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Abstract

We supplement our paper Weighted Averages on Surfaces [1] with technical details, additional intuition,
and proofs related to Phong projection. We also show how our generalized barycentric coordinates reduce
to Moving Least Squares over Euclidean space. The motivation and applications of Phong projection are
discussed in the paper [1].

1 Phong projection

Let M = (V, E ,F) be a triangle mesh with vertices V ⊂ RD. Each vertex has an associated tangent
plane (taken e.g. from the Loop limit surface), represented by two basis vectors, which we assume to be
orthonormal. Consider a triangle with vertices v1,v2,v3 and denote the tangent planes at these vertices as
T1, T2, T3 ∈ R2×D. Let Ψ(ξ1, ξ2, ξ3) be an interpolated basis for the tangent plane at the point on the triangle
with barycentric coordinates ξ1, ξ2, ξ3.

The function Ψ : R3 → R2×D must continuously interpolate the tangent planes to the triangle interiors over
the entire mesh. Defining Ψ is a non-trivial task (which we will tackle later) because a tangent plane can
be specified using different bases, while the interpolant should be independent of this choice of basis and
also consistent on edges and vertices shared by multiple triangles. Once we do have such a Ψ, we can define
Phong projection, as in the paper:

Definition 1.1. A point p̂ = ξ1v1 + ξ2v2 + ξ3v3 on triangle t with vertices vi is a Phong projection of
p ∈ RD if:

Ψ(ξ1, ξ2, ξ3) (ξ1v1 + ξ2v2 + ξ3v3 − p) = 0, (1)

ξ1 + ξ2 + ξ3 = 1, (2)

ξi ≥ 0. (3)

Definition 1.2. The Phong projection of a point p onto a triangle mesh M is the closest Phong projection
with respect to every triangle of M.

Note that the Phong projection onto even a single triangle is generally not unique. Consider the affine
subspace through v1 orthogonal to T1. All points in that subspace project to v1. If the intersection between
this subspace and the analogous one for v2 is not empty (as will generally happen for D ≥ 4), both v1 and
v2 will be Phong projections of points in the intersection. In the paper, we provide experimental evidence
that for reasonable meshes and points p close to the mesh, this does not happen; when it does, we break ties
arbitrarily. Also, unlike Euclidean projection, Phong projection might not exist at all. In Section 3 of this
document, we give an outline of how one might prove that for well-tessellated meshes Phong projection is
guaranteed to exist for points p close to the mesh.

The remainder of this document is organized as follows. In Sections 1.1-1.4 we deal with tangent plane
interpolation and define Ψ, first for mesh edges and then for triangle interiors. Section 2 shows that Ψ is
continuous under some mild conditions. In Section 3 we give an informal sketch of how to prove that the
Phong projection based on Ψ is well-defined. Throughout these sections, we use some simple algebraic results;
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we concentrate all these auxiliary propositions and their proofs in Section 4 in order to avoid clutter in the
exposition. Finally, in Section 5 we show the equivalence between our generalized barycentric coordinates
(see Section 3.4 in the paper) and Moving Least Squares when working in Euclidean spaces.

1.1 Plane representation

We now discuss how to work with planes in a D-dimensional space, each represented by a basis encoded in
a 2-by-D matrix.

Definition 1.3. Let T,K ∈ R2×D be two rank-2 matrices. If there exists a non-singular matrix A ∈ R2×2

for which K = AT , then T and K represent the same plane. We call such pairs of 2-by-D matrices equivalent
and write T ≡ K.

If T and K are equivalent and each has orthonormal rows, the matrix A relating them is orthogonal.

Definition 1.4. For T ∈ R2×D, we denote by Ort(T ) the nearest orthonormal basis to T , i.e.,

Ort(T ) = argmin
B∈R2×D :BBT =I

‖T −B‖.

In the definition above and for the remainder of this document, the matrix norm ‖·‖ stands for the Frobenius
norm, unless explicitly stated otherwise.

Definition 1.5. If T and K both have rank 2, we measure the distance between the planes they represent as

d(T,K) = min
A∈O(2)

‖Ort(T )−AOrt(K)‖.

Letting T ′ = Ort(T ) and K ′ = Ort(K), we show in Proposition 4.4 that at the minimum, A = Ort(T ′K ′T )
and that this distance is equivalent up to a constant to the more standard projection operator distance
‖T ′TT ′ −K ′TK ′‖ (Propositions 4.6 and 4.7).

1.2 Interpolation requirements

The interpolation operator Ψ needs to satisfy some simple conditions for the interpolation to work. Given
barycentric weights Ξ = (ξ1, ξ2, ξ3), where ξ1 + ξ2 + ξ3 = 1, ξi ≥ 0, we want to find a blended plane
Ψ(ξ1, ξ2, ξ3) ∈ R2×D such that:

Interpolation at vertices. Ψ(1, 0, 0) ≡ T1, Ψ(0, 1, 0) ≡ T2, Ψ(0, 0, 1) ≡ T3.

Interpolation at edges. For ξ1, ξ2 ≥ 0, ξ3 = 0, Ψ(ξ1, ξ2, ξ3) does not depend on T3 or v3 (it depends only
on T1, T2, v1 and v2). Same for the other two edges of the triangle and in general for each mesh edge.

Continuity. While the basis interpolation Ψ(ξ1, ξ2, ξ3) does not have to be continuous, the corresponding
planes do. Formally, continuity at Ξ is:

∀ε > 0 : ∃δ : ∀Ξ′ : ‖Ξ′ − Ξ‖ < δ =⇒ d(Ψ(Ξ′),Ψ(Ξ)) < ε.

The problem with defining Ψ(ξ1, ξ2, ξ3) = ξ1T1 + ξ2T2 + ξ3T3 is that the blend depends on how the bases of
the tangent planes are chosen (it may lead to results that belong to different equivalence classes) and can
also lead to singularities. The goal is to fix this by choosing the bases intelligently. One cannot choose them
globally due to hairy ball theorems, so the bases have to be different for every triangle. The difficulty then
is keeping the blending consistent across edges. It is also possible to define a blend using the natural metric
on the Grassmannian, but the resulting computations are complicated and expensive; we therefore choose to
linearly blend bases.
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Figure 1: The planes at v1 and v2 are represented by two orthonormal bases T1 and T2. The orthogonal
matrix R12 transforms T1 in-plane, relative to T2. Also, both bases T1 and T2 can be simultaneously rotated
in-plane by the same orthogonal matrix E12. R12 and E12 are degrees of freedom we can play with to optimize
our tangent plane blending Ψ. We choose R12 such that it transforms T1 to be as close as possible to T2 and
we also pick E12 to obtain a well-defined blend within the triangle, as described in Section 1.4.

1.3 Interpolation on edges

We construct Ψ in two steps: first, we define an interpolant on edges only, and then extend it to the interiors
of the triangles.

We start by defining the blends on the edges, i.e., when one of ξ1, ξ2, or ξ3 is zero. To have consistent
interpolation between triangles that share an edge, we must carefully pick the bases to blend. Assume,
without loss of generality, that ξ3 = 0. We then define Ψ as a blend between T1 and T2 as:

Ψ(ξ1, ξ2, 0) = ξ1R12T1 + ξ2R21T2, (4)

where R12 and R21 are orthonormal 2-by-2 matrices. Using R12 and R21 effectively allows us to pick bases
for T1 and T2 (see Definition 1.3) that can be linearly blended without introducing singularities. Note that
R12 and R21 are associated with an edge, so Ψ will behave consistently on both triangles that share that
edge.

We observe that having both R12 and R21 is redundant since:

Observation 1.1. Let Ti for i = 1..n be bases (not necessarily orthonormal) for planes and let A ∈ R2×2

be a nonsingular matrix. Let ξi be scalar weights. Then we can multiply every Ti by A on the left without
changing the plane: ∑

i

ξiATi = A
∑
i

ξiTi ≡
∑
i

ξiTi.

Corollary 1.1. If R1, R2 ∈ R2×2 are orthogonal matrices and ξ1, ξ2 > 0, ξ1 + ξ2 = 1 then

ξ1R1T1 + ξ2R2T2 ≡ ξ1RT
2 R1T1 + ξ2T2.

We can then assume without loss of generality that R21 = I and focus on choosing R12. We choose it to
minimize the difference between the bases (see Figure 1):

R12 = Ort(T2T
T
1 ). (5)

This choice is motivated by the fact that linearly interpolating bases that are close will always generate a
valid basis. Proposition 4.3 shows that this choice is unique for sufficiently close planes, and then the blend
on edges is independent of the bases chosen for the tangent planes.

Definition 1.6. For ξ1, ξ2 ≥ 0, ξ1 + ξ2 = 1, we choose the blend Ψ(ξ1, ξ2, 0) such that

Ψ(ξ1, ξ2, 0) ≡ ξ1 Ort(T2T
T
1 )T1 + ξ2T2.

Proposition 1.1. The plane defined by Ψ(ξ1, ξ2, 0) does not depend on how T1 and T2 are chosen.
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Proof. Recall that we assume that the tangent plane bases at vertices are always chosen to be orthonormal,
hence it suffices to check that Ψ always remains in the same equivalence class when T1 and T2 are transformed
by some in-plane rotations or reflections. Let X1 and X2 be arbitrary 2-by-2 orthogonal matrices. We have
T1 ≡ X1T1, T2 ≡ X2T2. Let us check the blend (Definition 1.6) using these bases:

ξ1Ort
(
(X2T2)(X1T1)T

)
(X1T1) + ξ2(X2T2)

Cor. 1.1≡ ξ1X
T
2 Ort

(
X2T2T

T
1 X

T
1

)
X1T1 + ξ2T2

Prop. 4.1
=

= ξ1X
T
2 X2Ort(T2T

T
1 )XT

1 X1T1 + ξ2T2 = ξ1Ort(T2T
T
1 )T1 + ξ2T2 ≡ Ψ(ξ1, ξ2, 0).

1.4 Interpolation on the triangle interior

So now we know how to blend along edges in a way that only depends on the tangent planes at the edge
vertices. We need to extend the blend to the triangle interior in a continuous way. As before, let T1, T2, and
T3 be the original orthonormal bases for the tangent planes at the triangle vertices. Let

R12 = Ort(T2T
T
1 ), R23 = Ort(T3T

T
2 ), R31 = Ort(T1T

T
3 ).

such that

Ψ(ξ1, ξ2, 0) ≡ ξ1R12T1 + ξ2T2, Ψ(0, ξ2, ξ3) ≡ ξ2R23T2 + ξ3T3, Ψ(ξ1, 0, ξ3) ≡ ξ3R31T3 + ξ1T1.

To define the blend of all three tangent planes in the triangle interior, we extend each edge blend to the
interior separately and then blend the three extensions using the weights 1/ξ1, 1/ξ2 and 1/ξ3 (see Figure 2).

To do this, we first need to blend each edge blend with the third tangent plane. For both this blend and the
blend between the three extensions, the bases once again need to be consistent, or in other words, the result
should not depend on the choice of the bases for T1, T2, T3.

Note that in Definition 1.6 we have a degree of freedom per edge in form of a transformation by an orthogonal
matrix, i.e., we defined Ψ(ξ1, ξ2, 0) up to the equivalence class. Let us denote these degrees of freedom as
orthogonal matrices E12, E23, E31 ∈ R2×2 for each edge (see Figure 1).

Definition 1.7. Edge blend:
Ψ(ξ1, ξ2, 0) = ξ1E12R12T1 + ξ2E12T2,

where the choice of the orthogonal matrix E12 ∈ R2×2 will be explained below (in Definition 1.9). The
definitions for the other edge blends are analogous.

Ψ31

Ψ23 Ψ

v1

v2

v3

Ψ12

Figure 2: We define a continuous blend for each pair of adjacent triangles (flaps) on the mesh (left). To
compute Ψ over the black triangle, we blend the interpolants on the overlapping flaps using the weights 1/ξ1,
1/ξ2 and 1/ξ3 (right).
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Definition 1.8. Extension of a single edge blend to the triangle interior:

Ψ12(ξ1, ξ2, ξ3) = ξ1E12R12T1 + ξ2E12T2 + ξ3
1

2
(E23 + E31R31)T3.

The definitions for Ψ23 and Ψ31 are similar.

We choose the matrices E12, E23, E31 so that the matrices: E12R12T1, E12T2, E23R23T2, E23T3, E31R31T3,
E31T1 are all as close to each other as possible, such that a linear blend between them would be non-singular.

Definition 1.9. Denote A1 = E12R12T1, A2 = E12T2, A3 = E23R23T2, A4 = E23T3, A5 = E31R31T3,
A6 = E31T1. We choose the in-plane transformation per edge as follows:

E12, E23, E31 = argmin
E12,E23,E31∈O(2)

∑
1≤i<j≤6

‖Ai −Aj‖2. (6)

When two of the E’s are fixed, minimizing Equation (6) for the third can be written as a Procrustes problem
and solved with the SVD. We can therefore solve for the E’s iteratively, one at a time, always decreasing the
energy and converging in a few iterations. These calculations need to be performed once per mesh, not per
projection.

Definition 1.10. Final blend:

Ψ(ξ1, ξ2, ξ3) =
ξ1ξ2ξ3

ξ1ξ2 + ξ2ξ3 + ξ3ξ1

(
1

ξ3
Ψ12(ξ1, ξ2, ξ3) +

1

ξ1
Ψ23(ξ1, ξ2, ξ3) +

1

ξ2
Ψ31(ξ1, ξ2, ξ3)

)
.

The weights in the final blend are chosen as (normalized) 1/ξi, so that we interpolate the edge blends and
obtain continuity of Ψ on edges and vertices, as discussed in Section 2. The choice of E’s above makes the
final result independent of how the original Ti’s are chosen and ensures there are no singularities in the blends
under reasonable assumptions (shown in Theorem 2.1).

2 Continuity of interpolation

While we cannot prove that our plane interpolation is well-defined and continuous unconditionally, we can
show that as long as the mesh is a good approximation of a smooth surface, this will be the case.

For a C1 surface embedded in RD, the map that takes a point on the surface to its tangent space is continuous
in the standard projection operator distance metric and therefore, by Propositions 4.6 and 4.7, in our metric
d (see Definition 1.5). Any such surface therefore admits a sufficiently dense triangulation, so that for any
triangle, d(Ti, Tj) < 1/

√
33. We expect that much weaker assumptions are possible: we do not attempt to

derive the tightest result.

The interpolant over each mesh edge is by construction a linear blend between T1 and AT2 where A is the
orthogonal matrix that minimizes ‖T1 −AT2‖. By Proposition 4.3, A is unique.

Proposition 1.1 shows that the blended plane does not depend on how T1 and T2 are chosen. Therefore, the
interpolated planes over triangles match up on mesh edges and we only need to prove continuity over a single
triangle.

Theorem 2.1. If for a triangle, d(Ti, Tj) < α, where α = 1/
√

33, then the interpolated plane defined by
Ψ(Ξ) is continuous over the set of convex barycentric weights Ξ.

Proof. Our blend is a convex combination of six bases: A1, . . . , A6 (see Definitions 1.9-1.10). The blending
weights vary continuously with Ξ except at the triangle vertices (when two out of three ξ’s are zero). We
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therefore need to show two things: (1) The planes are continuous at vertices; (2) The plane corresponding
to the convex combination of the bases is continuous in the blending weights.

Part 1: We show that Ψ(Ξ) approaches the plane of T1 as Ξ → (1, 0, 0) (the other vertices follow by
symmetry). The final blend is a convex combination of Ψ12, Ψ23, and Ψ31, and each of these is a convex
combination of in-plane rotated bases T1,T2, and T3. As ξ2 and ξ3 approach zero, the coefficients on rotated
bases T2 and T3 approach zero in each of the intermediate blends Ψ12, Ψ23, Ψ31 and therefore in the final
blend. The coefficient on Ψ23, ξ2ξ3/(ξ1ξ2 +ξ2ξ3 +ξ3ξ1) also approaches zero. As ξ2 and ξ3 approach zero, the
final blend therefore gets arbitrarily close (in the Frobenius norm) to some convex combination of E12R12T1

and E31T1. Any convex combination of these bases represents the plane T1.

Part 2: The blended basis Ψ(Ξ) is a continuous in Ξ (except at the vertices, with which we have just dealt),
so the only way the resulting plane can fail to be continuous is if some blended basis is rank-deficient. To
show this cannot happen, we need to show that no convex combination of the chosen bases can be rank-
deficient. Proposition 4.2 shows that the distance from the matrix A1 (which has orthonormal rows) to
the nearest rank-deficient matrix in the Frobenius norm is at least 1. We show that under our assumption,
∀i ‖A1 − Ai‖ < 1 and therefore the distance to the blend in the Frobenius norm is smaller than 1, so the
blend cannot be rank-deficient.

We bound the energy achieved in the minimization (6) when solving for the E’s.
The energy attained by the optimization is going to be no greater than with
the following assignment of E’s: Setting E12 = I, E23 = RT

23, and E31 = R12,
we get A2 = A3 and A1 = A6. We also have, ‖A1 − A2‖ = d(T1, T2) < α and
similarly ‖A3 − A4‖ < α and ‖A5 − A6‖ < α. Using the triangle inequality of
the Frobenius norm, we have ‖A4−A6‖ < 2α, ‖A1−A4‖ < 2α, ‖A2−A5‖ < 2α,
and ‖A4 −A5‖ < 3α, etc. Adding up the energy terms, we get∑
1≤i<j≤6

‖Ai−Aj‖2 < (12 + 12 + 22 + 12 + 02 + 02 + 12 + 22 + 12 + 12 + 22 + 12 + 32 + 22 + 12)α2 = 33α2 = 1.

Therefore, each individual ‖A1 −Ai‖ < 1.

3 Existence of Phong projection

Although it is possible to construct examples where Phong projection does not exist (see Figure 5 in the
paper) we believe it is possible to show that for well-tessellated meshes and for points within (Euclidean)
distance ε of the mesh, a Phong projection always exists. The proof strategy could be to focus on the nearest
one-ring to the projection point, construct a continuous map from that one-ring to itself whose fixed points
are solutions to Equation (1), and use Brouwer’s fixed point theorem to deduce the existence of a fixed point.
Here is a more detailed informal line of argument:

1. Assume M is tessellated so that for each vertex v with tangent plane T , the distance d(T, T ′) < α
whenever T ′ is the tangent plane of a vertex adjacent to v or the plane of a triangle adjacent to v.

2. Let p ∈ RD be the point we wish to project onto M and let p′ be its Euclidean projection onto M;
assume ‖p− p′‖ < ε.

3. Take the barycentric coordinates of p′ on its mesh face (if it is on an edge or a vertex, it does not
matter which face) and let v be the mesh vertex with the largest barycentric coordinate.

4. Let Ov be v’s one-ring (valence k). Let Ψ be a plane in the range of the interpolant over Ov. Let
PΨ : Ov → R2 be the projection of Ov onto the plane Ψ through p. Because Ψ is in the range of the
interpolant, it is close to the triangle planes and tangent planes of Ov. For a fixed Ψ, PΨ is therefore a
homeomorphism of Ov with a polygon in R2. Moreover, PΨ is continuous in Ψ (as Ov varies) and has
a continuous inverse over Ψ’s image.
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5. Consider the map M : Ov → Ov that takes a point x on the one-ring and maps it to P−1
Ψ(x)(p), where

Ψ(x) is the interpolated tangent plane at x. For sufficiently small ε, p is in the image of PΨ and M is
well-defined. By Theorem 2.1 and by construction of PΨ, this map is continuous.

6. Apply Brouwer’s fixed point theorem toM : there exists some x, for which x = P−1
Ψ(x)(p), or, equivalently

Ψ(x) · (x− p) = 0. Therefore x satisfies the condition for being a Phong projection.

4 Useful results

Below, we use that the Frobenius norm is submultiplicative, namely that for any two matrices A and B that
can be multiplied, ‖AB‖ ≤ ‖A‖‖B‖. The Frobenius norm is rotation-invariant, meaning that if RTR = I,
then ‖RA‖ = ‖A‖. One of the implications is that if A is an orthonormal 2-by-D basis, then for any matrix
or vector B (of height D), ‖AB‖ ≤ ‖B‖.

Proposition 4.1. Let R,Q be (square) orthogonal matrices and T an arbitrary matrix, such that RT and
TQ are valid multiplications. Then Ort(RT ) = ROrt(T ) and Ort(TQ) = Ort(T )Q.

Proof.

‖RT −B‖ = ‖R(T −RTB)‖ = ‖T −RTB‖ =⇒ min
BBT =I

‖RT −B‖ = min
BBT =I

‖T −RTB‖ = min
KKT =I

‖T −K‖,

where we substituted K := RTB. Hence the minimum energy attained by K = Ort(T ) and B = Ort(RT ) is
the same, and B = RK. A similar argument holds for right multiplication Ort(TQ) = Ort(T )Q.

We now show that orthogonal matrices and rank-deficient matrices are never close. We use this to argue that
if some matrix is close to an orthogonal matrix, it cannot be singular.

Proposition 4.2. Given an m-by-n matrix R (with m ≤ n) such that RRT = I and a rank-deficient m-by-n
matrix A, the distance between them in the induced 2-norm and therefore the Frobenius norm is at least 1.

Proof.
‖R−A‖2 = ‖R−A‖2 · ‖RT ‖2 ≥ ‖I −ART ‖2 ≥ ‖xT I − xTART ‖ = ‖x‖ = 1,

where x is a unit m-vector such that ATx = 0. Recall that ‖M‖2 ≤ ‖M‖F for any matrix M .

The next propositions show that aligning bases of different planes is well-defined if they are not too far apart.

Proposition 4.3. Let T and K be orthonormal 2-by-D bases. If ‖TTT −KTK‖ < 1 (i.e., the planes they
represent are not too far apart) then TKT has rank 2.

Proof. Using that multiplication by an orthonormal basis does not increase the Frobenius norm:

1 > ‖TTT −KTK‖ ≥ ‖TTTTTT − TKTKTT ‖ = ‖I − TKT (TKT )T ‖.

Since I is orthogonal, by the converse of Proposition 4.2, TKT (TKT )T and therefore TKT must have full
rank.

It is well-known that Ort(A) is the orthogonal matrix in the polar decomposition of A. If A has full rank,
Ort(A) is unique. Therefore, by Proposition 4.3, for sufficiently close planes, Ort(TKT ) is well-defined.

Proposition 4.4. If T and K are orthonormal 2-by-D bases, argminA∈O(2) ‖T −AK‖ = Ort(TKT ).
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Proof. For A ∈ O(2),

‖T −AK‖2 = tr
(
(T −AK)T (T −AK)

)
= tr

(
TTT − 2KTATT +KTATAK

)
= c− 2tr

(
KTATT

)
,

where c = tr
(
TTT +KTK

)
does not depend on A. By the same manipulation,

‖TKT −A‖2 = c′ − 2tr
(
ATTKT

)
= c′ − 2tr

(
KTATT

)
(where c′ = tr

(
KTTTKT + I

)
again does not depend on A) so optimizing ‖T −AK‖ over O(2) is the same

as optimizing ‖TKT −A‖ over O(2), the solution to which is given by Ort(TKT ) by definition.

Proposition 4.5. The distance d(T,K) is a metric on orthonormal bases modulo ≡.

Proof. Clearly, d is nonnegative and d(T,K) = 0 if and only if T ≡ K by definition. Symmetry follows from
rotation-invariance of the Frobenius norm: ‖T −AK‖ = ‖ATT −K‖, so if A attains the minimum for d(T,K)
then AT attains the minimum for d(K,T ). It remains to show the triangle inequality. For some A and A′,

d(T,K) + d(K,M) = ‖T −AK‖+ ‖K −A′M‖.

Then
d(T,K) + d(K,M) = ‖T −AK‖+ ‖AK −AA′M‖ ≥ ‖T −AA′M‖ ≥ d(T,M).

Now we can show in the following two propositions that the projection operator distance ‖TTT −KTK‖ and
our d(T,K) are equivalent up to a constant.

Proposition 4.6. If T and K are orthonormal 2-by-D bases,

d(T,K) ≥ 1

2
‖TTT −KTK‖.

Proof. We need to show that for any orthogonal 2-by-2 matrix A, 2‖T −AK‖ ≥ ‖TTT −KTK‖. Because the
Frobenius norm is rotation-invariant, we have ‖T −AK‖ = ‖ATT −ATAK‖ = ‖TTA−KT ‖. Multiplication
by a 2-by-D orthonormal basis does not increase the norm, so:

‖T −AK‖ ≥ ‖TTT − TTAK‖, ‖TTA−KT ‖ ≥ ‖TTAK −KTK‖.

Adding these inequalities and using the triangle inequality, we obtain:

2‖T −AK‖ ≥ ‖TTT − TTAK‖+ ‖TTAK −KTK‖ ≥ ‖TTT −KTK‖.

Proposition 4.7. If T and K are orthonormal 2-by-D bases,

d(T,K) ≤
√

2‖TTT −KTK‖.

Proof. By proposition 4.4, d(T,K) = ‖T − Ort(TKT )K‖. Because T is orthonormal, multiplication by it
cannot increase the norm, so ‖TTT −KTK‖ ≥ ‖T − TKTK‖. Therefore, it suffices to show that

‖T −Ort(TKT )K‖2 ≤ 2‖T − TKTK‖2. (7)

We write the left hand side in terms of traces, using that tr(TTT ) = 2 and letting UΣV T be the SVD of
TKT :

‖T −Ort(TKT )K‖2 = tr
(
(T −Ort(TKT )K)(T −Ort(TKT )K)T

)
=

= tr
(
TTT − 2Ort(TKT )KTT + Ort(TKT )KKT Ort(TKT )T

)
=

= 4− 2tr(Ort(TKT )KTT ) = 4− 2tr(UV TV ΣUT ) = 4− 2‖Σ‖1
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Similarly, with the right hand side of (7):

2‖T − TKTK‖2 = 2tr
(
(T − TKTK)(T − TKTK)T

)
= 2tr

(
TTT − 2TKTKTT + TKTKKTKTT

)
=

= 4 + 2tr
(
−2TKTKTT + TKTKTT

)
= 4− 2tr

(
TKTKTT

)
= 4− 2‖Σ‖2.

The singular values of T and KT are no greater than one and therefore, the singular values of TKT are no
greater than one. This implies that 4− 2‖Σ‖1 ≤ 4− 2‖Σ‖2 as needed.

5 Moving least squares and our weights

Given n points y1, . . . ,yn in RD and an n-by-n diagonal matrix of weights D, our generalized barycentric
coordinates w at the origin (without the projection constraint) are defined as the argmin of ‖Dw‖2 subject
to Yw = 0 and 1Tw = 1, where 1 is an n-by-1 matrix of ones, Y is a D-by-n concatenation of yi’s. Letting
q = Dw, the objective becomes ‖q‖2 and the constraint becomes(

Y
1T

)
D−1q =

(
0
1

)
. (8)

Solving the constrained minimization is equivalent to finding the minimum-norm solution of the linear system
defined by the constraints: w = D−1((YT 1)TD−1)+(0T 1)T , where (·)+ is the pseudoinverse. This is just
the last column of D−1((YT 1)TD−1)+.

Given values zi associated with points yi, the moving least squares (with a linear basis) interpolant at y = 0
is the value of the planar function a+ yTb that minimizes the energy:

n∑
i=1

φ(yi)
2
(
a+ yTbi − zi

)2
where φ(y) is a kernel function, like φ(y) = 1/‖y‖2. Written in matrix form, the energy is:

‖D−1
(
YTb + 1 · a

)
−D−1z‖2

where z is an n-by-1 stack of zi’s, and D is a diagonal matrix of 1/φ(yi)’s. The solution is(
b
a

)
= (D−1(YT 1))+D−1z.

At 0, the value of a + yTb is just a, so the weights on z are the last row of (D−1(YT 1))+D−1. This is
exactly the transpose of our weights.
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