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1 UVDOC DATASET: ORDERING THE GRID

Using the UV-lit image, where the printed grid is visible, we obtain
the pixel coordinates of the grid points on the deformed piece
of paper. We then need to compute their correspondences to the
vertices of a regular grid, which is equivalent to ordering them as
an 89 X 61 grid. We solve the ordering problem in 3 steps:

(1) Finding the top-left corner. We first find the top-left corner of
the grid. We compute the two principal components of the
detected grid points and define the diagonal direction of the
grid as the sum of these two vectors. For each point, we draw
a line orthogonal to this diagonal direction and we count
the number of points on each side of the line. The top-left
corner is then the point that has exactly zero points to its
left. The process is illustrated in Fig. 1.

Ordering border points. Next we detect all border points. To
this end, we use a segmentation of the paper that we obtain
by thresholding the UV-lit image. Based on this segmenta-
tion, we use OpenCV’s findContours function to extract an
ordered contour polyline. For each contour vertex, we find
the nearest neighbor point in the set of grid points. We then
define our grid border points as the 296 grid points — the
number of points on the border of the grid — that are most
frequently found as nearest neighbor. Finally, since the con-
tour extracted using OpenCV is ordered, we can also order
the detected grid border points.

Ordering interior points. The final step is to order the points
that lie in the interior of the grid. We iteratively identify
all points (i, j) € [2,88] X [2,60] in row-major ordering,
starting from point (2, 2) (the top-left interior grid point).
We do this (for point (i, j)) by finding the three nearest yet-
unordered grid points for each of the previously-ordered
points (i — 1, j — 1), (i, j — 1), and (i — 1, j) (the points to the
top-left, top and left of the point we are currently trying to
identify). The point that is in the intersection of these three
nearest-neighbor sets is chosen as point (i, j). We use the
average distance to the three reference points as a tiebreaker
in case the intersection contains multiple points. This point
is then considered ordered, and we move on to the next
point.

@

~

3

~

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SA Conference Papers "23, December 12-15, 2023, Sydney, NSW, Australia

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0315-7/23/12.

https://doi.org/10.1145/3610548.3618174

Figure 1: Illustration of the top-left corner identification step.
Cyan lines represent the principal components of the grid
points, the yellow line is the diagonal direction, and the white
line is the orthogonal line defining the dividing half-space.
Red points are towards the left of the line and black points
towards its right. (Left) There are several red points, this
is not the top-left corner. (Right) There are no red points,
the top-left corner is the point on top of which the white is
located.

2 TRAINING DETAILS

We obtain the ground-truth G and W for the Doc3D dataset by
sampling the ground truth backward maps at a regular grid of
45 X 31 points covering the entire backward map. For our UVDoc
dataset (see Sec. 3 of the main paper) we slice the available high-
resolution ground truths by a factor of 2.

We use the ADAM optimizer [Kingma and Ba 2015] with a batch
size of 8. The initial learning rate is set to 2 X 10~* for 10 epochs
and linearly decays to 0 over 10 further epochs. We alternate opti-
mization steps based on a batch of Doc3D data with a batch of our
UVDoc data, using the same loss function on both of them.

We visually augment both the Doc3D and our data with noise,
color changes and other appearance transformations. Additionally,
we augment our data with rotations, since our images are captured
from a more uniform angle than the Doc3D data. All images are
tightly cropped before being fed to the network.

Empirically, we find that the best set of weights to balance the
influence of the individual loss terms as defined in Eq. 1 in the main
paper are = 5 and §§ = 5. During training y is set to 0.0 for the first
10 epochs (first half) and then to 1.0 for the remaining 10 epochs.
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Table 1: Ablations on training data. The reported values are averages and standard deviations over 10 repetitions of training
with otherwise constant parameters. Settings used in our final model are underlined. We show performance on the DocUNet and
UVDoc benchmarks. Doc3D reduced is a version of the Doc3D dataset with 20,000 samples removed to offset for the additional

UVDoc samples. The underlined setting is the one we use.

DocUNet UVDoc
Data MS-SSIM T LD | AD | CER | ED | MS-SSIM T AD | CER | ED | H-line | V-line |
Doc3D 0.492+0.004  7.99+0.13  0.360+0.007  0.197+0.018  757+57  0.669+0.015  0.178+0.013  0.078+0.013  220+30  2.42+0.03  3.85+0.16
Doc3D reduced + UVDoc  0.535+0.004 7.01+0.20 0.331+0.008 0.206+0.019 797£69 0.765+0.009  0.138+0.011 0.073+0.010 217425 1.84+0.11 2.65+0.13

Doc3D + UVDoc

0.536+0.006 6.96+0.17 0.325+0.006 0.195+0.012 745+34 0.762+0.014  0.129+0.008 0.070+0.010 205+23 1.85%0.06 2.53+0.06

We give a detailed graphical overview of our model architecture in
Fig. 3.

3 EVALUATION METRICS

As explained in the main paper, we used image similarity metrics
such as MS-SSIM, LD and AD as well as optical character recogni-
tion (OCR) performance measured with CER and ED. Details about
these metrics are provided below.

The structural similarity measure (SSIM) [Wang et al. 2004]
quantifies the visual similarity between two images by measuring
the similarity of mean pixel values and variance within image
patches between the two images. The multi-scale variant (MS-SSIM)
repeats this process at multiple scales using a Gaussian pyramid
and computes a weighted average over the different scales as its
final measure. We use the same weights as described in the original
implementation [Wang et al. 2003].

LD is computed using a dense SIFT flow mapping [Liu et al.
2008] from the ground truth image to the rectified image. Using
this registration, LD is computed as the mean L, distance between
mapped pixels [You et al. 2018], essentially measuring the average
local deformation of the unwarped image.

Aligned distortion (AD) is a more robust variant of the LD metric,
introduced in [Ma et al. 2022]. In contrast to LD, AD eliminates the
error caused by a global translation and scaling of the image by
factoring out the optimal affine transformation out of the SIFT flow
distortion. Such a global affine transformation can cause large LD
values but does not greatly impact human readability of the image.
Additionally, AD weighs the error according to the magnitude of
the gradient in the image, emphasizing interesting areas, such as
text or image edges, rather than the background. Prior to computing
these similarity metrics, we resize all images, both rectified and
ground-truth, to a 598,400-pixel area, as suggested in [Ma et al.
2018].

In addition to the image similarity metrics, we evaluate OCR per-
formance based on character error rate (CER) and editing distance
(ED) [Navarro 2001]. The CER is defined as the ratio between the ED
(the edit distance between the recognized and reference text) and
the number of characters in the reference text. We obtain the refer-
ence text by extraction from the flatbed scans of the documents. The
full definition for the CER then becomes: CER = (s+i+d)/N, where
s, i, d are the number of substitutions, insertions and deletions, re-
spectively, and N is the number of characters in the reference text.

4 ADDITIONAL EXPERIMENTS

Mixed training. As shown in the main paper, we find that training
models on a combination of the Doc3D and UVDoc datasets yields
improved performance compared to training on Doc3D alone. How-
ever, models trained on a combination of both datasets see more
samples and thus more variety than the ones trained on Doc3D
only. To verify that the increased number of unique samples is not
the cause of the performance gain, we train on a combination of
Doc3D and UVDoc datasets, removing 20,000 samples from the
Doc3D dataset. This way, the models trained on a combination
of the two datasets see equally many samples as the ones trained
on Doc3D only. The results of these experiments, along with the
results of models trained on Doc3D only and on a combination of
the full Doc3D and UVDoc datasets are presented in Table 1.

The models trained on a combination of the reduced Doc3D
dataset and UVDoc have slightly worse performance than the mod-
els trained on the full datasets. This is expected, as the models are
trained with fewer samples. However, the difference between the
two is very small. More importantly, the models trained on the full
Doc3D dataset alone give very poor results in comparison. Replac-
ing samples from the Doc3D dataset with higher-quality ones from
our UVDoc dataset improves its overall performance.

5 LINE UNWARPING VISUALIZATION

Our new UVDoc benchmark, equipped with the ground-truth un-
warping function, allows one to warp and unwarp not only the
document image but any texture. We can warp the texture based
on the ground truth deformation and unwarp it using the pre-
dicted deformation. This idea, which we apply to create our new
line straightness metric, can also be used to better visualize the
structural behavior of an unwarping function. By unwarping the
unshaded document texture, we can remove the visual effect of
shape-from-shading, giving a better visualization of the remain-
ing geometric distortions. We apply this to visually compare our
method with related works in Fig. 2.
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Figure 2: Results on our UVDoc benchmark. From top to bottom: shaded image, unshaded document texture, horizontal lines,
vertical lines. The black lines represent the ground-truth and the red lines are the unwarped ones. From left to right: input,
DewarpNet [Das et al. 2019], DDCP [Xie et al. 2021], DocTr [Feng et al. 2021], RDGR [Jiang et al. 2022], DocGeoNet [Feng et al.
2022], ours.
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Figure 3: An overview of the architecture of our network.
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