Supplemental: Blind Image Super-Resolution with Spatially Variant Degradations

VICTOR CORNILLÈRE, ETH Zurich
ABDELAZIZ DJELOUAH, DisneyResearch|Studios
WANG YIFAN, ETH Zurich
OLGA SORKINE-HORNUNG, ETH Zurich
CHRISTOPHER SCHROERS, DisneyResearch|Studios

CCS Concepts: • Computing methodologies → Image processing; Computational photography.

Additional Key Words and Phrases: Super-resolution

ACM Reference Format:

1 IMPLEMENTATION DETAILS

The architecture of the generator is based on the SR network proposed in [Wang et al. 2018]. We first extract 64 channel feature map with an initial 3×3 convolution layer. After that a cascade of dense compression units (DCUs) are used, followed by a sub-pixel convolution layer. The DCU consists of a modified densely connected block followed by 1×1 convolution. We respectively used 4, 6 and 8 DCUs for $2 \times$, $3 \times$ and $4 \times$ upscaling. In all cases the number of layers is 6 and the features extracted by each unit have 64 channels.

The blur kernels are centered with a size of 15×15. They are mapped to a latent representation with 2 fully connected NN layers, reducing each kernel to 15 values. We assume the blur kernels to be centered and with values summing up to 1.

2 ADDITIONAL RESULTS

Here we show a variety of additional upscaling results. First, we show that our blind approach is applicable to a variety of scaling factors in Figure 1. Here, we have used the factors $2 \times$, $3 \times$, and $4 \times$ which are commonly used in deep learned super resolution.

In Figure 2, we show $2 \times$ upscales of images taken with a DSLR camera. The images have not been downscaled before being up-scaled. We compare to a state-of-the-art upscaling method and observe that our results are slightly sharper even though our generator network has one order of magnitude less parameters. Figure 3 shows the same experiment for images captured with a mobile phone camera.

REFERENCES

Fig. 1. **Multiple Scaling Factor.** Our SR results with 2x, 3x and 4x scaling factor.
Fig. 2. **Images a from DSLR camera - upscaling results (x2).** In all cases our SR results are slightly sharper compared to ProSR trained for bicubic downsampling.
Fig. 3. Images from a mobile phone camera - upscaling results (x2). In all cases our SR results are slightly sharper compared to ProSR trained for bicubic downsampling.