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Editing materials in photos opens up numerous opportunities like turning
an unappealing dirt ground into luscious grass and creating a comfortable
wool sweater in place of a cheap t-shirt. However, such edits are challeng-
ing. Approaches such as 3D rendering and BTF rendering can represent
virtually everything, but they are also data intensive and computationally
expensive, which makes user interaction difficult. Leaner methods such as
texture synthesis are more easily controllable by artists, but also more limited
in the range of materials that they handle, for example, grass and wool are
typically problematic because of their non-Lambertian reflectance and nu-
merous self-occlusions. We propose a new approach for editing of complex
materials in photographs. We extend the texture-by-numbers approach with
ideas from texture interpolation. The inputs to our method are coarse user
annotation maps that specify the desired output, such as the local scale of the
material and the illumination direction. Our algorithm then synthesizes the
output from a discrete set of annotated exemplars. A key component of our
method is that it can cope with missing data, interpolating information from
the available exemplars when needed. This enables production of satisfying
results involving materials with complex appearance variations such as fo-
liage, carpet, and fabric from only one or a couple of exemplar photographs.
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1. INTRODUCTION

Editing materials in a photograph is a powerful operation that can
boost the users’ creativity, as it allows to create more visually ap-
pealing images. In this article, we are interested in manipulating the
appearance of common materials such as grass, foliage, moss, wool,
carpet, or stone. We enable a fine-grain control of the appearance
of these materials for a variety of applications, including weather-
ing, interior and exterior design, landscaping, and cloth design. For
instance, with our approach, one can create a flower topiary with
plausible shading cues so that it can be inserted into a photograph
of a garden. Or, in another scenario, users can edit a picture of a
t-shirt to render it with several different types of fabric to preview
various options.

Material editing is, however, a delicate task; to produce good
results, one has to preserve the complex interplay between material
properties, illumination, and viewing direction. As an example,
due to self-occlusions, the appearance of grass depends heavily
on the viewing direction and lighting environment; not modeling
these variations yields unnatural looking grass. In addition, natural
materials often vary continuously, such as between various colors
and/or weathering levels, further adding to the complexity of the
task. Enabling artist control in these conditions becomes particularly
challenging: an overly simplified appearance model like a repetitive
texture may be easy to manipulate, but fails to capture the richness of
most materials; too-detailed representations like 3D geometry and
BRDFs are difficult to author. In this work, we seek to address this
tension by building upon texture synthesis and texture interpolation.

Existing texture synthesis tools can handle many regular and
semiregular materials such as brick walls and straw [Efros and
Leung 1999; Wei and Levoy 2000] and reproduce their appearance
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Fig. 1. Replacing the dirt in an image by a lawn covered with leaves. The grass and leaves exemplars are annotated to indicate the grass region and the scale of
the grass. The user specifies the desired annotation values for the target image, and our algorithm synthesizes the result. Standard texture representation would
fail to handle the intricate occlusions in such an example, or would introduce unsightly repetitions, while capturing a BTF of a size on the order of a lawn is
infeasible with existing techniques. Our approach produces plausible results for materials with complex appearance using only images downloaded from the
Internet and minimal user input.

under varying lighting conditions [Fang and Hart 2004], using small
images as exemplars. The space of possible appearances for stochas-
tic and complex materials such as grass and foliage cannot be rep-
resented by a single, small exemplar, which poses a challenge to
these methods. At the other end of the spectrum, one could re-
sort to more complex representations such as bidirectional texture
functions (BTFs) [Dana et al. 1999], which can represent a much
wider range of appearances. However, this dense sampling of the
appearance space comes at the cost of practicality: the associated
capture systems are cumbersome compared to casual image capture
[Ngan and Durand 2006], and user control is only available through
involved, dedicated interfaces [Kautz et al. 2007].

Our key insight is that many complex materials can be repro-
duced well by a few large-enough (i.e., larger than regular 2D tex-
ture patches) exemplars that sparsely sample the appearance space,
provided these exemplars capture at least the extremes of the ma-
terials’ appearances, and that we provide the ability to interpolate
between them. This strikes a balance between simple but limited
standard texture synthesis and rich but impractical BTF rendering.
This model can be controlled by a simple and expressive annotation
metaphor; we demonstrate standard aspects such as scale and ori-
entation, as well as more sophisticated ones including weathering
level, material transition, and viewing angle.

Algorithm summary. Figure 2 illustrates our pipeline. The in-
put to our algorithm is a set of exemplar images representing the
materials of interest; they can be user photos of the material or
selected from an online photo collection. We opt for larger image
exemplars rather than small texture patches; as we shall see in the
results section, this is crucial in avoiding repetitiveness in the out-
put and capturing the variability of the material. This variability is
indicated by user-provided annotations that allow for control over
given parameters of the material appearance. The user also pro-
vides an image to be edited as well as a set of annotations that
describe the desired appearance in this target image using the same
representation (Section 3).

From these data, our algorithm renders an image with the desired
appearance variations. A key property of our approach is that we do
not assume that all desired appearance parameter values are present
in the exemplars, that is, the input data may not cover the entire
annotation space, and the target annotation combinations need not

have exact matches in the source annotation data. To cope with this
situation, we first segment the input data into a few clusters that
represent a consistent appearance (Section 4). Before the synthesis
process, for each desired annotation value, we identify the relevant
candidates from all clusters (Section 4.2) and assign them weights
(Section 4.3). The final step is a coarse-to-fine synthesis process that
generates a candidate patch for each selected cluster (Section 5.1)
and produces the result by merging the candidates using the cluster
weights (Section 5.2). As we shall see in the discussion section,
the combination of interpolation with clustering and weighting is
necessary for producing plausible results; skipping any of these
steps significantly reduces the output quality.

Contributions. We demonstrate that complex and heteroge-
neous materials can be synthesized according to specified anno-
tations. Our main contribution is twofold: first, we generate previ-
ously unseen appearance by using interpolation. This differentiates
us from most current texture synthesis approaches (e.g., appearance
manifolds [Wang et al. 2006]). Our technique’s ability to generate
plausible results even in the presence of large amounts of missing
data is verified experimentally. The second part of our contribution
is taking the clustering approach and introducing the interpolation
weights as a more effective way to handle annotations. We found that
all components of our clustering and sampling scheme are crucial
in order to effectively combine interpolation with larger exemplars
and continuous annotations as the ones we are using.

2. RELATED WORK

Texture synthesis. Many approaches exist to generate new image
textures from exemplars, such as Efros and Leung [1999], Wei
and Levoy [2000], Lefebvre and Hoppe [2005, 2006], Barnes et al.
[2009], Kwatra et al. [2005], and Han et al. [2008]. They work
well for homogeneous, flat 2D textures with scale and orientation
changes, but do not handle the other variations in which we are
interested, for instance, in illumination or view angle. Our work is
closer to the texture-by-numbers technique that enables variations
guided by annotations [Hertzmann et al. 2001]. Many recent meth-
ods follow this paradigm; the control maps of Rosenberger et al.
[2009] and the texton masks of Zhang et al. [2003] are examples of
guiding annotations. However, Rosenberger et al. [2009] assume a
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Fig. 2. Our pipeline: user input—source and target (Section 3), preprocessing of source and target data to generate constraints for the synthesis (Section 4)
and coarse-to-fine synthesis (Section 5).

layered model for the material, with hard boundaries between the
intermediate layers, and is thus unsuitable for rendering smooth
material transitions. The texton masks of Zhang et al. [2003] only
serve to ensure that prominent texture features are preserved during
synthesis; they do not allow for the kind of control over material
appearance that we introduce here, particularly for more complex
materials such as grass or tree foliage. Moreover, methods based
on image analogies only utilize the annotations inside the simi-
larity metric and thus often fail to adhere to the user’s intent (see
Section 6). Finally, they require an exemplar for each possible an-
notation combination, which may be an unrealistic requirement in
practice. We propose a more robust way to exploit annotations, and
additionally deal with missing annotation data by texture interpola-
tion that is not otherwise possible using current approaches.

Our interpolation scheme is inspired by previous work for texture
interpolation [Matusik et al. 2005; Risser et al. 2010; Darabi et al.
2012; Park et al. 2013]; more specifically, we build upon image
melding [Darabi et al. 2012], which uses gradient energies to al-
low for smooth texture interpolation. However, in all these works,
the exemplars between which interpolation happens are known and
identified beforehand, and separated into small discrete images that
are typical of the material. This is not true in our case, where we are
interpolating between large exemplars of complex, heterogeneous
materials, with large variability present in each exemplar. Since
this variability is captured by the annotations, the two extremal ap-
pearances between which interpolation is applied are determined
differently for each pixel of the target image, depending on the
user’s specification for the target appearance. Precomputing inter-
polated appearances between all available pairs of extremal material
appearances to satisfy any possible user request would be infeasi-
ble. Instead, we devised the use of clustering of the input exemplars
as a first way to handle the variability, and a sampling scheme
for handling the annotations as an easier way to automatically infer
which exemplars to use for filling in the missing data and how much
importance to assign to each cluster for a particular user-specified
target appearance. This sets us apart from other texture interpolation
techniques, even multimaterial ones [Ruiters et al. 2013].

To model lighting and foreshortening effects, some techniques
apply texture synthesis on a proxy geometry. In Bonneel et al.
[2010], users generate a coarse 3D model of a scene and synthesize
texture to augment it with details and natural materials. Johnson
et al. [2011] apply texture synthesis to refine 3D renderings. Both
works only let users control the final result through the 3D geometry
of the scene; we work in image space and offer direct control over
the material appearance using annotations. Eisenacher et al. [2008]
use Bézier patches to gather and apply texture under arbitrary ge-
ometric transformations, but still focus on regular textures. Tex-
tureshop [Fang and Hart 2004] is also based on image manipulations
and provides tools to model a 2.5D proxy that is later textured. Ap-
pearance variations are created by occlusions and shading stemming

from a synthesized displacement map. The assumption is, however,
that the base material is regular, its geometry representable as a
displacement map, and all its appearance changes due to shading.
While we follow a similar motivation, we aim to handle complex
materials that cannot be modeled with a displacement map (e.g.,
grass, foliage); for this we rely on sophisticated texture synthesis
and interpolation. Our generic annotations can represent a variety
of phenomena, including (but not limited to) shading, weathering,
and transitions between materials.

Some recent methods focus on the particular problem of simu-
lating weathering effects [Lu et al. 2007; Wang et al. 2006]. They
might yield more physically accurate weathering results, but are
limited in scope. Our approach handles a variety of editing sce-
narios including weathering and, contrary to Lu et al. [2007], only
utilizes standard photographs without the need for specific acquisi-
tion procedures. It also adds the ability to extrapolate missing data
from the available exemplars.

BTF synthesis. BTFs enable very high-fidelity reproduction of
texture [Dana et al. 1999], but their capture requires lab condi-
tions and thus can be prohibitively expensive and time consuming
as opposed to, for instance, texture acquisition from the Web or
casual photography. Ngan and Durand [2006] simplify BTF ac-
quisition, but still require a large number of photographs and a
lab-capture setup. In Kautz et al. [2007], editing BTFs is achieved
via an out-of-core architecture; LePage and Lawrence [2011] in-
troduce an interface for breaking down a spatially varying BRDF
into a foreground and background layer, for subsequent separate
editing of the materials. Ruiters et al. [2013] demonstrate inter-
polation of BTF materials by separation into a height-map and a
parallax-compensated BTF, however, binary feature masks must be
provided by the user to preserve features. All these works show
high-quality results, but BTFs still must be captured in a laborious
process prior to their processing. An initial approach to bridge the
gap between BTFs and exemplar-based textures can be found in
Liu et al. [2001], where a small number of image inputs are used to
synthesize a BTF. However, the assumption of a height-field type of
surface geometry practically limits the range of materials that can
be handled; materials such as grass and straw remain out of reach
for this approach.

3. USER INPUT AND CREATION OF
THE EXEMPLAR SPACE

The required user input consists of source input and target input
data. The source input data comprises a set of images capturing the
various appearances of the materials in question, and corresponding
annotations for these images (Figure 3). The target data comprises
the target image and target annotations, similar in spirit to the ones
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Fig. 3. Step 1: Collecting the source input data.
The users supply a source image, and optionally
mask the portion of it to be used during synthe-
sis (a). For illustration purposes, we choose to
discard the middle portion of the source topiary.
Also provided is a set of numerical annotations
for the source, in this case for the normal (b) and
the light direction (c).

Fig. 4. Step 2: Collecting the target in-
put data. In this case, the user wants to
synthesize a bunny-shaped topiary onto a
blank target image. For this, the user pro-
vides normal (a) and lighting (b) annota-
tions corresponding to those in Figure 3
(here, they were created by rendering a
bunny mesh). The marked red, green, and
blue points will be used in the upcoming
illustrations.

Fig. 5. Step 3: Structuring the annotation space. By concate-
nating the source annotations for each pixel, we get the anno-
tation space (a). In (b), we visualize the target annotation data
in the same space. The points inside regions with limited avail-
ability of source data (the middle portion of the figure) will be
interpolated using these annotations.

Fig. 6. Step 4: Clustering the source anno-
tation data. Each cluster will be used to pro-
vide a candidate for the target image, and the
candidate images will then be interpolated
using appropriate weights. Given the anno-
tation space of Figure 5(a), the clustering
algorithm produces two clusters (a). These,
when plotted on the source image, indicate
the top and bottom portion of the source top-
iary, as expected (b).

Fig. 7. Step 5: Assigning sampling regions (ε-balls) inside
each source cluster for each target pixel. The figure shows the
ε-balls for the three marked points on the target bunny annota-
tions of Figure 4. Each point has two ε-balls, one per cluster;
the clusters are as shown in Figure 6. The top row in (a), (b),
(c) shows the ε-balls in the annotation space of Figure 5, col-
ored according to the cluster. The second row shows the ε-balls
overlaid onto the source image. The requirement for a minimum
amount of candidate samples makes for unequally sized ε-balls;
the further away the target data point from the the cluster points,
the larger the ball radius.

Fig. 8. Step 6: Computing cluster weights.
The appearance for the portions of the tar-
get image with target annotations located in
the “holes” in the annotation space miss-
ing data (Figure 5(b)) will be interpolated
from appearances in the source clusters, us-
ing cluster weights. In this visualisation of
the cluster weights (clusters are as in Fig-
ure 6), the closer the color to orange, the
higher the weight for the top topiary clus-
ter, similarly for blue and the bottom cluster.
The highlighted points are the same as in Fig-
ure 7; note the weight values as compared to
the ε-ball radii. The result of the synthesis is
in Figure 14.

of the source (Figure 4). Each annotation is a per-pixel scalar map
with all values in the [0, 1] range; it associates the image appear-
ance of the neighborhood around each pixel in the source images
with a numerical value for a particular characteristic that is relevant
for the appearance variations of the material. Typical examples of
such characteristics are the viewing angle, illumination intensity,
degree of weathering, local structure orientation and scale, etc. In
the case where more than one material is to be synthesized, an-
notations can specify which type of material is contained in each
source image and, in the case of transitions between two materials,
possibly also quantify how far between the two materials a given
appearance.

Our algorithm is not constrained to any particular way of ac-
quiring the annotations. They can be generated via painting with
an image authoring software, possibly with the assistance of more

advanced tools such as diffusion curves [Orzan et al. 2008]. They
can also be the output of dedicated methods that extract a particular
characteristic from a source image (e.g., shape-from-shading for the
surface normal and/or scene lighting); for characterizing the local
shape, one can also use synthetic renderings of simple geometric
primitives as annotations.

Optionally, the user can provide alpha matted (RGBA) source
images as input. We do not consider transparency as a factor af-
fecting material appearance, however, it can prove very helpful in
synthesizing some types of material transitions, as we shall see in
the results section.

By collecting all the values for the various characteristics for each
pixel, we get a tuple that fully describes the local appearance around
this pixel; the exemplar (or annotation) space for the particular
synthesis task in question then is the set of all tuples for all pixels in
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the source images (Figure 5(a)). Holes in the annotations indicate
this data is missing for this part of the annotation space.

The source images do not need to capture the full spectrum of ap-
pearance variations. Our algorithm is able to synthesize appearance
for characteristic tuples not present in the input data. However, we
assume that the source images at least span the spectrum of appear-
ance that the user would like present in the synthesis result; that is,
we can synthesize appearance for any annotation point inside the
convex hull of the source annotation data, but not outside it.

The dimensionality of the exemplar space depends on what the
user considers important features of the material appearance. We
have found that two or three dimensions are mostly sufficient to
account for common variations in material appearances; however,
other than an increase in runtime, our algorithm is not inherently
constrained to low-dimensional exemplar spaces.

4. STRUCTURING THE EXEMPLAR SPACE

We now consider a material represented by an exemplar image E
(created by concatenating all source images) and a corresponding
n-dimensional annotation image A. The annotation data populate
the n-dimensional annotation space.

4.1 Clustering in Annotation Space

The first step of the preprocessing is clustering the source data
into clusters of similar appearance; each cluster will then generate
independent synthesized results, and these results will be merged
together. Regions of the annotation space well covered by source
annotation data that are close to each other in value are assigned to
one cluster; separation between the regions indicates the need for a
different cluster, as shown in Figure 6. The intuition here is as fol-
lows (see also Figure 5): when it comes to synthesizing appearance
associated with a particular target annotation combination, we need
to check whether there are enough source appearance candidates
to ensure a plausible result. If the target data point is in a coherent
region of the annotation space well covered by source annotation
data, then we can safely use samples from this region only to syn-
thesize. When an appearance is requested with an annotation value
in a “hole” in the annotation space, then we need to interpolate
from source data at the boundary of the hole. Clustering provides a
way of identifying these “holes”. It also ensures that all extremes of
material appearance variations are represented with candidates for
a particular target appearance specification. As shall be displayed
in the results, this is of particular importance when synthesizing
appearance for target annotations not present in the input data.

Clustering in the annotation space is done using the mean shift
algorithm [Comaniciu and Meer 2002] with bandwidth of 0.5 for
all examples (recall that all annotation images are normalized to
[0, 1]). In order to scale to high resolutions we first merge all source
data points with identical annotation values into a single point. If
the number of remaining points still exceeds a large threshold cmax

(we used cmax = 108), we perform quantization by binning before
proceeding with the clustering. All points within the same bin are
assigned to the same point, and bins are equally spaced along all
dimensions so that the total number of bins is equal to cmax.

4.2 Candidate Sampling Regions

During synthesis for each cluster, we will have a number of target n-
dimensional annotation data points to synthesize. In order to allow
for better control over the output appearance, we further restrict the
set of candidate apperances that will be considered for a given target
annotation to a neighborhood around this target annotation point.

Fig. 9. In this example, we experiment with different ways of annotating.
We use the top source in (a), and annotate with 3D rendering of a sphere
(source normals), shape-from-shading (t-shirt normals), and manual painting
(source and t-shirt lighting) to get the result in (d). Sketching two more
annotation images via diffusion curves (t-shirt orientations and scales, not
shown) changes the woven pattern appearance (e). Switching the source
changes the fabric of the t-shirt (f).

We now define this notion of neighborhood in the annotation space.
For each such annotation point a, and for each cluster i, we need
to collect all candidate exemplar data points belonging to i that lie
in the neighborhood of a. We call these neighborhoods ε-balls and
denote them by Bi(a) .

The ε-balls Bi(a) are axis-aligned ellipsoids centered on the target
annotation point a. The user defines the scaling parameters εk for
each annotation dimension k. Selecting a small εk results in a strict
sampling ball with candidates that follow the k-th annotation more
closely, but may lead to more repetitive results. A larger (more
permissive) sampling ball contains candidates that deviate more
from the annotation, but also allows for more variation.

To avoid excessive repetition, we ensure that a minimum number
of candidates Ni are always present in the ε-balls. Thus the radius
of Bi(a) along annotation dimension k is in fact:

Rik(a) = max{εk, R
0
ik(a)}. (1)

where the minimal radius R0
ik(a) is the result of scaling an ellipsoid

that initially has radii (ε1, . . . , εn) by the smallest isotropic scale
R(a) so that it contains at least Ni candidate points. The scale R(a)
can be determined by a kd-tree that finds the nearest Ni points in
a Euclidean metric [Mount and Arya 1998]; we only need to scale
all source annotations by 1/εk before inserting them into the tree,
and then reverse the scaling by setting R0

ik(a) = εkR(a). We set
Ni = max{1000, Ni,total/30}, where Ni,total is the total number of
points in cluster i, to ensure that we have at least 1000 neighbors
in the ε-ball from which to choose. We visualize some ε-balls in
Figure 7.
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Fig. 10. A carpet example. A background image (a) and a source texture image (b) are chosen. The source and target are annotated according to lighting
amount and fine-scale carpet fiber transitions (c) as well as scale (not shown), resulting in a new carpet (d).

Fig. 11. Using one cluster per type of brick, and annotations for transitions
between the two types of brick, normals, and light direction, we successfully
handle the brick material and generate clean transitions between its two
variants. Here 52% of the synthesized regions corresponds to previously
unseen target annotation combinations (shown in purple).

4.3 Cluster Weights

At several points during synthesis, the appearances suggested by all
clusters are weighted by appropriate weights to generate the final
interpolated appearance. The interpolation weights represent how
well the overall appearance of a given cluster matches the target
specification, and thus how useful this cluster is when synthesizing
appearance for that specification. We would like our weights to have
three properties: (i) if a target annotation is far from all clusters, the
weighting should roughly be in inverse proportion to the distance to
each cluster; (ii) inside a cluster, the weights should be sparse with
just that cluster’s weight near 1 and the other clusters’ weights near
0; (iii) on the boundary of two clusters, the weights should be high
for these two clusters and low for the others.

The weights are themselves images of size equal to the size of
the target image, whose value at a given target pixel depends on

Fig. 12. Our algorithm can synthesize visually plausible results even in the
presence of missing data, with the quality of the result degrading gracefully
as less data becomes available. Repetitiveness and failure to match the
desired appearance only occur in the extreme case with 80% of missing
data. See Figure 14(c) for the result without missing data.

the annotation vector, a, of that pixel. For cluster i, the value of the
weight image Wi(a) is defined as

Wi(a) = 1

Z

∑
k=1...n

εk

g(Rik(a) − εk)
. (2)

Here k = 1 . . . n are the dimensions of the annotation space, Z
is a normalization factor so the weights sum to 1 for each target
annotated point a, and g is a clipping function that returns its ar-
gument if it is positive, otherwise returns a small clipping value
that is 0.8 mina{Rik(a) − εk|Rik(a) − εk > 0}, to make sure that
target points whose ε-balls are fully inside a cluster still get higher
weights for this cluster than points with ε-balls partially inside the
cluster.

Our weights satisfy the three properties: (i) is satisfied by design.
Inside a cluster Rik(a) − εk tends to be small and so the given
cluster’s weight dominates, thus satisfying (ii). On the boundary
between two clusters, the radii to these two clusters tend to be
only a moderate factor larger than εk while all other radii are quite
large, making these two clusters dominate in the weights, satisfying

ACM Transactions on Graphics, Vol. 34, No. 2, Article 22, Publication date: February 2015.



Synthesis of Complex Image Appearance from Limited Exemplars • 22:7

Fig. 13. Synthesizing colorful hair. The annotations (b) account for the color and the transitions of the hair in the source (a). Using these, we can add gradient
colored hair to the target image (c).

property (iii). We show the weights for the target shown in Figure 4
and the clusters shown in Figure 6 in Figure 8.

5. COARSE-TO-FINE ITERATIVE SYNTHESIS

In this section we describe the actual synthesis process. Given our
appearance clusters with their corresponding weights, we proceed
to synthesize the output image by synthesizing for each cluster
separately and combining the synthesized images. We take the same
general patch-based texture synthesis approach as in multisource
image melding [Darabi et al. 2012], for its smooth interpolation of
both color and texture. Image melding starts with an initial guess for
the target image at a low resolution; it then proceeds to iteratively
synthesize candidate images from each of the sources one at a
time, and merges the candidates using appropriate weights. This
is done in a coarse-to-fine multiscale fashion: the merged result of
the previous (coarser) scale is used as a common starting point for
the synthesis iterations for all sources at the next (finer) scale. The
“inner” synthesis iterations are done by means of the generalized
PatchMatch [Barnes et al. 2010] algorithm; after a certain number of
matching iterations, a color “voting” from overlapping patches takes
place to generate a single color per pixel. The result of this process
is a candidate image reconstructed from each source independently.
A combination of the candidates using the weights produces an
improved output image to be used as input for the next scale.

In our case, we use image melding to synthesize and combine
images generated from each cluster separately, that is, our “sources”
for melding are the various clusters; a number of improvements
were necessary in order for this process to be applicable in our
scenario. First, we generalize image melding to allow for multiple
sources and annotations in the melding step. Additionally, the per-
cluster “inner” synthesis step was modified to enable the constrained
synthesis necessary for handling missing data, namely to disallow
candidate patches that are outside the current cluster or the ε-balls
for a particular target pixel. Finally, our enhanced melding process
is able to handle matting by synthesizing using RGBA source and
target images with alpha premultiplied.

For each cluster, we generate a different initial guess by copying
to the target image a source patch that has most similar annotation
and averaging overlapping patches for each pixel into a single image
(a process called voting in Darabi et al. [2012]). We store the loca-
tions of the copied source patches in the initial Nearest-Neighbor
Field (NNF [Barnes et al. 2010]) for each cluster.

5.1 Reconstruction within Clusters

For each cluster i, we use generalized PatchMatch [Barnes et al.
2010] to select for each patch pj in the target image the best

Fig. 14. We synthesize topiaries (c), (d), (e) by rendering annotation maps
using 3D models. We added an alpha channel to the exemplar, which enables
us to generate finely detailed boundaries not present in the 3D models. Our
approach outperforms naı̈ve synthesis (f) that uses only the center of the
exemplar and simply modulates the result to convey lighting effects; this
result appears artificially smooth, does not match the source in highlight and
shadow colors, and lacks realistic boundaries. Our synthesized topiaries and
grass can be creatively composited together to render a more complex scene
(g) with little effort (here, we manually adjusted brightness and contrast of
the synthesized topiary after its creation so as to match the colors of the
synthesized grass). We also added a shadow to the composited result.

matching source patch among the set of acceptable candidate source
patches. This set consists of all source patches whose annotation
point at the center pixel of the patch is inside the ε-ball Bi(pj ) of
the center pixel of the target patch; during PatchMatch, we reject
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Fig. 15. Transfer of three differently weathered materials onto a brick
wall. The brick exemplars were scaled to similar sizes during preprocessing.
The source annotations are discrete weathering levels, and the target ones
continuous (33% missing data, shown in purple in (c)). Compared to image
analogies [Hertzmann et al. 2001] (d), our approach better handles smooth
transitions and better matches the specified annotations.

all candidates that are outside these ε-balls. We use a weighted
Euclidean patch distance on the channels, RGBA as well as the
gradients of RGB as a similarity measure, with a high weight on
the alpha channel to avoid mixing transparent and opaque areas.
Once we have correspondence NNFs for each cluster, we create
reconstructed RGBA images Vi for each cluster i by voting.

Rotation and scale control. We optionally allow patch scales
and rotations to be constrained by auxiliary scale and rotation anno-
tation images S, � that are specified on the sources and the target,

Fig. 16. In this example, missing data points are isolated and spread over
the entire exemplar (annotations as in Figure 14). Our algorithm nonetheless
succeeds in generating a bunny with the correct apparent shape by exploiting
nearest neighbors available in the ε-balls. The images are better viewed in
higher resolution. (e) has 52% of missing data, shown in purple.

but are otherwise exempt from the preprocessing stage of Section 4.
In the typical PatchMatch scenario, the matching process searches
for the rotation and scaling transformations for the source patch
that best fit the target patch. We also employ such search, however,
we first transform the source patch according to the difference be-
tween the annotated scales and orientations in source and target,
prior to applying the rotation/scaling generated by the search. In
the case of rotations, for example, we constrain the minimum and
maximum angle for each (transformed) source patch to be within
[θ1 − θ2 − δθ , θ1 − θ2 + δθ ], where θ1 and θ2 are source and target
angles, δθ is a global tolerance, and target patches remain upright
and are not transformed. This enables control over the generated ori-
entations and increases the available number of candidate patches,
since we do not need to restrict ourselves to patches of a particular
orientation. Scale is constrained likewise in the log domain.

5.2 Combination Based on Weights

We now combine the reconstructed versions {Vi} of the target, each
independently created from cluster i, into an improved target for the
next iteration in a way that smoothly interpolates texture and color.
Even though the per-cluster images are synthesized independently,
their textures at this stage are approximately registered, thanks to
the PatchMatch-type synthesis of Section 5.1 (which includes image
gradients) and the coarse-to-fine nature of the synthesis (ensuring
that the synthesis for all clusters starts from the same image at each
iteration). However, we still need smooth color interpolation.

We do this interpolation first by alpha-compositing each recon-
structed image Vi on the background. We also retain the alpha as
a separate component. We now convert to L∗a∗b∗ color space so
that we can perform smooth interpolation between any discrete
material colors by means of Poisson reconstruction on L∗. We
additionally augment each reconstructed image with the gradient
channels ∇L∗, so that the augmented images Ṽi have 6 channels:
(L∗, a∗, b∗, α, ∂L∗/∂x, ∂L∗/∂y).

We wish to reduce our collection of 6 channel images to a sin-
gle image based on our per-cluster weights from Section 4. For
the nongradient components, we take a weighted average based on

ACM Transactions on Graphics, Vol. 34, No. 2, Article 22, Publication date: February 2015.



Synthesis of Complex Image Appearance from Limited Exemplars • 22:9

the per-cluster weights Wi , while for the gradient components we
choose, per pixel, that gradient with maximum norm ‖Wi∇L∗‖.
This generalizes the two-source blending algorithm of Darabi et al.
[2012] to multiple sources. The result is a single image with 6 chan-
nels. The 3 channels (L∗, ∂L∗/∂x, ∂L∗/∂y) are consolidated into
a single channel L∗ by performing screened Poisson reconstruc-
tion [Bhat et al. 2008] (to avoid blur, a high weight of 5 for the
gradient channel gives best results). Finally, we convert back to
RGBA space and multiply by the alpha to gain an improved target
image that is alpha-premultiplied.

6. RESULTS

Our experiments demonstrate that our approach can synthesize a
variety of complex materials. In most figures, in addition to the ex-
emplars, annotations, and final result, we also show which regions
were synthesized from existing data (in yellow) and from missing
data (in purple). We consider that data is missing for a target an-
notation combination when there is insufficient source data in the
neighborhood of this annotation, that is, we had to enlarge the ε-
ball by increasing the radius along any dimension using the max in
Eq. (1), Section 4.2. All images referenced in this section are best
viewed in high resolution.

Structure of the annotation space. We first illustrate our ap-
proach on a scenario with a single cluster and negligible amount of
missing data (Figure 10). In these conditions, our method is con-
ceptually similar to previous texture synthesis work such as Zhang
et al. [2003], with the difference that we only allow candidates from
within an ε-ball, thus forcing the result to follow the annotations
closely. Figure 9 shows another single-cluster example. This exam-
ple also illustrates the flexibility of our annotations as they were
acquired in four different ways, and shows that, given the annota-
tions, one can easily change the exemplar to get a new appearance.

In Figure 11, we manipulate two different brick materials with
two clusters, and manage to transfer this complex and spatially vary-
ing texture onto the windmills while also making the brick materials
follow a new user-specified labeling pattern. Figure 17 illustrates
the influence of the number of annotation maps on a mossy tree
example. While too few annotations might be insufficient, after a
certain point adding more annotation images becomes redundant
and has only a minor effect. The existing annotation images already
capture most of the useful information; adding better annotations
improves how these data is used but we are limited in terms of
appearance by the variation available in the exemplars, which re-
mained unchanged.

Complex boundaries and transitions. Figures 11, 15, 20, 13,
and 17 show that our approach can synthesize complex transitions
between materials, which is key to adding effects such as weather-
ing and rendering natural scenes, like moss on a tree trunk or tree
foliage. The topiary of Figure 14 shows that we can reproduce the
complex boundaries using alpha matting and a transition annota-
tion image. We generated the annotations by rendering a 3D model
that had smooth boundary and our technique was able to synthe-
size the finely detailed contour typical of foliage. This allows for
complex compositing: in Figure 14 we show a result of inserting
this topiary into the yard of Figure 1. For this case, we manually
adjusted brightness and contrast to match the background and added
a shadow.

Missing data. Most of our results are generated from incom-
plete exemplars, that is, some data is missing. Figure 12 systemat-
ically studies the robustness of our approach to such missing data.

Fig. 17. Varying the number of annotations. The user provides mossy and
moss-free tree exemplars (a). The user also creates a dark moss exemplar
by adjusting the brightness of the initial bright moss exemplar to simulate
the appearance of moss in the shade. The available annotations (b) indicate
the mossy regions, the lighting variation, and a horizontal annotation
image that encodes the cylindrical shape. Using only the moss annotation
image to indicate where moss should be yields a poor result (c), while adding
the illumination annotation image greatly improves the result (d). Adding
the third annotation image yields a more modest improvement (e). Missing
data regions are shown in purple ( 42%, 57%, and 70%, respectively).

The main artifact that appears is an increased level of repetition
when most data is missing (80%), where the result fails to match
the specified annotations.

Missing data regions are usually concentrated in a large portion
of the annotation space that is not represented in the exemplars.
Figure 16 shows another, less common case where missing data
points are isolated and spread over the entire space. In this exam-
ple, users seek to generate a flower topiary without leaves, and to
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Fig. 18. Evaluation of the different components of our algorithm. Using
melding only, without any annotations, yields a poor result exhibiting ran-
dom and uncontrollable appearance variations. This is due to using a large
topiary source with a lot of appearance variation without annotation control
(d). If we use binary weights, such as weights quantized to 0 or 1 (e), the
transition is not smooth. For (f), we select a single nearest neighbor in image
space out of all patches from all clusters, instead of reconstructing inside
each cluster and melding. The result deviates from the annotations, since
the synthesis is biased against a portion of the valid data. Without cluster-
ing or with too few clusters (g), transitions are not smooth. Once there are
sufficient numbers of clusters, results are not as sensitive to the number of
clusters (c) and (h). See Figure 19 for explanation of the inset numbers.

do so they exclude the leaves from the source exemplar, leaving
many holes spread over the entire exemplar. Our approach handles
this case with a single cluster and approximates the appearance of
missing data parts by looking at nearest neighbors available in the
ε-balls.

Comparison to image melding. We already demonstrated in
Section 2 the conceptual differences between standard texture in-
terpolation techniques (e.g., image melding [Darabi et al. 2012])
in terms of determining the data being interpolated. There exists
a second difference from image melding, namely the continuous
annotation images that are crucial for producing the desired appear-
ance. Figure 18(d) shows a result of only using melding without
any annotations. For this example, we only used as sources the two
discretely labeled image regions with the two extremal appearances
(i.e., “top and lit”, “bottom and in the shade”) without any anno-
tations, and hoped for image melding interpolation to generate the
smooth geometry and lighting transitions the user asked for. Instead
we get a relatively flat result exhibiting random and uncontrollable
appearance variations, instead of a smooth dark-to-bright gradient.
This is due to using a large topiary source with a lot of appearance
variation without annotation control. Naturally, one could eliminate
these variations by making the source image regions smaller but,
as shown in Figure 12, restricting the source exemplars to small

Fig. 19. Quantitative comparison of the figures in Figure 18. The graphs
show the cumulative frequency of chi-square distances of the local (win-
dowed) luminance histograms between the various results in Figure 18(d)–(i)
and the ground truth in Figure 18(a). See the text for details on the computa-
tion of these distances; as a general rule, graphs that are more concentrated
towards the top-left side of the figure are preferable, as they are more concen-
trated around smaller distance values and converge faster. The full method
with two clusters outperforms the other results, with the four-cluster result
coming second. The numbers shown in Figure 18 are the mean values of the
above shown distances.

material chunks yields repetitive results that do not exhibit the rich
variations present in most natural materials. Thus, texture interpo-
lation is insufficient in the presence of larger exemplars; our anno-
tations and ε-ball sampling scheme are still necessary to control the
output appearance.

Necessity of clusters. We already demonstrated in Section 2
the necessity of clustering in the context of missing data, where
melding is required, that is, clustering is a practical way of specify-
ing what is being interpolated. Clusters are, however, also necessary
in the single-material scenario in order to generate smooth transi-
tions of appearance and allow for control in the presence of larger
image exemplars. Figure 18(g) studies exactly this case: here, all
available source patches are considered in a single cluster. In such
a case, patch-based synthesis approaches will often try to only use
patches from the “bottom and in the shade” part of the source to
fill in the lower part of the rectangular hole, and those patches from
the “top and lit” part of the source for the upper part of the hole.
This is because such selection leads to good coherence in most of
the final result, in particular around the edges of the hole. However,
around the transition zone we get an abrupt, discontinuous switch
in appearance. Instead, we want to make sure that all extremals
of material appearance (in this case, patches from both the bottom
and the top of the source) are represented and used as candidates
until the last possible moment, when they are interpolated to give
a smooth appearance transition. Hence, there is a need for two or
more different clusters in the presence of missing data.

Quantitative evaluation. Figure 18 also studies the effect of
using incorrect weights during the melding. A quantitative com-
parison of the different results in Figure 18 is shown in Figure 19.
The comparison metric is obtained by calculating local histograms
for sliding 11 × 11 windows on the reconstructed topiary result,
and calculating an 8-bin histogram of the luminance channel inside
each window. We then compare these histograms to those calcu-
lated on the equivalent windows in the ground-truth image, using
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Fig. 20. Modifying the lighting in a tree. The original tree image (a) has an unsightly shadow on the right. For the exemplar, we loosely matte the foliage
regions. The annotations (b) indicate red foliage, shadow, and transition regions, with source annotations in the top row and target annotations in the bottom
row. The resulting tree (c) has the shadow removed and matches the target colors. Some amount (d) of previously unseen annotations (about 5% of the total
target region) is present in this example as well.

Fig. 21. Our method is robust to a reasonable amount of error in the
annotations, which suggests it could handle different ways of generating the
annotations. In this example, we test with different versions of the normal
and light annotations of the bunny topiary in Figure 14(c) while keeping the
source annotations and the transition annotation unmodified. In (a) we add
20% of noise, in (b) we use an annotation of lower detail (quantized), while
in (c) we use blurred versions of the target annotations.

the chi-square histogram distance as a difference measure. Figure 19
shows the cumulative histogram of these distances collected over
all the overlapping windows. An ideal result would have most of the
windows near distance zero, and thus would be more concentrated
around the top-left part of the plot area. The figure shows our method
outperforms the melding result as well as the other variations that
don’t make use of the full pipeline.

Figure 23 shows a quantitative evaluation on a rendered im-
age. A scene, complete with surface normal information, was ren-
dered with Mitsuba [Jakob 2010] and used as a source, with the
three coordinates of the normals as annotations. We then synthesize
for part of it and compare the synthesized normals to the ground
truth.

Comparison to naı̈ve texture synthesis. In Figure 14(d) we
compared our method to naı̈ve texture synthesis, where a small tex-
ture sample of homogeneous appearance is provided. We generated
this result by synthesizing from a small texture square chosen from
the center of the exemplar bush, using our pipeline without anno-
tations. This produces an intermediate result with constant lighting
that we multiply by the lighting annotation map. Simply using

Fig. 22. Simply incorporating the annotations in the patch distance without
our clustering/sampling scheme can be hard to control in practise, especially
in the presence of multiple annotations and an alpha channel. Here, we
attempt to create a topiary bunny using the 3 annotations of Figure 14 as
well as an alpha mask for the boundary. Adding these 4 channels to the color
and gradient channels produces an augmented image of 13 channels, to be
used by PatchMatch during synthesis. Appropriately weighting all these
channels can be a hard task; in this case, the synthesis completely misses
one ear (a) due to incorrect synthesis of the alpha channel; it also does not
respect the annotations as well as our result (b).

modulation to render the lighting effects in their entirety does not
well reproduce the shape and light variations of the appearance of
the foliage, and the synthesized boundary is implausible and exhibits
a “wrapping-paper” kind of appearance. This being said, once the
details of the variation of the material appearance have been cap-
tured with our method (e.g., the local behavior of foliage around
shape cusps and curves), our method can still benefit from mod-
ulation by adding low-frequency lighting variations. For instance,
we rendered the ambient occlusion on the grass in Figure 1 using
modulation.

Comparison to image analogies. We also compared our ap-
proach to image analogies [Hertzmann et al. 2001] on a weather-
ing example (Figure 15). In all fairness, Hertzmann et al. [2001]
do not aim at generating smooth transition boundaries, hence the
abrupt switch around those regions where the user requested mod-
ifications; our method avoids such problems due to the presence
of gradient channels and Poisson reconstruction. Ignoring these
boundary artifacts, Hertzmann et al. [2001] also do not follow the
user’s specifications as closely. This behavior was noted also in
Zhang et al. [2003]: only relying on the L2-norm of an image
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Fig. 23. Synthesizing on a synthetic scene. A textured 3D model of an apple
is rendered into a source image (a). The renderer also provides exact infor-
mation about the (x, y, z)-coordinates of the surface normals, visualized as
(r,g,b) in color in (a, inset). In this experiment, we use these coordinates as
annotation channels for both source and target and try to reconstruct the orig-
inal apple; we exclude from the source image and annotations the portion
outlined in red. The result is shown in (b). This result is derived by looking
up, for each patch of the target image, the patch in the source image specified
by the optimal map (i.e., NNF) found by PatchMatch during synthesis, and
subsequently performing a voting step for overlapping patches. Using this
same map to look up patches on the source annotation (a, inset) instead of
the source image (a), and using the same voting scheme, we can generate an
image that approximates the normals of our synthesized image. We can then
compare to the ground-truth source annotation. These synthesized normals
are shown in (b, inset), and the angle deviation between the two insets is
shown in (c, left). While the ε-balls guarantee the annotations are closely
followed, the annotations are not directly used in the patch distance; hence
the focus during synthesis is on synthesizing coherent appearance for the
apple. In (c, right), the angle error is shown for a result obtained via regu-
lar image-analogies-style patch synthesis, without our sampling scheme but
with the annotations taking part in the patch distance, as in Figure 22. Our
method respects the prescribed annotations better. A quantitative compari-
son of the synthesized texture to the ground truth (with the same metric as
in Figure 19) is shown in (d).

augmented with annotation channels can produce results arbitrarily
different from the desired ones, particularly if there are multiple
such channels. Weighting the channels can help, but we found that
tuning these weights is tedious and may not achieve results similar
to ours even after several tries, particularly given the randomized
character of the synthesis, and the presence of an alpha channel
that also needs to be weighted. Figure 22 shows a typical result
of simply using an L2-distance on the annotations while trying to
reproduce the results of Figure 14; the boundaries are incorrectly
synthesized and the annotations not closely followed. Figure 23(c,
right) also shows a quantitative comparison of the quality of the
reconstructed annotations. In Figure 15, our automatic clustering
and interpolation combined with hard constraints provided by the
ε-balls successfully renders the intermediate degrees of weathering
requested, while Hertzmann et al. [2001] copy appearance from the
closest matching degree of weathering. We observed this behavior
regardless of the settings that control the patch distance metric; we
demonstrate the best analogies result we obtained after fine tuning.

Fig. 24. Failure of the automatic annotation.

Discussion. We implemented our prototype in Matlab and C++.
Our code is not optimized and runs offline; the results shown
in the article took in the order of a few hours to compute, the
bottleneck being the inefficient implementation of image meld-
ing. Since PatchMatch can be made very fast using multithreading
and vectorization, and the number of iterations can be fine tuned
for speed, we are confident that after optimization we can reach
reasonably fast runtimes for interactivity. We leave this as future
work.

The only significant parameter in our system remains εk , for
which we used the default value 0.1 in most cases. The number of
clusters is chosen automatically by the mean shift algorithm. When
we had to tune εk , the set value was either 0.05 (better match of the
annotation) or 0.2 (less repetition). Despite this, repetition remains
visible in a few examples, as is common in texture synthesis and
patch-based optimization methods. As future work, we plan to add
spatial and nearest-neighbor “jittering” [LeFebvre and Hoppe 2006;
Risser et al. 2010], which should help alleviate this issue.

In terms of exemplars, while our approach fully supports more
complex exemplars, we also found it easier to work with simple
shapes like spheres and planar surfaces, when possible, in order to
keep the annotation time at a minimum. In terms of annotations, we
found that no special expertise is required to create them; it suffices
for users to understand the (mostly straightforward) effects that they
want to capture, such as light changes or the shape variations. With
the exception of Figure 9, the remaining annotations were either
binary or gradient images (painted within a few minutes) or preren-
dered images of simple primitives (spheres, cylinders) adapted to
the size of the sources. We found that keeping annotations simple
can be advantageous for our method; it is helpful to give annota-
tions that provide a coarse guidance of the high-level effects while
the texture synthesis process renders the fine details necessary to
produce a natural looking image. This being said, our method is
reasonably robust to different ways of capturing the same desired
effect, as well as to some amount of noise. We showcase this in
Figure 21 by adding noise, blurring, or quantizing the target an-
notations of Figure 14 to simulate, for instance, manual painting/
labeling of the annotations instead of using an automatically ren-
dered image. On the other hand, if automatic annotations are used
and the annotation generation procedure completely fails to capture
the desired effect, our method might be unsuccessful, too. An ex-
ample is shown in the inset of Figure 24, the automatic shape-from-
shading method used [Barron and Malik 2012] did not manage to
capture the symmetry of the shirt, and the reconstructed shirt looks
dirty and implausible. For this example, manual correction of the
annotation was nessecary.

Our method can currently only handle opaque, nonreflective ma-
terials; the appearance of transparent or reflective objects may heav-
ily depend on distant parts of the scene and is left as future work.
Our materials have stochastic textures with small- to middle-scale
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structure details, thus covering a broad range of common natu-
ral materials such as grass, foliage, stone walls, fabric, etc. Most
problematic cases included materials with large-scale structures of
different appearance that are hard to place in correspondence (e.g.,
walls with large, differently shaped bricks, closeups of plants with
ample empty space).

Our approach offers two ways to deal with transitions, either with
an alpha channel or by providing an exemplar that exhibits a sample
transition. When the backgrounds of the input and the exemplar
match, we recommend the latter; this makes the process simpler
and faster by avoiding creation and handling of an alpha channel.

7. CONCLUSION

We have demonstrated a new method for synthesizing images con-
taining complex and/or heterogeneous materials by generalizing
from only limited exemplars. Our approach is able to process ar-
bitrary images including photos downloaded from the Internet and
enables user control through simple tools, such as brushes and
diffusion curves. It produces results richer than standard texture
synthesis without adding the complexity of BTF capture. The vari-
ety of examples that we have shown attests to the versatility of our
technique.
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