Topology-based Smoothing of 2D Scalar Fields with C^1 -Continuity: Derivatives of f

Tino Weinkauf, Yotam Gingold and Olga Sorkine

Courant Institute of Mathematical Sciences, New York University, USA

We provide the first and second derivatives of the function value f_i for a free vertex *i* of the monotonicity graph (any node with a single incoming edge). Let *parent*(*i*) be the parent of vertex *i* in the monotonicity graph, and let f_{m_i} be the maximum function value at the end of all paths in the graph passing through vertex *i*. Recall that we substitute the variables f_i at free vertices by using new variables θ_i , where

$$f_i = f_i(\boldsymbol{\theta}_i) = f_{m_i} + t_i(\boldsymbol{\theta}_i) \left(f_{parent(i)} - f_{m_i} \right),$$

such that

 $t_i = 0.5 + 0.5 \cos(\theta_i).$

For convenience, define $parent^n(i)$ to be the *n*-th ancestor of vertex *i*:

$$parent^{0}(i) = i$$

$$parent^{1}(i) = parent(i)$$

$$parent^{2}(i) = parent(parent(i))$$

$$\vdots$$

Then the first derivative of f_i with respect to θ_i , where vertex j is the p-th ancestor of vertex i, is

$$\frac{\partial f_i}{\partial \theta_j} = \left(\prod_{a=0}^{a < p} t_{parent^a(i)}\right) \frac{-\sin(\theta_j)}{2} \left(f_{parent(j)} - f_{m_j}\right).$$

The derivative is 0 if vertex *j* is not an ancestor of vertex *i* or is *i* itself.

The second derivative of f_i with respect to θ_j and θ_k follows. Let vertex j be the p-th ancestor of vertex i and vertex k be the q-th ancestor of vertex i (p and/or q may be 0). Without loss of generality, assume p < q. If $j \neq k$,

$$\frac{\partial f_i}{\partial \theta_j \partial \theta_k} = \left(\prod_{a=0}^{a < p} t_{parent^a(i)}\right) \frac{-\sin(\theta_j)}{2} \left(\prod_{a=p+1}^{a < q} t_{parent^a(i)}\right) \frac{-\sin(\theta_k)}{2} \left(f_{parent(k)} - f_{m_k}\right).$$

If j = k,

$$\frac{\partial^2 f_i}{\partial \theta_j^2} = \left(\prod_{a=0}^{a < p} t_{parent^a(i)}\right) \frac{-\cos(\theta_j)}{2} \left(f_{parent(j)} - f_{m_j}\right).$$

If even one of vertex *j* or vertex *k* is not an ancestor of vertex *i* (or vertex *i* itself),

$$\frac{\partial^2 f_i}{\partial \theta_j \partial \theta_k} = 0.$$

Recall our energy functional

$$E(f) = \int_{\Omega} |\Delta f|^2 + \omega_d \left| f - \hat{f} \right|^2 dA,$$

© 2010 The Author(s)

Journal compilation © 2010 The Eurographics Association and Blackwell Publishing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden, MA 02148, USA.

T. Weinkauf, Y. Gingold & O. Sorkine / Topology-based Smoothing of 2D Scalar Fields with C¹-Continuity: Derivatives

where Ω is our parametric domain, \hat{f} is the original function and $\omega_d > 0$ is the weight of the data term. We discretize this as

$$E(f) = \sum_{i}^{N} \left(\Delta f_{i}\right)^{2} + \omega_{d} \left(f_{i} - \hat{f}_{i}\right)^{2},$$

where Δf_i is the discrete Laplace operator value integrated over the area cell around vertex *i*. Then the gradient of *E* is

$$\nabla_{\theta} E(f) = 2 \sum_{i}^{N} (\Delta f_{i}) \nabla_{\theta} \Delta f_{i} + \omega_{d} \left(f_{i} - \hat{f}_{i} \right) \nabla_{\theta} f_{i}$$

and the Hessian matrix of second partial derivatives is

$$H_{\theta}E(f) = 2\sum_{i}^{N} \left(\Delta f_{i}\right) H_{\theta}\Delta f_{i} + \left(\nabla_{\theta}\Delta f_{i}\right)^{T} \left(\nabla_{\theta}\Delta f_{i}\right) + \omega_{d} \left[\left(f_{i} - \hat{f}_{i}\right) H_{\theta}f_{i} + \left(\nabla_{\theta}f_{i}\right)^{T} \left(\nabla_{\theta}f_{i}\right)\right].$$

The discretization of the Laplace operator,

$$\Delta f_i = \sum_{j:(i,j)\in\mathcal{E}} 0.5 \left(\cot \alpha_{ij} + \cot \beta_{ij}\right) (f_i - f_j),$$

has as its gradient

$$\nabla_{\theta} \Delta f_i = \sum_{j:(i,j) \in \mathcal{E}} 0.5 \left(\cot \alpha_{ij} + \cot \beta_{ij} \right) \left(\nabla_{\theta} f_i - \nabla_{\theta} f_j \right)$$

and as its Hessian

$$H_{\theta}\Delta f_{i} = \sum_{j:(i,j)\in\mathcal{E}} 0.5 \left(\cot\alpha_{ij} + \cot\beta_{ij}\right) \left(H_{\theta}f_{i} - H_{\theta}f_{j}\right)$$

Finally, $\nabla_{\theta} f_i$ and $H_{\theta} f_i$ are composed of the $\frac{\partial f_i}{\partial \theta_j}$ and $\frac{\partial^2 f_i}{\partial \theta_j \partial \theta_k}$ expressions, given above.