in this example. For
a better impression we recommend the reader to examine the
supplementary video of this work.

(a) (b)

(c)

Fig. 3. A demonstration of the kneading process operated by the user: (a) a
snapshot of the user interface in our kneading system; (b) and (c) show two
examples of iterative kneading sequences for specifying correspondences.

Our approach is generally not very sensitive to the accuracy
of the correspondences. Even if only rough (not accurate)
feature pairs with similar semantics are selected, our approach
can still generate acceptable fitting results. For example, in
Fig. 4, we used the Old Man Head as a template with two
different sets of feature pairs to fit the Venus Head model.
Even though the feature positions in these two sets are not the
same, the proposed method still achieves similar fitting results.

In the fine fitting step described next, more corresponding
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feature pairs are automatically computed and the rough ap-
proximation MC is iteratively deformed to approximate T
more closely (see Fig. 2(c)).

(a) (b)

Fig. 4. This experiment compares the fitting results when two different sets
of feature pairs are used. The template and target models with feature points
are shown in (a), where the yellow circles highlight the different features. The
resulting deformed template models are shown in (b).

B. Fine Fitting

Let us denote the geometry of the mesh that will be
iteratively deforming in this stage by VF , such that the fine-
fitted mesh is MF = (VF ,K). We initialize MF with the
geometry of the coarsely-fitting LS-mesh computed in the first
step, VF := VC . In the fine fitting stage, we iteratively compute
reliable correspondence points betweenMF and T and update
VF accordingly, essentially adding more and more point
constraints to the LS-mesh computation. In addition, to ensure
triangle shape regularity, we alternate between relaxation steps
in the dual and the primal domains, as explained below.

1) Dual domain mesh relaxation: The dual mesh M∗F =
(V∗F ,K∗) has ns

f vertices, where each dual vertex v∗i corre-
sponds to the face tsi in the primal domain mesh (see Fig. 6(a)).
Two dual vertices are connected by an edge whenever the
corresponding primal faces are neighbors (share an edge in
the primal mesh). If the primal mesh is a closed manifold
triangle mesh, the dual mesh will have only regular vertices
of degree 3. Therefore, the dual mesh has an ideal regular
connectivity, and constructing an LS-mesh based on this con-
nectivity facilitates near equilateral elements [31]. Moreover,
pinching and fold-over artifacts can be thus largely avoided or
eliminated, as illustrated in Fig. 6(b-c). To take advantage of
these properties, we alternate between template fitting in the
dual domain and in the primal domain. The dual-domain fitting
takes care of inner fairness and the primal domain enables
better fitting of features (as described later in Sec. IV-B2).
It is theoretically possible to achieve the fitting result by
integrating the concept of dual Laplacian into primal domain
and solving everything in one step. However, due to large
constraint sets and complex weighting mechanisms (described
latter), the error of this integrated system may potentially not
be propagated smoothly in practice. Therefore, we solve the
problem in two separate stages.

Determining reliable correspondences: Given the cur-
rent fitted meshMF = (VF ,K), we wish to compute reliable
point correspondences between MF and the target shape T
(as a reminder, our initial guess for MF is MC). We project
each vertex (or point) p of T onto MF along p’s normal
direction; this results in hitting a point on a triangle tsi onMF .
The correspondence pair (p, tsi ) is reliable if both following
conditions hold:

1) The normal of p is similar to that of the triangle tsi (the
angle between the normals is less than 90◦).

2) The k-nearest neighbors of p project onto faces neigh-
boring to tsi .

Next, we compute the geometry of the dual mesh M∗F
using the reliable correspondences above. For each primal
triangle tsi that received some reliable correspondence points
in the projection procedure, we compute the centroid ct

i of
those points and set it as the positional constraint for v∗i in
the LS-mesh setup. We call such dual vertices “matched”. In
the current stage, not all primal triangles will have reliable
correspondences (especially in concave regions, Fig. 5(a)), so
that some dual vertices remain unmatched. The naive approach
would be to leave the unmatched dual vertices as free variables
and solve for an LS-mesh using only the matched vertices
as constraints, just like we did earlier in the coarse fitting
step (Eq. 1). However, this approach leads to artifacts and
may cause the resulting mesh to self-intersect, because the
unmatched areas tend to “shrink”. Note that several previous
methods, such as [41], [47], compute reliable correspondences
in the primal domain by projecting or nearest neighbor search-
ing, using similar conditional rules, and consequently suffer
these artifacts as well.

(a) (b) (c)

Fig. 5. (a) Vertex projection. The orange points represent the vertices of the
target model, and the black curve represents template mesh. (b) The fitting
of the template (the green dots) may cause fold-overs in concave regions. (c)
Flattening the unmatched vertices (within the brown circle) into the regions
near the corresponding positions of the nearby matched vertices (red ellipse).

To remove the above artifacts, we introduce a novel local
surface flattening mechanism and we assign a rough corre-
sponding position constraint for each unmatched dual vertex
as well, by placing each unmatched vertex in the centroid of
its neighbors. This results in a simple linear system of the
form

L∗v∗ = 0,

with hard constraints posed on the positions of the matched
dual vertices (v∗i = ct

i). L
∗ is the uniform Laplacian of the

dual mesh; all the matched vertices are thus eliminated from
the system and we solve for the position estimates of the
unmatched ones. In other words, the unmatched vertices are
uniformly flattened in the regions that are surrounded by the
nearby matched vertices, i.e., with reliable correspondences.
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(a) (b) (c)

Fig. 6. Fitting in the dual domain: (a) a dual mesh with regular vertices of degree 3 (the orange dots); (b) regularization of the dual mesh of template leads
to near equilateral faces; (c) fold-overs are avoided or relaxed by fitting in dual domain.

In our experience, this process aids dual-domain relaxation
to resolve artifacts which are generated in the fitting process,
and it greatly improves the convergence speed as well. We
demonstrate this local flattening technique to avoid triangle
foldovers in Fig. 10.

Once the corresponding position of each vertex v∗i in dual
mesh is obtained, we use these corresponding positions as
constraints in the LS-mesh setup to re-fit the dual mesh M∗F :

V∗F = arg minv∗

ω ‖L∗v∗‖2 +
ns

f∑
i=1

wi‖v∗i − c∗i ‖2
 , (3)

where the smoothness term is controlled by the weight ω (we
used ω = 7.0 for strong enforcement) and the individual vertex
position constraints are controlled by the weights wi.

The weight wi of vertex v∗i in the above minimization is set
to the average surface variation of vertex v∗i ’s corresponding
position c∗i , measured on T . This weighting scheme allows
for a tighter approximation in high curvature areas of target
model (where the weights are higher) and good triangle quality
in flat areas (where the weights are lower). Fold-overs and
incorrect correspondences may still occur when the regions of
unmatched vertices are extremely concave, but such situations
are ultimately eliminated by the iterative relaxation and re-
fitting process.

2) Surface detail fitting: After obtaining the dual mesh
geometry in Eq. 3, we need to transform the fitting result back
to the primal domain. We minimize the following energy in
the primal domain:

VF = arg minv

(
‖Lv‖2 + αC1(v) + βC2(v) + γC3(v)

)
.

(4)
Here, apart from the bi-Laplacian term that again serves
for regularization, we use three additional energy terms
C1, C2, C3 to improve the fitting of the vertex positions,
according to the geometry of the dual mesh V∗F and the target
T .

The first energy term C1 is the fitting term to the dual mesh.
Since each dual vertex corresponds to a primal face, we simply
ask the centroid of the vertices of each primal face to fit the
dual vertex:

C1(v) =
ns

f∑
i=1

wi

∥∥∥∥1
3
· (vi1 + vi2 + vi3)− v∗i

∥∥∥∥2

(5)

where {i1, i2, i3} are the indices of the vertices participating
in triangle tsi and v∗i is the position of the corresponding dual

vertex obtained earlier in Eq. 3. The weights wi are again
computed by the surface variation measure [32].

At a first glance, it may seem that the above energy is
enough to transform the template mesh back into primal
domain; however, the high-curvature areas may receive insuffi-
cient fitting quality if no reliable correspondences were found
there earlier. To improve the fitting of surface details, we thus
add two additional terms C2 and C3. As before, to detect
high-curvature areas on T we rely on the surface variation
measure [32] with a user-defined threshold.

For each high curvature point vt
i on T , we use the reliable

projection criteria described in the previous section to find a
corresponding position in the current template geometryMF ;
denoted that projected position by pi. Assume that pi is on
face tsj ; we can then write it as a linear combination of tsj’s ver-
tices using barycentric coordinates: pi = b1vs

j1+b2vs
j2+b3 vs

j3.
Just as in the dual mesh fitting, some high-curvature points will
not have a corresponding projected points because no reliable
match could be found, and thus they remain unmatched.
We define C2 as the target-to-template fitting terms for the
matched high-curvature points and C3 the corresponding term
for the unmatched points:

C2(v) =
∑
i∈B

wi

∣∣(b1vj1 + b2vj2 + b3vj3)− vt
i

∣∣2 (6)

where B represents the set of matched high-curvature points
on T . Similarly, the target-to-template fitting term C3 is
formulated by the geometry constraints of the unmatched
points, where we denote by U the set of unmatched high-
curvature points and vk(i) the vertex of the currentMF nearest
to an unmatched point vt

i (if a vertex of the template ends up
corresponding to several unmatched points, we only keep the
farthest of those to participate in C3 to avoid getting stuck at
a local minimum):

C3(v) =
∑
i∈U

wi

∥∥vk(i) − vt
i

∥∥2
. (7)

The importance of the C3 energy term will decrease through-
out the iterative relaxation, because we fit a reasonable guess
to each unmatched point and thus in the course of the iterations
the number of the unmatched points will decrease.

There is a trade-off between the mesh quality and feature
correspondence in the optimization of the surface detail fitting.
Enforcing the term C1 leads to better mesh quality, while en-
forcing the terms C2 and C3 facilitates better correspondence
in high-curvature areas. In all our experiments, we set higher
priority for mesh quality and hence set α = 3.0 for the weight
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of the C1 term and lower weighting factors β = γ = 1.0 for
the terms C2 and C3. Similar to Eq. 1, both Eqs. 3 and 4 can
be efficiently solved by a direct sparse linear solver.

Iterative fitting: To summarize, we perform the fine
fitting in the dual domain (Eq. 3) and the primal domain
(Eq. 4) in alternating steps, updating the positional correspon-
dences each time. We continuously monitor the decline of the
Hausdorff distance [9] between the template and the target
surfaces, and halt the optimization when the distance decreases
by less than 1% of the current distance. Typically no more than
30 iterations were required for convergence.

C. Mesh Subdivision

If the number of vertices in the template mesh is insufficient
to tightly approximate the target model model, we subdivide
the deformed template mesh. Any uniform or adaptive sub-
division approach can be adopted here; we use simple 1-to-4
uniform subdivision [18]. The initial positions of the newly
introduced vertices are determined by a linear interpolation of
the three points in the target model whose projection positions
are near to the new vertex (see Fig. 7). Afterward, the final
position of these new vertices are determined by re-solving
Eq. 4, i.e., re-fitting using the new connectivity. After a few
subdivision iterations (typically one or two in all experiments),
the target model can be approximated very well and the shapes
of the triangles remain near equilateral. We show an example
of this the subdivision post-processing step in Fig. 7.

(a) (b)

Fig. 7. Subdivision post-processing. (a) Determination of the corresponding
positions for the new vertices. The blue and the green dots represent the
points in the target model and their projected positions in the template model,
respectively. The purple points represent the new vertices and the red arrows
indicate their corresponding positions; (b) the subdivided result.

V. EXPERIMENTAL RESULTS AND COMPARISONS

A. Dual-domain Relaxation

Since the proposed template-based fitting scheme is based
on dual-domain relaxation, we start this section with the
comparisons of fitting with and without this step, i.e., we
compare to using primal-domain relaxation only (see Fig. 8).
As expected, the fitting results obtained by dual-domain re-
laxation are better in terms of the triangle quality, as many
sliver triangles occur when performing solely primal-domain
relaxation. Fig. 9 reports mesh quality statistics, where quality
is measured as the ratio between a triangle angle at a vertex

and the ideal angle (i.e., 360 degrees divided by the valence
of that vertex). The x-axis represents the possible ratio ranges
and the y-axis displays the ratio between the histogram and the
total integral of the histogram for each possible ratio range on
the x-axis. Figs. 9(a) and (b) demonstrate that our method with
dual domain relaxation (in blue) yields better angle ratio than
the one without it (in red) and even better mesh quality than
the original model (in green). We also measured the number
of triangle fold-overs with and without dual domain relaxation
for Fig. 8. With dual domain relaxation, the proposed method
does not generate any triangle fold-overs, while without dual
domain relaxation, there are 408 and 359 fold-over triangles
for both top and bottom examples in Fig. 8.

According to this experiment, we believe the same phe-
nomenon could also occur in the results of Zhang et al. [47].
Later in Sec. V-C, we will experimentally compare the pro-
posed method with [47] in numerous examples.

(a) (b)

(d)(c)

(a) (b)

(d)(c)

Fig. 8. Comparisons of fitting with and without dual-domain relaxation. (a)
Template mesh; (b) with our dual-domain relaxation; (c) Target point model;
(d) without dual-domain relaxation.

B. Local Surface Flattening

Fig. 10 shows comparison results with and without the
proposed local flattening method. In this example, we use
the Cat model (Fig. 10(b)) as a template to fit the Bunny
model (Fig. 10(a)). Fig. 10(c) is the coarse fitting result of
the first stage. Fig. 10(d) is the final fitting result using our
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(a)

0.0%
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20.0%
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Original template

With dual-domain relaxation

Without dual-domain relaxation

(b)

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

5%~15% 35%~45% 65%~75% 95%~105% 125%~135% 155%~165% 185%~195%

Original template

With dual-domain relaxation

Without dual-domain relaxation

Fig. 9. Comparison of the triangle quality in terms of angle ratio for original
template (green), and results with (blue) and without (red) the dual domain
relaxation. (a) and (b) show statistics for the top and bottom cases in Fig. 8,
respectively.

method. In Fig. 10(d), our approach requires only 8 iterations
to resolve the foldovers in the marked area, and Fig. 10(e)
shows a closeup on the region at the 4th, 8th, 12th and
16th iteration. However, without surface flattening, the method
requires 40 iterations to resolve foldovers in the same area
(Fig. 10(f) shows corresponding intermediate results). This
experiment shows that the flattening process can aid dual-
domain relaxation to resolve triangles foldovers and greatly
improve the convergence speed as well.

C. Experimental Comparison

To evaluate the proposed approach, we compare our results
with the two most related recent works: [42] and [47]. In
particular, Zhang et al. [47] also use LS-meshes. Fig. 11 shows
several examples using the Sphere to fit target models. In this
experiment, our results are better than [42], [47] in terms of
the fitting results and triangle quality. Fig. 12 shows additional
comparison examples. Some of these examples have very
different shapes of target and template models. Consequently,
both [42], [47] have significant difficulties handling these
inputs, in particular, for the first three examples in Fig. 12;
in contrast, our method can handle these models well. Fur-
thermore, Fig. 13 compares our technique with the approaches
of [42], [47] in the cases where the template models differ from
the target models in their poses. Our method performs more

(b) (c)(a) (d)

4 8 12 16

(e)

4 8 12 40

(f)

Fig. 10. (a) target model; (b) a bad-quality mesh can be used as a template
in our method, and it still leads to a reasonable result; (c) coarse fitting
result at the first stage; (d) final fitting result using the proposed method;
(e) intermediate results at the 4th, 8th, 12th and 16th iteration with surface
flattening; (f) fitting result obtained without surface flattening, requiring 40
iterations to resolve foldovers.

robustly than the previous approaches in this situation as well.
Finally, we use the same set of examples as in [47] for further
evaluation of our method in Fig. 14. Observing the shape
quality of the triangles in both fitting results, ours is better
than that of [47]. Even though [47] discard original geometry
like our system, their results still suffer from numerous sliver
triangles clumped together in several places. Additionally,
we also show the fitting error measured using Hausdorff
distance [9] in this figure.

Template

Target
Zhang et al. [37]

Our approach
Sumner et al. [33]

The fitting result Subdivision of results

Fig. 11. Result comparison for different methods.
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Template

Target
Zhang et al. [37]

Our approach
Sumner et al. [33]

The fitting result Subdivision of results

Fig. 12. Another side-by-side result comparison for different methods.

Target Sumner et al. [33] Our approachZhang et al. [37]

Fig. 13. Result comparison for template/target pairs with very different pose.
In this study, the template model is a camel model in Figure 8.

D. Performance

The quality of the fitting to the target shape is related to
the resolution of the template mesh. Higher resolution can
lead to better approximation but takes longer to compute the
fitting. Beyond a certain resolution increase (e.g., beyond the
target model resolution), the approximation quality ceases to
significantly increase, therefore it is not necessary to employ
too fine a mesh as the template. Fig. 15 shows examples of
fitting results using templates with different mesh resolutions.

Template

Target
Zhang et al. [37] Our approach

0.0303

0.0051

0.0151

0.0056

0.0091 0.0068

0.0105 0.0031

Fig. 14. Another series of comparison with Zhang et al. [47]. Their fitting
results in sliver triangles clumped together or even foldovers in several regions.
In contrast, our approach generates better triangle shapes and avoids foldovers.
In addition, our fitting approach achieves similar or better shape approximation
than [47]; the fitting error was measured by the Hausdorff distance [9] and is
indicated in each example.

In addition to varying mesh resolution, we wanted to test the
robustness of our method to the template mesh quality. Fig. 16
shows such an example, where the Cat model was used as the
template to fit the Bunny. Fig. 16(a) is the result using the
original Cat mesh, while in (b) the template was remeshed to
yield an irregular connectivity with many thin triangles; (c) is
the result when subdividing the mesh such that the template
has very high valence vertices. As can be observed in this
figure, our fitting results are not sensitive to the quality of
the template mesh, and our method still generates reasonable
fitting results under the conditions in (b) and (c).

Target 12.5k 37.5k 112.5k
31.1 sec / 0.018 100.1 sec / 0.0084 823.2 sec / 0.0045time / distance

Fig. 15. Fitting results using template meshes of different resolutions. The
compute time to converge and the approximation error between the template
and target are show on figure. for these there resolutions from left to right.

E. Statistics

Various template and target models were tested in our
experiments, as summarized in Table I. We used target and
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(a) (b) (c)

Fig. 16. The Bunny fitting results obtained from the Cat templates with varied
triangle connectivity. Top row: (a) original Cat template, (b) Cat template with
irregular connectivity and thin triangles and (c) Cat template with high valence
triangle vertices. Bottom row: our method can still generate acceptable fitting
results with good mesh quality, irrespective of the template connectivity.

template models with both similar and different shapes (the
images of the fitting results can be found in the figures of this
paper). The experiments were performed on a PC with an Intel
i7-860 CPU and 4GB memory. The fitting error of the final
result was measured using the METRO tool [9] in this table.
We also provide a plot to show how the approximation error
decreases during the optimization process (see Fig. 17). As
shown in this plot, the approximation quality stabilizes after
some fixed amount of iterations in the optimization process.
In addition, Table II shows the fitting error statistics of our
comparison study with the related works.
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Camel/Hourse

Cat/Bunny

Cat/Rabbit

Head/Shaven

Head/Venus

Horse/Rabbit

Sphere/Ball Joint

Sphere/Lion Vase

Sphere/Teeth

Sphere/Tooth

Teapot/Mug

Toru/Knot

Toru/Star

Cat/Rabbit

Fig. 17. The approximation error (defined as the Hausdorff distance between
the deforming template and the target shape) decreases in the optimization
process. In this plot, the vertical axis is the error and the horizontal axis shows
the number of fitting iterations.

F. Applications

Many approaches have been proposed for consistent pa-
rameterization of 3D models [16], [19], [35]–[37]. In the
recent state-of-the-art techniques [16], [37], the input 3D
models are embedded onto a constructed base mesh first,
and then are compatibly resampled and remeshed using the

Fig. 18. A single hand mesh template (Left) is adapted to fit multiple hand-
shaped models with different connectivity and pose (Right). Our approach can
establish and maintain cross-correspondence between the models to facilitate
hand animation with different poses. The Hausdorff distance, i.e., fitting error,
of all fitting results is below 0.015.

common parameterization. This process proves difficult when
the input models have high genus and/or complex shape. In
contrast, we directly deform the template mesh to fit the
target model. Our generated consistent parameterization is
suited for further geometry processing applications, such as
morphing and motion retargeting, since the elements of the
compatible remeshed/subdivided meshes are of high quality.
We demonstrate several morphing results in Fig. 19. In these
examples, all meshes in the morphing sequence use the same
connectivity of the template mesh, shown on the left. A
template mesh can be conveniently used as the base domain
for a sequence of shapes, for instance, when processing time
series of moving hands with different geometry in Fig. 18:
having a single template adapted to multiple shapes allows to
establish and maintain cross-correspondence between them.

G. Discussion

We have chosen to compare our method with the techniques
of Sumner et al. [42] and Zhang et al. [47] as these are
the most related approaches to ours: they gradually deform
a template model to fit a target shape, and our method shares
the same spirit. Other related works, such as Kraevoy et
al. [16] and Schreiner et al. [37], did not employ template
fitting but rather heavily rely on surface parameterization
and compatible surface partitioning, both avoided by our
technique. This is because these techniques specifically target
cross-parameterization (which is only one of the possible
applications of our algorithm).

When restricting the qualitative comparison to cross-
parameterization alone, [37] achieved much higher quality
results than [16], whereas ours are comparable to [16]. How-
ever, as addressed by [37], their results come at the cost of
heavy computation times (in the order of a few hours) and the
approach is only suitable for two input meshes rather than a
large collection of input models. On the other hand, in terms of
mesh quality, our technique outperforms both these techniques
since we enforce the mesh to be near-equilateral in the fitting
optimization process. Furthermore, as indicated by [37], the
system proposed by [16] is only robust for genus-zero models,
because their algorithm may not succeed with arbitrary feature
sets when higher genus models are involved. In contrast, with
our method, the template model may have arbitrary genus, and
the fitting result can be generated successfully with arbitrary
feature sets.
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TABLE I
PERFORMANCE SUMMARY. 2nd COL.: THE NUMBER OF VERTICES (#V.) AND FACES (#F.) IN THE TEMPLATE MODEL; 3rd COL.: THE NUMBER OF

VERTICES IN THE TARGET MODEL; 4th COL.: THE NUMBER OF USER-SPECIFIED VERTEX CORRESPONDENCE PAIRS (#F.V.); 4th COL.: THE NUMBER OF
ITERATION; 6th COL.: THE NUMBER OF VERTICES AND FACES IN THE SUBDIVIDED MODELS; 7th COL.: THE TOTAL COMPUTATION TIME. 8th COL.:

HAUSDORFF DISTANCE W.R.T. THE BOUNDING BOX DIAGONAL [9].

Model Template Model Target Model Feature Vertices Iteration Subdivided Model Time Hausdorff distance
Template Target #V #F #V #FV # #V #F (sec) (Subdivided Model)

Camel Horse 6k 12k 80.6k 34 22 18k 36k 34.39 0.0033
Camel Dinosaur 6k 12k 87.5k 37 30 54k 108k 82.48 0.0031

Cat Bunny 2.6k 11k 104k 26 17 50.5k 101k 51.88 0.0713
Old Man Head Venus head 7.7k 15.4k 150k 21 20 69k 138.6k 104.02 0.0081
Old Man Head Shaven 7.7k 15.4k 134.9k 24 25 69k 138.6k 113.22 0.0135

Horse Rabbit 3k 6k 90k 40 24 26.8k 53.6k 33.51 0.0036
Sphere BallJoint 18.8k 37.5k 51k 25 17 56k 112k 207.07 0.0028
Sphere Lion vase 18.8k 37.5k 23.9k 38 11 56.2k 112.5k 167.03 0.0085
Sphere Gums 6.3k 12.5k 87.4k 30 21 56.2k 112.5k 73.21 0.0803
Sphere Tooth 6.3k 12.5k 65.7k 16 4 56.2k 112.5k 49.30 0.0222
Teapot Mug 9.2k 18.3k 98.8k 22 22 27.5k 55k 60.56 0.0046
Torus Torus-knot 0.3k 0.6k 23k 23 8 7.8k 15.6k 5.10 0.0072
Torus Star 1k 2k 83k 25 28 27k 54k 75.18 0.0033

TABLE II
APPROXIMATION QUALITY SUMMARY. 1st ROW: TEMPLATE MODEL; 2nd ROW: TARGET MODEL; 3rd − 5th ROW: THE HAUSDORFF DISTANCE W.R.T. THE

BOUNDING BOX DIAGONAL [9]. IN THIS TABLE, WE DO NOT PERFORM SUBDIVISION FOR OUR APPROACH TO CONDUCT A FAIR COMPARISON.

Template Cat Horse Torus Sphere
Target Bunny Rabbit Rabbit Star Knot Lion Vase Gums Tooth Ball Joint

Sumner et al. [42] 0.0730 0.0509 0.0842 0.0573 0.0864 0.1840 0.0251 0.1569 0.1648
Zhang et al. [47] 0.0363 0.0092 0.0304 0.0217 0.0611 0.0164 0.0138 0.0251 0.0104

Our approach 0.0118 0.0046 0.0112 0.0343 0.0172 0.0096 0.0109 0.0210 0.0035

Fig. 19. (Left) Template mesh; (Right) morphing sequence.

VI. CONCLUSION AND FUTURE WORK

We presented a novel approach for template-based 3D
model fitting. Our methodp̃inlargely avoids artifacts such as
fold-overs and poor mesh element quality by performing iter-
ative relaxations in the dual and the primal domains. We have
demonstrated the robustness of our approach when handling
different shape and pose situations, and we have demonstrated
the utility of the template-based fitting for consistent parame-
terization. Our approach has some limitations which we would
like to eliminate in future work. Firstly, we currently cannot
handle input models with different genus; if both template and

target models are not of the same genus, our method cannot
generate correct results, as shown in Fig. 20. It would be
interesting to develop a method that refines the topology of
the template in addition to the geometry. Another challenging
direction is to fit a template to the target mesh without
any a priori knowledge about corresponding landmark points.
Finally, we also consider applying the model skeletons [45]
to reduce the number of user-specified landmarks and explore
the possibility of our methods to volume space [20].
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(a) template mesh (b) target shape (c) initial fitting (d) final result

Fig. 20. Using a genus-0 sphere to fit a genus-1 torus model can lead to an
incorrect result.
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reconstruction and parameterization from range scans,” ACM Trans.
Graph., vol. 22, no. 3, pp. 587–594, 2003.

[3] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers, and J. Davis,
“SCAPE: shape completion and animation of people,” ACM Trans.
Graph., vol. 24, no. 3, pp. 408–416, 2005.

[4] H. Biermann, A. Levin, and D. Zorin, “Piecewise smooth subdivision
surfaces with normal control,” in Proceedings of ACM SIGGRAPH,
2000, pp. 113–120.

[5] M. Botsch, M. Pauly, L. Kobbelt, P. Alliez, B. Lévy, S. Bischoff,
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