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Fig. 1. Upscaling results with spatially varying degradation. Handling spatially variant degradations is critical when dealing with composited content.
In this case the spaceship was composited onto the background image. The two regions have been down scaled with different kernels, and as a result, there
is no single kernel that can be used for upscaling the entire image without artifacts. Our method avoids these problems by allowing for automatic local
adaptation of the degradation. Photo Credits: Derivative from Spaceship by Francois Grassard (CC-BY).

Existing deep learning approaches to single image super-resolution have
achieved impressive results but mostly assume a setting with fixed pairs of
high resolution and low resolution images. However, to robustly address
realistic upscaling scenarios where the relation between high resolution and
low resolution images is unknown, blind image super-resolution is required.
To this end, we propose a solution that relies on three components: First,
we use a degradation aware SR network to synthesize the HR image given a
low resolution image and the corresponding blur kernel. Second, we train
a kernel discriminator to analyze the generated high resolution image in
order to predict errors present due to providing an incorrect blur kernel to
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the generator. Finally, we present an optimization procedure that is able
to recover both the degradation kernel and the high resolution image by
minimizing the error predicted by our kernel discriminator. We also show
how to extend our approach to spatially variant degradations that typically
arise in visual effects pipelines when compositing content from different
sources and how to enable both local and global user interaction in the
upscaling process.
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1 INTRODUCTION
With the recent advances in deep learning, super-resolution (SR)
has become a very active field of research in the past few years.
From a practical point of view, obtaining high resolution content
from lower quality is beneficial in numerous situations as it allows
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to bridge the gap between content resolution and displays. In video
production, this offers the possibility to use more affordable cameras
while still aiming for 4K content. In addition to this, the scene-to-
screen workflow, including visual effects, is still largely limited to
2K resolution due to cost and efficiency considerations. A robust
and flexible SR solution would offer a faster and cheaper path for
producing 4K content.
Initial contributions to the field of learning-based SR have fo-

cused on supervised settings with fixed pairs of high/low resolution
(HR/LR) images, usually obtainedwith bicubic downsampling [Dong
et al. 2014; Kim et al. 2016; Ledig et al. 2017]. Improvements came
primarily from architectural decisions [Kim et al. 2016], training
strategies such as adversarial training [Ledig et al. 2017] or a combi-
nation of both [Wang et al. 2018]. These solutions achieve impressive
results when the downsampling operation is fixed, but result in no-
ticeable artifacts when used on images with a different degradation.
If the blur kernel is provided, Shocher et al. [2018] propose a zero-
shot SR method that is trained specifically for each image with
the given degradation operation, while Zhang et al. [2018d] avoid
this per-image training by explicitly providing the kernel to the
SR network. Recovering the blur kernel still remains a challenging
task, and existing methods rely on priors on image features such as
[Michaeli and Irani 2013] that assume image patch redundancy at
different scales in the low resolution image.
In this paper, we propose a framework that is able to perform

blind SR in a completely automated way while fulfilling the require-
ments of practical upscaling in video production, such as adaptation
to composited content and the possibility of local and global user
control. Following the standard approach, we model the low res-
olution image as a degradation from an “ideal” HR image with
blurring and downsampling. First, given a blur kernel and a low
resolution image, we train a degradation-aware generator network
to produce the corresponding high resolution image. A similar ap-
proach is used by Zhang et al. [2018d]. Second, we observe that
providing an incorrect kernel to the generator leads to artifacts in
the synthesized image, and we train a kernel discriminator network
to identify these errors. Instead of estimating the degradation by
analyzing the low resolution image, we recover this information
by understanding the artifacts in the high resolution output. Lastly,
we propose an optimization scheme to estimate the degradation
parameters that minimize the artifacts in the generator. As a result,
we recover both the degradation and the high resolution image.
We note that the kernel parameters can be the same in the entire
image or locally estimated to deal with cases such as composited
content. Our parametrization allows user control for local and global
fine-tuning, and our experiments demonstrate the flexibility and
robustness of the proposed solution, which is able to handle a large
range of downsampling operations. The contributions in this paper
are threefold:

• We show how the parameters of the blur kernel can be recov-
ered using a kernel discriminator network to analyze artifacts
created by a degradation-aware SR network.

• We propose a framework that leverages the degradation-
aware SR network and the kernel discriminator to estimate

the blur kernel leading to better SR estimation. The method
achieves state-of-the-art results in blind SR.

• An optimization scheme that allows both global and local
adaptation of the estimated degradation and SR result.

2 RELATED WORK
The image super-resolution problem is among the earliest problems
in image restoration and as such a large number of solutions have
been proposed. In this paper we focus on deep learning based meth-
ods and SR approaches taking into account the degradation kernel.
A detailed review and evaluation of SR state of the art can be found
in the survey realized by Nasrollahi and Moeslund [2014] and the
benchmark proposed by Yang et al. [2014].
In the case of SR with fixed down-sampling, deep learning based

approaches achieve impressive results by training deep neural net-
works on pairs of corresponding LR/HR images (or image patches).
The first approach to CNN based SR proposed by Dong et al. [2014]
relies on three steps: patch encoding, non-linear mapping, and recon-
struction. Although improvements in terms of quality were achieved
by considering deeper network architectures [Dong et al. 2016; Kim
et al. 2016], the memory footprint is significant as these methods
use a bi-cubic up-sampling of the LR image as input. To avoid the
computationally expensive feature extraction in HR, Shi et al. [2016]
process images in low resolution space and only perform upscaling
as a last step. In addition to changes in NN design, Ledig et al. [2017]
have used generative adversarial networks to achieve improved
visual quality. Today a vast amount of work in discriminatively
trained SR neural networks exist. Among the noticeable improve-
ments we note the progressive adversarial training approach pro-
posed by Wang et al. [2018]. Here a single pyramidal architecture
up-samples images to multiple scaling factors, with larger scales
benefiting from feature already extracted at lower resolution. In the
context of video super-resolution, a standard approach is to rely on
consecutive frames to achieve better results [Caballero et al. 2017;
Sajjadi et al. 2018]. If motion blur is present, Zhang et al. [2018a]
propose to jointly solve the deblurring and upscaling problems. De-
blurring result is estimated at low resolution and a gate module
is used to merge the features extracted from this deblurred result
before predicting the high resolution image.
In a different direction, some works have considered deep regu-

larization priors. Estimating the high resolution image is expressed
as solving a Maximum A Posteriori (MAP) problem. The objective
function consists of a fidelity term and a regularization term. Using
variable splitting techniques, one can deal with the two terms sepa-
rately, and recent methods have investigated the usage of CNNs as
prior. This is the case of [Rick Chang et al. 2017; Zhang et al. 2017]
that show how a deep CNN trained for image denoising can effec-
tively be used as prior in various image restoration tasks including
SR. Instead of considering a denoising prior, Bigdeli et al. [2017]
propose to use a prior based on an estimate of natural image dis-
tribution. These methods do not assume any knowledge on the
degradation operation and rely on the prior to solve this ill-posed
inverse problem. Although competitive, they do not outperform
discriminatively trained SR neural networks.
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The relative importance of image prior and reconstruction con-
straint was investigated by Efrat et al. [2013] who showed the im-
portance of blur kernel estimation in the SR problem. A strategy
already adopted by earlier works such as [Begin and Ferrie 2004]
that used learning to recover camera point spread function (PSF)
in SR problem. We can divide these approaches in two classes. In
the first, the analysis is based on edges and contours in the image;
For example, Qiao et al. [2006] propose an SVM to estimate the
variance of a Gaussian blur kernel using features extracted with
a Sobel operator, while Joshi et al. [2008] assume that contours in
the image correspond to sharp edges that can be reconstructed,
and the camera PSF is computed from these pairs of observed and
predicted values. The second class of methods rely on image patch
comparisons; Begin and Ferrie [2007] recover the camera point
spread function by matching patches from the low resolution in-
put to other patches from a training set of high resolution images;
Michaeli and Irani [2013] take advantage of patch redundancy at
different scales in the low resolution image to estimate the blur
kernel the kernel. Interestingly, they also point the relation between
the PSF and the blur kernel to use for SR.
Recently, some deep learning approaches have been proposed

to tackle the more general case of variable degradation kernel. For
instance, Zhang et al. [2018d] provide blur kernels as supplementary
inputs to a super-resolution NN. The blur operation is modeled as an
anisotropic Gaussian that is mapped to a new representation using
a PCA. With the same objective of adapting the image synthesis to
multiple degradations, Zhang et al. [2019] use a different degradation
model where the blur operation is applied after a down-sampling,
assumed to be bi-cubic. The super-resolution problem is solved by
replacing the Gaussian denoiser prior with an image super-resolver
prior. Both methods achieve good results but require the knowledge
of the blur kernel and are thus unfitted for blind super-resolution.
In the blind setting, Shocher et al. [2018] train a network specif-

ically for each image after recovering the blur kernel using patch
repetition assumption [Michaeli and Irani 2013]. Concurrent to our
work, Gu et al. [2019] propose to automatically estimate the kernel
in the restricted case of an isotropic Gaussian blur. First, a neural
network estimates the kernel variance directly from the low resolu-
tion image. Then, in an iterative process, another network computes
the update step to apply on the kernel to reduce the artifacts. Their
solution is different from our work in important ways; The space of
kernels we consider is not limited to isotropic Gaussians. In such
complex setting, the initial kernel estimation step [Gu et al. 2019]
becomes more challenging. In addition to this, with a larger kernel
space, predicting the update step is likely to lead to a local mini-
mum. This shows the importance of our kernel discriminator that
can evaluate high resolution output for any kernel.

3 METHOD
Our objective is to solve the blind super-resolution problem where
given a low resolution image Il , we would like to estimate the
corresponding high resolution image I , such that:

Il = (I ∗ k)↓s , (1)

where k is the unknown degradation kernel. The down-sampling
operation ↓s depends on the considered scaling factor s .

In the non-blind setting, the kernel k is known and it is possible
to have the synthesis process adapt to it [Zhang et al. 2018d]. We
follow a similar strategy to build a super-resolution convolutional
neural network (referred to as the generator in this paper) that takes
into account the degradation kernel. This information allows the
generator to be more flexible in the range of low resolution images
it can handle (section 3.1).

The main challenge in blind super-resolution is to recover a high
resolution image when the degradation kernel k is unknown. Our
main contribution resides in the strategy we employ to recover this
kernel. It is in particular based on the observation that providing the
incorrect kernel in the synthesis process generates artifacts in the
estimated high resolution image. Using another CNN (referred to as
the kernel discriminator), we are able to detect these artifacts in the
generator output and therefore identify whether the correct kernel
was used. More details about this part can be found in Section 3.2.

With this discriminator, it becomes possible to recover the orig-
inal degradation kernel by minimizing the errors detected in the
generator output. This relies on the optimization process described
in Section 3.3.

3.1 The Generator - Degradation Aware Super-Resolution
The degradation aware super-resolution approach we use consists
of the kernel mapping network Fk and the generator Fд illustrated
in figure 2. First, the degradation kernel k is mapped to a latent
representation qk . By considering the same degradation at each
pixel location, we obtain the degradation map ρ. Next, the map ρ is
passed to the generator along with the low resolution image Il to
produce a high resolution image.

In the kernel mapping step we propose to use a neural network Fk
with parameters λk . Before providing the kernel k to the generator,
we compute its low dimensional representation qk :

qk = Fk (k | λk ). (2)

With this strategy, we have the possibility of learning a mapping
more adapted to the super-resolution task than using a principal
component analysis [Zhang et al. 2018d]. In practice, Fk is a two-
layer dense network that takes as input the kernel k in vector form,
obtained by row concatenation, and maps it to the reduced vector
latent representation qk .

The Super-Resolution generator predicts an estimate I∗ of the high
resolution image from the low resolution image Il and a per pixel
degradation map ρ of same size:

I∗ = Fд(Il , ρ | λд). (3)

In the case of a single degradation kernel k , its latent representation
qk is repeated for each pixel location. If different kernels ki are used,
per pixel or per region, we apply the kernel mapping transformation
described above to each kernel separately and obtain the latent-
space representations qki that we assemble into the degradation
maps ρ. Since we supply the degradation information as spatial
feature maps, the kernel can vary in different parts of the image.
This lets us handle the case of composited content, a very important
part of real image-production pipelines.
The architecture of our generator is inspired by that of [Wang

et al. 2018]. We use a sequence of dense compression units as the

ACM Trans. Graph., Vol. 38, No. 6, Article 166. Publication date: November 2019.



166:4 • Victor Cornillère, Abdelaziz Djelouah, Wang Yifan, Olga Sorkine-Hornung, and Christopher Schroers

......

Unknown 
down-sampling

... ...

? Using a kernel close to the original 

Using a kernel far from the original 

Input image

(a)

(b)

?

?

Fig. 2. Overview. In blind super-resolution, the degradation kernel k applied on the high resolution image to obtain the low resolution image Il is unknown.
Our pipeline is duplicated for two different kernels (a) and (b): the degradation-aware generator (Fд ) computes a high resolution output according to the
provided blur kernel k . We note that a NN Fk is used to map the kernels to a low dimensional representation. The two kernels will result in different high
resolution estimates. The kernel (a) farther from the unknown original degradation leads to more artifacts. To detect this, we propose a kernel discriminator
network (Fd ) predicting the error due to using the incorrect kernel. By taking advantage of these two networks, we can express kernel estimation as finding the
blur kernel resulting in the least amount of errors and artifacts in the predicted high resolution image (See text for details). Photo Credits: Pixabay/pexels.com.

core of the generator. The network predicts a residual image that is
then added to a bicubicly upsampled image to produce the output I∗.
Training the generator can be formally expressed as

λ∗д , λ
∗
k = argmin

λд,λk
EI∼pI ,k∼pk

[
L
(
I ,Fд(Il , ρ | λд))

]
. (4)

During training, we consider a single degradation k for the entire
image which is randomly sampled among a set of realistic kernels.
We approximate the distribution of real images pI by random sam-
pling in a data set of high resolution images. We used the ℓ1 loss for
training but other loss functions can be similarly considered.

3.2 The Kernel Discriminator
If the degradation kernel is known, the previously described super-
resolution network can synthesize an estimate of the original high

resolution image. This information is however not available in a
blind setting and we observe that using the wrong kernel leads to
noticeable artifacts in the synthesis. Figure 2 illustrates the results
obtained using the generator with two different kernels. In the first
case, a kernel far from to the original is used. The resulting high
resolution image contains several artifacts. In the second case, the
difference with the original kernel is smaller and the generator is
able to recover a sharp image. In short, the generator results depend
on the correctness of the provided degradation prior.
To take advantage of this, we propose using a second network,

further referenced as the kernel discriminator, to estimate the errors
in the generated image I∗. We note δI the pixel-wise residual on the
synthesized high resolution image that should be predicted by the
discriminator:

δI = Fд(Il , ρGT | λд) − Fд(Il , ρ | λд), (5)
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Single Spatial Original Spatially varying degradation
Super-resolution result kernel adaptation high resolution Estimated & Ground truth

Fig. 3. Super-resolution with spatially varying degradation. In this example we consider a gaussian blur kernel with a standard deviation increasing
proportionally to the distance from the image center. Estimating a single kernel kernel for the entire image is not optimal, showing both over sharpening
artifacts (near the image center) and blurring (near the borders). In this case a spatially varying estimation of the kernel is required to achieve best results. In
addition to the output images, we provide a visualization of the estimated and ground truth degradation maps; Gray levels indicate standard deviation values.
Photo Credits: Ella Olsson/pexels.com.

where ρGT is the ground-truth degradation map used to generate
the low resolution image Il , while ρ is a degradation map that we
sample from our kernel distribution at training time or that we
optimize at test time.
The architecture of the discriminator is similar to that of the

generator. It takes as input the low resolution image Il and the
degradation map ρ. Instead of using the final output of the genera-
tor I∗, we provide the last feature map extracted by the generator
(denoted ϕl ):

δ∗I = Fd (Il ,ϕl , ρ | λd ). (6)

Using a fixed trained generator, we train the discriminator with the
same dataset of high resolution images.

λ∗d = argmin
λd

EI∼pI

[
L(δI ,Fd (Il ,ϕl , ρ | λd ))

]
. (7)

At test time, our goal is to find ρ such that δ∗I is as close to zero as
possible.

3.3 Optimizing for the Degradation Kernel
After defining the generator and the kernel discriminator in our
pipeline, we now have all the required elements for kernel estima-
tion. With the generator, we have an adaptable synthesis process
that is expected to produce the best results when providing the cor-
rect degradation operation. The kernel discriminator on the other
hand is trained to predict the errors that are present in the syn-
thesis and hence discriminate between the degradation kernels. It
will mostly identify regions with artifacts resulting from using the
wrong kernel which typically appear around object contours and
textured regions with high frequent details. This predicted residual
can not be used directly to produce a corrected high resolution im-
age as it will mostly smooth out the artifacts without producing a
sharp image. Instead we will use the predicted error as an objective
function that is minimized by finding the correct degradation kernel.

Formally, the kernel optimization can be written as

ρ∗ = argmin
ρ

������Fd (Il ,ϕl , ρ | λd )
������
1
, (8)

where the locally adaptive kernel latent map ρ is estimated for the
low resolution image Il . The advantage of this formulation is to allow
the estimation of a spatially varying degradation. In the simpler
case of a single blur kernel k for the whole image, the optimization
can be written with respect to a single latent representation qk .

There are several options to practically solve this problem. Here
we solve it in a two-stage approach. As the evaluation of equation 6
is fast, we first sample uniformly the kernel space and evaluate
the error for each. The kernel with the lowest error is selected as
starting value ρ, which is further optimized in the second stage of
our procedure. In this stage, we optimize kernel latents through an
iterative procedure where gradient descent is applied on the latents
according to

ρ∗ = ρ − η∇ρL(Il , ρ). (9)
L(Il , ρ) corresponds to the loss function defined by equation 8. This
is similar to the strategy used for model training and the weights
η to be applied on the gradients are obtained from the Adam op-
timizer [Kingma and Ba 2014]. The optimization can be done in
several configurations. We can have a single degradation kernel for
the whole image or have one kernel per pixel in the image. This lets
us handle the case of spatially-variant degradations. We can also
constrain the optimized kernel to remain in our kernel space (see
section 4.1). For all the results in the paper, we perform the local
optimization per image patch, as we found it to be more robust.

Figure 3 shows an image down sampled with a spatially varying
degradation. We used a gaussian kernel with a standard deviation
proportional to the distance from the image center. In this case,
estimating a single kernel for the image leads to both blurring and
over sharpening artifacts. A spatially adaptive estimation of the
kernel is necessary to achieve good results. Although closely resem-
bling the ground truth, the estimated degradation map has some

ACM Trans. Graph., Vol. 38, No. 6, Article 166. Publication date: November 2019.



166:6 • Victor Cornillère, Abdelaziz Djelouah, Wang Yifan, Olga Sorkine-Hornung, and Christopher Schroers

differences. This is expected as correctly modeling the blur kernel
is only considered an intermediate step; The kernel estimation may
be incorrect as long as it does not impact the final image quality.

4 PRACTICAL APPLICATIONS OF BLIND SR
The blind approach that we propose facilitates the usage of SR in
practical scenarios. First, we describe how we adapt the parame-
terization of the kernel space to address typical down sampling
operations (sec. 4.1). Then we show how we enable both local and
global user fine-tuning (4.2) and how our method can be applied to
composited content (sec. 4.3).

4.1 Kernel Space Representation
As expressed by Equation 1, the image degradation process is de-
scribed as a blurring operation followed by a downsampling. The
blur kernel used has a great influence on the final result and being
able to handle a wide range of kernels translates to a much more
general SR algorithm that works optimally in more cases. This blur-
ring operation can be implicit, for example in the case of raw camera
footage or in rendered content. But it can also happen as part of the
visual effects pipeline. In this case, the blurring operation is often
selected by an artist from a common set of filtering operations based
on visual preference.
Our objective is to adapt to these different situations and in our

tests, we select a set of base kernels related to common scaling
operations available in most image and video processing software.
Specifically these are: impulse, disk, bicubic and Lanczos. To further
expand the capacity of the kernel space, we convolve these base
kernels with a 2d anisotropic Gaussian. Figure 4 shows several
samples from the considered kernel space.
As described in Section 3.1, we map the degradation kernel to

a latent space representation using a fully-connected neural net-
work (NN). We chose a neural network over the PCA favored by
Zhang et al. [2018d]. As opposed to separately computing basis
vectors that allow to minimize the kernel reconstruction error given
a lower dimensional description, we jointly learn a specialized map-
ping to a compact representation that helps the upscaling task. As
such, our mapping can extract more relevant information from the
kernel. We show the difference between the two approaches in Fig-
ure 5 when considering two extreme kernels. On the first line, a very
narrow impulse kernel is used to down sample the image whereas in
the second line a much larger kernel was used. This second kernel
is obtained by increasing the Gaussian standard deviations. Despite
using the same generator architecture and training procedure, we
can see a clear difference between the two options. The network
using the PCA reduction performs worse in the extreme case of the
extended kernel, while the NN mapping result remains sharp.

4.2 User Interaction
Once the optimization process has determined which kernel pro-
duced the best looking image, it is still possible for a user to modify
its parameters to keep improving the visual quality of the result.
This can be done since we define our kernels as convolutions of
a base kernel with an anisotropic Gaussian kernels which itself
is defined by three parameters: two standard deviations and one

Samples from the kernel space
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Fig. 4. Kernel Space. The kernels we use are convolutions of classic filters
with anisotropic Gaussians of varying standard deviations and orientations.
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Fig. 5. Comparison of PCA vs. NN kernel reduction. PCA reduc-
tion performs well for simple kernels but fails when handling more
complex degradations with more blurring. The neural network map-
ping performs much better in difficult settings. Photo Credits: Leonardo
Wong/unsplash.com.

orientation angle. The Gaussian kernel gives us more control over
the degradation and by acting on the standard deviations, a user can
modify the high resolution result and easily fine-tune its sharpness
both globally and locally.

We created a painting-like interface for refining our high resolu-
tion output locally. As shown in Figure 6, it is possible to "paint" the
desired local contrast levels. The orange zone in the first column
represents the brush stroke made by a user. We then increase the
standard deviation of the kernels in that orange zone before feeding
the degradation maps to the generator. This leads to an increased
sharpness of the result in that area. This effect is very visible on
the head of the parrot. It is also possible to decrease the standard
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Brush Stroke Default Output Manual fine-tuning

Fig. 6. Examples of user-controlled refinement of SR result. In the first
column, we see the selected regions for fine-tuning (in orange). By locally
increasing the standard deviation of the kernel provided to the generator,
we cause the SR output to be locally much sharper. Outside the brush stroke,
the image stays unchanged. Photo Credits: Andrew Li/unsplash.com.

deviation and make the image locally less sharp. Outside the brush
stroke, the image stays the same. The generator does not diffuse
local changes to other areas in the image.

4.3 Spatial Composition
Representing kernel information with spatial feature maps permits a
lot of freedom in adapting the image degradation locally. To illustrate
the advantage of this spatial adaptation, we compare our results
with the typical upscaling approaches used in a production pipeline
such as Nuke’s TVIScale. This is a total variation inpainting based
approach for upscaling. We also compute the results obtained using
an SR generator that does not have any information about the kernel
(referenced as No-Kernel Generator).

Figure 7 presents two compositing tests. The first sequence is
based on the sample project from the open source compositing
software Natron and the second uses images from the open-source
Blender movie Tears of Steel Our approach is able to locally adapt
the kernels and hence targets the case where the composition mask
is unknown. If the mask is provided, it can be used to optimize a
kernel for each region before combining them to produce the final
output. Comparisons with the different approaches are provided
for the zoomed in regions. The kernels estimated by our approach
using the masks are provided in the rightmost column.
We did not down sample the image in the case of the spaceship

and used the original frames. This is a concrete example of an image
source with unknown properties where our algorithm is able to re-
cover the kernel properties and produce good upscaling results both
on the foreground and the background of the image. In the second
scene, the main character is composited on a rendered background.
Each part of the image is down sampled independently according
to the mask. Here as well, our method produces the sharpest result.
It also manages to recover kernels very close to the ones we used.
These results show the benefits of using our locally adaptive SR
algorithm that recovers more details than classic upscaling tools or
the No-Kernel generator.

5 COMPARISONS AND DETAILED EVALUATION
We present a detailed evaluation of our approach and comparisons
with state of the art methods in blind SR. Both the generator and
the kernel discriminator have the same architecture based on the

super-resolution network proposed by [Wang et al. 2018] (see sup-
plemental material for details).

We train 3 type of generators. First a generic degradation aware
generator is trained for all the degradation kernels described in
Section 4.1. Second, a No-Kernel generator is trained on the same set
of degradations but without any information regarding the kernels.
This generator is our baseline to evaluate the importance of having a
degradation aware network. Finally, specialized degradation aware
generators are trained for each basic kernel category. For example,
the generator specialized in bicubic kernels is trained on a bicubic
kernel convolved with random anisotropic gaussians. After this, we
train 2 types of kernel discriminators, corresponding to the generic
and specialized degradation aware generators. The discriminators
are trained using the same procedure as their corresponding gener-
ators. The generator weights are kept constant while training the
discriminator. All our models are trained for 2× upscaling in 10 days
using the DIV2K [Timofte et al. 2017] dataset, which contains 800
high resolution images. During training, a blur kernel is randomly
sampled in the considered kernel space to obtain the low resolu-
tion image. For the quantitative evaluation, we used the BSD100
dataset [Arbelaez et al. 2010] and the Set14 [Zeyde et al. 2010]. All
quantitative evaluations using PSNR and SSIM as error measure are
conducted on the luminance channel as commonly done in existing
literature. In addition to this we use the perceptual error metric
(LPIPS) proposed by Zhang et al. [2018b].

Processing a Full-HD image with our x2 upscaling framework
and local patch optimization, on an NVIDIA GTX 1080Ti GPU, takes
around 30 seconds for the kernel grid search initialization and 2
minutes for the optimization process (50 iterations using Adam
optimizer with a learning rate of 0.1). We found the initial grid
search to be important to avoid local minima and maintain low
runtime. The actual SR generation process can be done at an almost
interactive rate. If we want to upscale a set of images from the same
source, we could estimate a kernel for one image and reuse it for
the others.

5.1 Qualitative evaluation
To showcase the benefits of our method, we selected a set of high
resolution images online and downsample them using classic ker-
nels. The obtained low resolution images are then upscaled using
different approaches (Fig. 8). Our algorithm achieves the best result
in all the considered cases. For example, the rocket illustration in the
first row was down sampled using an impulse kernel. All methods
generate more or less aliasing on the contours whereas ours is able
to avoid this while producing a sharper image. On the Taxi image,
a disk kernel was used and thus the details are blurred in a more
significant manner. We can see that our solution nicely recovers
the details of the numbers on the car speed dial. Using a bicubic
downscaling is the most advantageous setting for the other methods
but we can still see improvements as we are able to better recover
the freckles on the skin contrary to the No-Kernel generator that
over-smooths the details and the TVIScale that produces a noisier
image. On the last example, Temple, we are able to better reconstruct
the structure of the arcades and produce less aliasing in general.
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Ours - Full image Nuke TVIScale No-Kernel Generator Ours (w.o mask) Ours (w. mask) Kernels

Fig. 7. SR on composited content. We can see the interest of using our locally adaptive SR algorithm on these sequences combining real footage with
rendered content. In the case of the spaceship we used the original frames where the down sampling is unknown. In the second sequence, each image region
is down sampled independently according to the mask. Our approach is able to locally adapt kernel estimation and achieve better results than both TVIScale
and No-Kernel Generator. When the compositing mask is available, we estimate a single kernel for each region which results in slightly sharper images (more
visible on the spaceship). We provide the kernel estimated for each region using the mask in rightmost column. Photo Credits: Spaceship by Francois Grassard
(CC-BY) and Tears of Steel by (CC) Blender Foundation | mango.blender.org.

In Figure 9, we show 4× upscales of images taken with a DSLR
camera and a mobile phone. The input images have not been down-
scaled, so the degradation is unknown and derives from the cameras’
optics and imaging pipelines. Our upscaled results are sharper and
have fewer artifacts than those of a state-of-the-art SR method
trained to assume bicubic downsampling.

5.2 Comparisons with blind SR methods
We compare our approach with existing blind SR methods and
use the same test set as ZSSR [Shocher et al. 2018]. The authors
have graciously provided the low resolution images obtained by
downscaling the HR images using random Gaussian kernels. Please
refer to the original paper for details regarding the kernel generation.
In addition to ZSSR, the comparison also includes two other methods
that are state-of-the-art: BlindSR [Michaeli and Irani 2013] and
EDSR [Lim et al. 2017].
We present representative results in the visual comparison of

Figure 10. EDSR is trained for bicubic down sampling and thus

can not adapt to new degradation operations. ZSSR combines the
advantages of deep neural networks with the kernel estimation
from BlindSR. ZSSR improves over previous methods but requires
training a SR network for each image using the estimated kernel.
Our solution produces better results thanks to a more precise blur
kernel estimation and a more powerful degradation aware generator.
On the first row our, results are sharper while in the second we
also see that the produced high resolution image does not contain
aliasing artifacts contrary to ZSSR.

The quantitative evaluation in Figure 11 is using PSNR and SSIM
as error measure and shows the superiority of our solution by a
clear margin. In the blind setting we obtain more than 1db improve-
ment over the best performing approach ZSSR. We are even able to
outperform ZSSR results based on the ground truth kernel.

5.3 Detailed evaluation
We consider several standard filtering kernels — impulse, cubic,
Lanczos and disk — convolved with an anisotropic 2d Gaussian as

ACM Trans. Graph., Vol. 38, No. 6, Article 166. Publication date: November 2019.
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Fig. 8. Results on classic down-sampling kernels. For each row, the leftmost column indicates the kernel that was used to create the low-resolution
image. We include results from different approaches for visual comparison. This includes the most commonly used upscaling tool node in Nuke (Nuke
TVIScale). The NoKernel generator is a neural network trained for all down-sampling operations but without the knowledge of the kernel. Our approach
automatically estimates the kernel and outputs the best upscaling results on a large variety of content. Photo Credits (from top to bottom): Yuri_B/pixabay.com;
Pixabay/pexels.com; Benjamin Suter/unsplash.com; Dewang Gupta/unsplash.com.

illustrated in figure 4. In this detailed evaluation, our objective is to
understand the differences between a specialized neural network
and a more general one for both the blind and the non-blind settings.

We use the Set14 images and for each base kernel, sample several
parameters for the Gaussian. After down sampling, the images are
upscaled using the different generators in both blind and non-blind
settings. For reference we also provide results for the No-Kernel gen-
erator. The evaluation is presented in Figure 12 and uses PSNR and
the Learned Perceptual Image Patch Similarity (LPIPS) from [Zhang
et al. 2018b] as error measures. A higher PSNR is better while a
lower LPIPS is better.

We can extract several important pieces of information from these
results: First, comparing the results of the No-Kernel network with
the other columns, we can see that not using any kernel information
is detrimental in all cases. Information about the degradation helps
in every case (blind and non-blind) and both PSNR and LPIPS val-
ues show clear improvements. Second, our results when operating
with the kernel discriminator in a completely blind setting are close
to those obtained with knowledge of the ground-truth kernel. Fi-
nally, the generators specialized in one type of degradation perform
only slightly better than the generic network. We can note more
difference in the blind case for the most challenging kernel (Disk).
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Ours - Full image Bicubic ProSR [Wang et al. 2018] Ours

Fig. 9. SR results (4×) for non downscaled images. Our solution is able to achieve better results by reducing the artifacts present in the high resolution
images. Images in the first two rows are captured using a DSLR camera whereas the last rows correspond to mobile phone images.

In Figure 13, we consider the setting of explicit bicubic downsam-
pling on the input and compare our approach to methods specifically
trained for this case on the BSD100 data set. Since our focus was
to explore the blind setting, we have opted for using a significantly
condensed version of the ProSR architecture [Wang et al. 2018]. As
a result, there is a gap in PSNR compared to the original version
but also one order of magnitude less parameters. When comparing
our architecture once specifically trained for bicubic downsampling

without injecting degradation maps and once trained for the blind
case, we notice that both achieve a similar quality. This indicates that
the way we are making degradation information available to the net-
work does not have an impact on reconstruction quality. Note that
the number of parameters in the blind case is only higher because
we also count the number of parameters in the kernel discriminator
which is only used to estimate the kernel.
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Bicubic BlindSR EDSR ZSSR Ours GTruth

Fig. 10. Visual comparison with existing SRMethods. These images are taken from the dataset provided by [Shocher et al. 2018]. Our algorithm produces
the sharpest results of all the methods presented here. On the zebra image, we can also see that we restore strong edges correctly and avoid the aliasing
present in ZSSR result. Input images: Berkeley Segmentation Dataset.

Method PSNR SSIM

VDSR [Kim et al. 2016] 27.72 0.764
EDSR [Lim et al. 2017] 27.78 0.766
BlindSR [Michaeli and Irani 2013] 28.42 0.783
ZSSR (blind) [Shocher et al. 2018] 28.81 0.831
ZSSR (w. kernel) 29.68 0.841
Ours (blind) 29.92 0.846

Fig. 11. Quantitative evaluation. Our method consistently outperforms
other state-of-the-art algorithms on the BSD100 dataset downsampled with
random kernels introduced by [Shocher et al. 2018].

5.4 Limitations and Failure cases
The main limitation of the proposed approach is related to the
considered kernel space. The classical kernels we chose as basis
are kernels commonly used for image processing tasks, but it is
possible that the real kernel is far from this space. To investigate
this, we include two experiments with degradations not seen during
training; In the first, we use the Welch kernel which corresponds
to a degradation relatively close to our basis. In the second, we use
a kernel corresponding to motion blur, significantly different from
any degradation seen during training.

Figure 14 shows the results obtained when using theWelch kernel.
Although the generator was not trained on this particular degrada-
tion, the results are better than the no-kernel alternative and with
sharp details better restored. Figure 15 illustrates a much more chal-
lenging scenario corresponding to motion blur. In this case, even
using the ground truth kernel for the generator leads to strong ar-
tifacts. It is interesting to note that, as our discriminator goal is to

reduce artifacts in the image, even in this case the selected kernel
does not create artifacts and leads to a visually more pleasing image.

6 CONCLUSIONS
In this paper, we described a framework that is able to perform blind
SR in a completely automated way. One key aspect is the kernel
discriminator network that is able to analyze artifacts created by
a degradation-aware SR network. In addition to this, the proposed
optimization is able to estimate degradation both locally and globally.
This is beneficial from a practical point of view as we can address
upscaling composited content even in the case where the masks are
unavailable. Thanks to our parametrization of the kernel space, we
achieve even more flexibility by allowing local manual tuning of
the sharpness of the results.
Both qualitative and quantitative comparisons show the supe-

riority of the proposed solution over state-of-the-art methods in
several scenarios. The detailed evaluation showed that providing
information about the degradation only through the training data
is not sufficient to train a neural network that can adapt well. In
contrast to this, incorporating information about the kernel in the
model allows for good adaptation to all degradations observed in
the training data and works even reasonably well for unseen ones.
This ability to generalize and to automatically detect degradations
is an important step towards leveraging the full potential of deep
learning based upscaling in more practical scenarios. To push these
efforts even further in the future, other very relevant directions for
research include enabling arbitrary non integer scaling factors and
optimizing the network for efficiency gains.
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Degradation (a) No-Kernel (b) Type-specific (c) Generic (d) Type-specific (e) Generic
type (w. Kernel) (w. Kernel) (blind) (blind)

PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS

Impulse 31.42 0.145 32.77 0.105 32.80 0.104 31.88 0.118 32.00 0.122
Cubic 31.36 0.151 33.10 0.103 32.92 0.102 32.28 0.113 32.23 0.120
Lanczos 30.99 0.150 32.52 0.106 32.40 0.110 31.70 0.118 31.57 0.129
Disk 30.91 0.166 32.81 0.095 32.32 0.112 32.01 0.108 31.63 0.144

Fig. 12. Detailed SR evaluation.We performed a quantitative evaluation of different configurations with different types of kernels. All experiments were
done on the Set14 dataset. (a) Generator network with no knowledge of any degradation information. (b) Network specialized in a specific type of kernel with
knowledge of the ground-truth kernel. (c) Generic network with knowledge of the ground-truth kernel. (d) Kernel discriminator specialized in the specific type
of kernel in a blind setting where the ground-truth kernel is not given. (e) Generic kernel discriminator in a blind setting where ground-truth kernel is not given.

Method PSNR SSIM Parameters

RCAN [Zhang et al. 2018c] 32.46 0.903 ∼ 14M
ProSR [Wang et al. 2018] 32.34 0.902 ∼ 10M
EDSR [Lim et al. 2017] 32.32 0.901 ∼ 43M
VDSR [Kim et al. 2016] 31.90 0.896 ∼ 5M
Ours (bicubic) 31.35 0.891 < 1M
Ours (blind) 31.27 0.890 < 2M

Fig. 13. Comparison to non-blind super resolution methods.We have
used a significantly condensed version of the ProSR architecture. Therefore,
our PSNR is lower even if trained specifically for bicubic downsampling.
However, our blind approach achieves a similar quality as our generator
trained for bicubic downsampling.

Full Image No-Kernel Non-blind Blind

Fig. 14. Unseen kernel close to our basis. Although the Welch down-
sampling kernel was not used during training, the SR algorithm is able to
adapt to it and produce good results both in non-blind and blind setting, out-
performing the No-Kernel generator. Photo Credits: Jeebz K/unsplash.com
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