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Fig. 1. The pipeline of our approach. Starting from a 3D model, the user decomposes the shape into topological cylinders. Our algorithm automatically
produces a single continuous curve on the shape that spirals along the cylinders. It proceeds to cut the shape along the curve and creates a developable surface
that can be trivially unfolded into a single 2D shape – the so called zippable. Based on the flattening, plans for laser cutting it from fabric are generated.
Finally, we attach a zipper with a single slider to the boundary of the zippable. Zipping it up reproduces a faithful approximation of the input model.

Fabrication from developable parts is the basis for arts such as papercraft and
needlework, as well as modern architecture and CAD in general, and it has
inspired much research. We observe that the assembly of complex 3D shapes
created by existing methods often requires first fabricating many small parts
and then carefully following instructions to assemble them together. Despite
its significance, this error prone and tedious process is generally neglected in
the discussion. We present the concept of zippables – single, two dimensional,
branching, ribbon-like pieces of fabric that can be quickly zipped up without
any instructions to form 3D objects. Our inspiration comes from the so-
called zipit bags [zipit 2017], which are made of a single, long ribbon with
a zipper around its boundary. In order to “assemble” the bag, one simply
needs to zip up the ribbon. Our method operates in the same fashion, but
it can be used to approximate a wide variety of shapes. Given a 3D model,
our algorithm produces plans for a single 2D shape that can be laser cut
in few parts from fabric or paper. A zipper can then be attached along the
boundary by sewing, or by gluing using a custom-built fastening rig. We
show physical and virtual results that demonstrate the capabilities of our
method and the ease with which shapes can be assembled.
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1 INTRODUCTION
Representing shapes using developable surfaces is a problem with
numerous applications, ranging from recreational activities like
papercraft and plush toy fabrication, to large scale industrial design
and modern architecture. In this paper we introduce the concept of

Fig. 2. The star model fabricated with our fastening rig. The insets on the
left and in the middle show the developable model from a front and side
perspective. Note how the fabricated star perfectly resembles the predicted
shape. The segmentation is shown in the top right corner; below it a visual-
ization of the zipper tape and the flattened zippable. The physical result has
a height of 27 cm.
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zippables – two dimensional, branching, ribbon-like pieces of fabric
that can be zipped up to form 3D shapes. Our interest in this problem
is inspired by a product commercially known as the zipit bag [zipit
2017]. This bag is made from a single, long piece of zipper. When
zipped up, the ribbon folds and wraps around to form a simple bag.
It takes only a few seconds to zip up and down, and no instructions
are necessary. The simplicity of this concept immediately propelled
us to ask whether this idea can be employed and generalized to
facilitate the fast fabrication of arbitrary shapes. To this end, we
devise a computational method to create a developable shape that
approximates a given target 3D model when zipped up; see, e.g.,
Fig. 1 and the accompanying video. Our approach generalizes the
simple straight ribbons that make up the zipit bags by allowing the
zippables to turn, have varying width, and branch (see Fig. 2, bottom
right inset).

We approach the problem in two stages. First, we compute a single
curve on the surface, which represents the zipper-curve, i.e., the 3D
path that the zipper should take. We then approximate the original
surface geometry by a single developable surface – the zippable –
whose boundary interpolates the zipper-curve (see Figures 2 and
4). Since resulting shape is largely determined by the first stage,
several considerations must be taken into account when planning
the zipper-curve: first, it should cover the surface as uniformly as
possible, in order to get a uniform approximation. Equivalently, the
zippable should have as little variation of width as possible. Second,
the zipper-line should not curve excessively, as zippers tend to resist
bending in the plane (see Fig. 18) and attaching them to a sharply
turning curve is challenging.

There are several sensible strategies for tracing a zipper-curve. We
discuss them and their limitations in Sec. 2.1. Our main observation
is that the two aforementioned properties, uniformity and curvature,
are trivial to achieve when the target 3D model is a cylinder: simply
draw a spiraling curve on the cylinder from one boundary to the
other, such that if cut along that curve, the resulting shape is a
straight ribbon of constant width. For general target surfaces, our
approach is based on first decomposing the shape into topological
cylinders, and then mapping them onto cylindrical domains with
low isometric distortion and in a seamless manner. We then draw
“perfect” spirals on the cylinders and map these spirals back onto
the input shape. Since the mappings minimize
isometric distortion, the mapped curves tend
to exhibit low curvature and low variation of
distance between windings. Inspired by [Zhao
et al. 2016], we connect the spirals on the dif-
ferent cylinders into a single, long curve using
Fermat spirals (see inset). The shape is then cut
along the computed curve to create a single, possibly bifurcated,
but not yet developable, ribbon-like surface. A simple remeshing
process transforms this surface into a developable one, essentially
making a zippable. It can be trivially unfolded onto the 2D plane
to create a cutting pattern. The resulting strands of the flat ribbon
might overlap in the plane, and the pattern might take up too much
space to be cut with an available laser cutter; in both cases we simply
divide the ribbon into a few separate pieces before cutting them
from fabric and attaching a zipper.

Fig. 3. A zippable shape of a kitten. Since it is topologically equivalent to a
torus, an additional cut is needed (bottom left inset: marked in red where
the tail touches the head). Another zipper could be used to close up this cut,
but we opted for using Velcro instead.

In addition to the final zipping up being easy and entertaining,
our assembly and fabrication process has distinct advantages over
papercraft and many other similar methods in this domain. Most
importantly, attaching the zipper to the zippable can be done by
working solely in the flat plane. In contrast, attaching multiple parts
in papercraft or sewing plush toys from multiple charts usually
cannot be done in a flat configuration, but rather requires a certain
assembly order and sewing in 3D, especially in the final stages,
where all the parts have to come together for the shape to close
up. The makers usually must refer to a manual, find the next piece
and understand how to attach it to their work. In our case, the final
assembly is linear, i.e., at every instant of the assembly process, the
next action is unique and unambiguous, and it requires almost no
instructions. In case our method generates self-overlapping strands
that must be severed in order to laser-cut them from fabric, sewing
the pieces together is simple, since both ends are flat, perfectly
matching in length and only requiring flat stitching along a straight
line. Furthermore, the zipper replaces the gluing lashes, adhesive
tape or other connectors, which can be challenging to work with
in free space. To further simplify the alignment of the zipper to the
zippable, we propose an optional fastening rig that enables sliding
the zipper in and keeping it in place before attaching to the fabric.
This could be of particular importance in the context of industrial
fabrication, where processes must be streamlined and automated.

We demonstrate our method on various shapes, see e.g. Figs. 3, 8.
We show virtual results and physically fabricated objects, assembled
and disassembled simply by zipping up and down.

2 RELATED WORK
Our work relates to the general field of computational fabrication
and digital geometry processing. We briefly review the most relevant
previous works below.

Papercraft and needlework. Some objects, typically of limited size
and/or with certain constraints on the shape, can be directly manu-
factured in one piece using e.g. 3D printing or CNC milling. However,
a large number of approaches propose to create shapes composed
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of several individually fabricated parts. In this space, the most re-
lated approaches to ours are papercraft based on cutting and gluing
[Massarwi et al. 2007; Mitani and Suzuki 2004; Shatz et al. 2006;
Straub and Prautzsch 2011; Takahashi et al. 2011], and manufac-
turing by sewing [Igarashi and Igarashi 2008; Igarashi et al. 2009;
Julius et al. 2005; Mahdavi-Amiri et al. 2015; Mori and Igarashi 2007;
Wang 2010]. Both types of methods require the approximation of
a given 3D shape by pieces of developable surfaces (in the case of
paper) or highly stretch-resistant material (in the case of fabric).
This is typically achieved by segmenting or cutting the shape into
parts with low Gaussian curvature and parameterizing each part
onto the plane. Alternatively, the shape can be a priori modeled or
approximated as a piecewise developable surface, which is a current
topic of active research [Chandra et al. 2015; Fondevilla et al. 2017;
Jung et al. 2015; Kilian et al. 2008; Kolmianič and Guid 2002; Liu
et al. 2009; Rose et al. 2007; Tang et al. 2016; Zeng et al. 2012]. The
assembly by gluing or sewing the pieces together requires precision
and carefully following the instructions. In contrast, in our case, due
to the few parts it is mostly a straightforward and nearly mindless
task.

Soft materials. Designing for fabrication using soft material like
fabric or rubber is challenging, since such materials easily deform
under stress and gravity. The main goal is to predict the deformation
and solve an inverse problem, so that the fabricated model assumes
the desired shape when subjected to the stress. Examples include
the generation of plush toys [Igarashi and Igarashi 2008; Mori and
Igarashi 2007], inflatable structures [Skouras et al. 2012, 2014] and
rubber objects [Bickel et al. 2010; Chen et al. 2014; Skouras et al.
2013], among others. As mentioned, although we use fabric in our
results, the behavior is more reminiscent of papercraft, because
we use a nearly inextensible cloth, and the zipper itself is rather
stiff and completely inextensible. Regardless of the type of fabric
used, our zipper based approach has one decisive advantage: The
whole fabrication process can be done entirely in the flat. In contrast,
previous methods result in spatially curved pieces once they be-
come connected to each other, which makes sewing or gluing much
harder, as confirmed by professional tailors. The final 3D assembly
by zipping up needs no instructions, is fast and fun to do.

Parameterization. Our approach relies on mesh parameteriza-
tion, which is an extensively studied topic, see e.g. the survey in
[Hormann et al. 2007]. The more recent relevant parameterization
literature is presented in [Kovalsky et al. 2016; Rabinovich et al.
2017; Smith and Schaefer 2015]. Our method introduces a new type
of global parameterization, which extends cylindrical parameteri-
zation [Tarini 2012]. Global parameterization is primarily used for
quad meshing, where parts of seams in the parameter domain are
related to each other by a rotation of integer multiples of π/2. A
recent review can be found in [Bommes et al. 2013]. In our specific
case, we require a different form of seamless mapping, based on
cylindrical domains [Knöppel et al. 2015; Martin et al. 2008; Ray
et al. 2006; Thiery et al. 2012]. Our main inspiration is [Kälberer
et al. 2011], where the authors propose an approach for drawing
stripes on tubular shapes that can be used for generating textures
(see also [Livesu et al. 2017]). Their approach is based on a seam-
less parameterization aligned with a 2-RoSy field obtained from the

Fig. 4. Our design for a zippable star pillow, made of two differently colored
fabrics flatly attached together. Zipping it up generates an interesting inter-
leaving of the two parts. Two of the five Fermat spirals are clearly visible in
the top right inset.

principal curvature directions. This causes problems near umbilical
points, where the principal directions are unstable. In contrast, we
employ a parameterization based on distortion minimization, which
avoids this problem, and generally leads to less distorted mappings
[Myles and Zorin 2012].

2.1 Alternative curve design strategies
We briefly sketch a few alternatives to our zipper-curve design
method and discuss their drawbacks.

Mesh stripification. Finding a 2D shape that perfectly reproduces
a 3D mesh can be achieved using so-called mesh stripification algo-
rithms, which cut the mesh into triangle strips [Eppstein and Gopi
2004; Lubiw et al. 2010; O’Rourke 2015; Rossignac 1999]. However,
in addition to being highly mesh dependent, the resulting strips
have many sharp turns that make attaching a zipper and manipu-
lating the zipper slider difficult, if not impossible, and result in an
uneven strip width.

Space filling curves. A recently granted patent proposes a method
for approximating shapes by developable surfaces passing through
labyrinths on the surface [Pedersen 2011] (see also a related paper
[Pedersen and Singh 2006]), reminiscent of space filling curves.
While these curves are smooth and uniform, they bend excessively,
which would make attaching a zipper very hard if not impossible.

We summarize the properties of each method in Table 1.

Stripification Paper craft Labyrinth Ours

Single part ✓ x ✓ ✓

Uniformity x ✓ ✓ ✓

Low curvature x ✓ x ✓

Table 1. Comparison of alternative curve design approaches.
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Fig. 5. Overview of our pipeline. We begin by segmenting a 3D model to cylinders, followed by a global cylinder parameterization. Using the parameterization,
we trace a spiraling curve on the shape. The shape is then cut along the curve and approximated by a developable ribbon. The ribbon is then unfolded to the
plane and offset. We proceed by packing the design in order to create a cutting program for a laser cutter. Finally, we cut the design from a piece of fabric and
sew a zipper along its boundary. When zipped-up, the ribbon reproduces the original shape.

3 METHOD
Given a mesh representing the 3D object, our goal is to generate a sin-
gle, flat, possibly branching and/or self-overlapping shape, referred
to as the zippable, which approximates the object when “zipped-up”.
We can rigorously define zipping-up as an isometric deformation
of the flat shape into a 3D shape such that the boundary exactly
overlaps with itself. However, we assume that our intention is clear
and avoid mathematical rigor at this point. In addition to being
“zippable”, we wish to enable some creative control by allowing the
user to define where the zipper should pass and how it should be
oriented or aligned.

Creating a zippable is equivalent to tracing a path – the zipper-
curve – on the surface, which forms the boundary of the zippable.
Our method is based on the observation that it is trivial to generate
a uniform spiral on a cylinder with no caps. We can cut it from one
boundary loop (the top) to the other (the bottom) and unfold it to
a rectangular shape, where the two boundary curves become the
top and bottom edges, and the cut becomes the two side edges. We
then place “copies” of the unfolded cylinder side-by-side, and draw
a straight line from the bottom corner of the leftmost edge to the
top corner of the rightmost edge, see Fig. 6 for an illustration. Over-
laying the copies on top of each other creates several disconnected,
parallel line segments on the parameterization of the cylinder, and
by rolling it back to a cylinder, these segments transform into a per-
fect connected spiral. Its number of turns depends on the number
of copies we made.

The same approach, termed cylindrical parameterization, can be
applied to general cylinder-like shapes, which we continue infor-
mally calling “cylinders”. We start in the same manner by cutting

Fig. 6. Drawing a spiral on a cylinder can be done by cutting the cylinder
from the top boundary to the bottom one and unfolding it to the plane. We
then place copies of the flattened cylinder and draw a straight line that
passes from the bottom leftmost corner to the top rightmost one. Overlaying
the copies and folding back to a cylinder creates a spiral, where the number
of windings is equal to the number of flattened copies.

the shape from one boundary loop to the other. The cut shape is
then mapped to the plane by a distortion minimizing parameteri-
zation with seam constraints, which force the two sides of the cut
to match like puzzle pieces. Minimizing distortion is necessary for
the straight line in 2D to be mapped to a smooth and uniform spiral
on the surface in 3D. The case of a more complex shape is slightly
more involved: we decompose the shape into cylindrical parts and
use a global parameterization scheme to smoothly map all the parts
to cylinders. We discuss this in more detail in Sec. 3.2. Once the
mapping is found, we turn to designing spirals on the cylinders. The
main challenge is to synchronize the spirals, such that one spiral
ends where another begins, resulting in a single, long zipper-curve
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on the surface. The final task is to cut the surface along the zipper-
curve and remesh it such that the result is developable. It is then
trivially isometrically unfolded to generate the final 2D shape of the
zippable.

To summarize, the design phase of our method consists of four
stages (see Fig. 5 for a graphical overview):

(1) Decomposition into cylindrical parts.
(2) Seamless, global parameterization of the cylinders.
(3) Zipper-curve generation.
(4) Cutting along the zipper-curve, remeshing and flattening.

3.1 Decomposition into cylindrical parts
We partition the input shape S into N topological cylinders Ci , i =
1, . . . ,N , i.e., 2-manifolds with two boundary loops. The decompo-
sition plays a substantial role in the final appearance of the spiral,
since the resulting curve is aligned to the boundaries of the cylinders.
It enables a flexible interface for artistic exploration and is achieved
by interactively tracing the boundaries of the segmentation using
our software (see the accompanying video). Since surfaces without
boundaries cannot be decomposed into topological cylinders, we
also allow the user to cut the shape open and place new boundaries,

Fig. 7. Different cylindrical segmentations of a T shape. Each cylinder has
one transition boundary and one open boundary. Note the small holes in
the middle of the colored parts. These are the open boundaries for the
corresponding cylinders. In the last row we show an example of a straight
curve cut, serving as the open boundary of the green cylinder. Compare the
resulting spiral to the segmentation in the third row to see the effect of the
curve cut.

Fig. 8. A zippable model of an anime character. The zipper starts at the tail
and spirals around all extruding parts until it ends at the tip of the nose.

e.g., small circular holes or curves on the shape that act as a sin-
gle cylinder boundary (see Fig. 7). Our methodology is to start by
segmenting the shape into discs, which we feel is more intuitive,
and then “puncture” them to obtain topological cylinders. Alter-
natively, more automatic ways of cylindrical decomposition such
as [Livesu et al. 2017; Zhou et al. 2015] could be applied, but we
have not explored this option. We distinguish between the transition
boundary and the open boundary of a cylinder. The former being
the boundary that separates it from adjacent cylinders, while the
later is an actual boundary of the shape (a punctured hole or curve,
as explained above). Further, we define an interface to be a shared,
continuous edge sequence of two transition boundaries between
two cylinders. Therefore, a transition boundary consists of at least
one but usually multiple interfaces.

3.2 Seamless parameterization
Once the cylindrical decomposition of S into parts Ci is available,
we proceed to compute the parameterization. This step determines
how the equally spaced, straight lines in the 2D parameter domain
transform into a spiraling zipper-curve on S . To obtain a spiral that
is as evenly spaced on the 3D shape as possible, the parameterization
must minimize isometric distortion. Additionally, we require the
parameterization to be bijective for the mapping from the 2D lines
to the 3D curve to be well defined. Fig. 9 compares curves generated
with the initial (i.e., suboptimal) and optimized parameterization.
We assume that S has been cut along the boundaries of the Ci ’s, and
each cylinder is cut from one boundary to the other, analogous to the
example of one cylinder (see Fig. 6 top row). The edges and vertices
along the cuts are duplicated, and we keep correspondences between
the copies. We generate a seamless bijective parameterization of
each Ci , with seamless transitions between adjacent Ci ’s. We first
explain the case where there is only one cylinder, and the general
case of multiple cylinders immediately follows.
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Minimizing isometric distortion. An isometric distortion measure
quantifies the difference between a given flattening of a shape and
a perfect isometry; most formulations define it as a sum of the
distortions of individual triangles. In this paper we use the recently
proposed symmetric Dirichlet distortion measure; see [Kovalsky et al.
2016; Rabinovich et al. 2017; Smith and Schaefer 2015] for details.

We denote the coordinates of a vertex in the parameter domain by
x = (x ,y) and stack all the coordinates in a vector X. The distortion
of a triangle t is a function of the positions of its vertices in the
plane. We denote the symmetric Dirichlet measure of triangle t by
Dt (X). Then the optimization problem to solve is

argmin
X

∑
triangle t

At Dt (X), (1)

where At is the area of t in the original mesh. In our work, we use
a modified Newton’s method [Shtengel et al. 2017] with a feasible
starting point to solve this problem. Since we add several constraints
in the following, we defer a detailed discussion to the end of this
section.

Seamless cylindrical parameterization. To map a single topologi-
cal cylinder Ci to the plane with minimal distortion in a seamless
manner, it is cut to form a disk topology and then parameterized
while adhering to seam constraints, whose role is to ensure that the
parameterization is invariant to the cut [Myles and Zorin 2012]. In
the cylinder case, the seam constraints call for each edge on one
side of the seam to be a translation of its twin edge on the other side
of the seam. More precisely, assume the cut contains n consecutive
vertices and let xL

j and xR
j , j = 1, . . . ,n, be the two copies of each

vertex in the parameterization (superscripts L,R stand for Left and
Right). Then the cylindrical seamlessness constraints are

[Cyl(Ci ) ] xL
j − xL

j−1 = xR
j − xR

j−1, j = 2, . . . ,n. (2)

optimizedinitialization

Fig. 9. Comparison between the curve obtained before and after minimizing
isometric distortion of the parameterization. Note that the non-optimized
spirals have a much greater variation in the spacing between the windings.
We show a uniform grid texture to illustrate the difference in distortion.

with inter-cylinder constraints without inter-cylinder constraints

Fig. 10. Inter-cylinder constraints ensure that the transitions between cylin-
ders are smooth for curves with the same slopes (left). Note the kink that
appears in the curve when these constraints are missing (right).

We use the differential form of the seam constraints in order to avoid
introducing auxiliary variables. The equivalent positional form is
xL
j = xR

j + t, j = 1, . . . ,n, where t is an unknown offset (the same
for all vertices). For conciseness, we refer to the set of constraints
in (2) as Cyl(Ci ) for a given Ci , or Cyl in general.

Cylinder boundary constraints. In addition to the cylinder seam
constraints Cyl, we also require the boundary loops of the cylinders
to be mapped to straight lines. This serves two
purposes: First, together with the Cyl, it guaran-
tees bijectivity, and second, it allows for a better
surface coverage by the spiral. Indeed, when the
boundaries are not kept straight and allowed to
“spill out” in the 2D domain, the spilled region is
not covered by the zipper-curve (see illustration
in the inset). Due to Cyl, the straight lines of
the boundaries must be parallel, hence, without
loss of generality, we can make them parallel to
the horizontal x-axis. Let yTop

k , k = 1, . . . ,mTop

and yBot
l , l = 1, . . . ,mBottom be the y-coordinates of the vertices of

the top and bottom boundaries in the parameter domain. We again
use the differential form for the straight line constraints, given by

[ Str(Ci ) ]
y

Top
k − y

Top
k−1 = 0, k = 2, . . . ,mTop

yBot
l − yBot

l−1 = 0, l = 2, . . . ,mBottom
(3)

We denote the constraints of each Ci in (3) by Str(Ci ), and the
entire set of these constraints as Str. The constraints Cyl and Str to-
gether already result in a nice spiral on each Ci separately. However,
without dedicated treatment, there could be a visible kink when
transitioning between Ci ’s (see illustration in Fig. 10). Indeed, if
copies of the same edge on a transition boundary are parameterized
to two edges with different size and direction, then the parameter-
ization does not appear smooth across that edge. We handle this
issue in the following.

Inter-cylinder seamlessness. In order for the transition between
Ci ’s to appear smooth, we apply seam constraints on cuts between
each pair of neighboring Ci ’s. These constraints enforce a rigid
transformation between the two sides of each seam (see Fig. 10).
Since we have the freedom to define the exact transformation, we
choose a rotation by π . Thus, for every two neighboring CP and
CQ , we let xPr and xQr , r = 1, . . . , s, be the coordinates of the two
copies of each vertex along the seam between CP and CQ . Then the
inter-cylinder seam constraints can be written in differential form
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as [
Int(CP ,CQ )

]
xPr − xQr−1 = xPr−1 − xQr , r = 2, . . . , s . (4)

We denote the constraints in (4) for each pair CP ,CQ by Int(CP ,CQ ).
Global cylindrical parameterization. With all the types of con-

straints defined, we can formulate the optimization problem for
parameterizing the surface:

argmin
X

∑
triangle t

At Dt (X)

s.t. Cyl(Ci ), ∀Ci
Str(Ci ), ∀Ci
Int(CP ,CQ ), ∀CP ,CQ neighbors.

(5)

Eliminating degrees of freedom. The constraints in (5) are all
sparse linear homogeneous equalities, but have some redundancies.
For example, it is unnecessary to require all of the top and bottom
boundaries to be on straight lines: half of them is sufficient, since the
other half then must lie on straight lines due to the Int constraints.
Similarly, the y part of (5) is redundant due to the Str constraints.
We automatically remove all of these redundant constraints using
Gaussian elimination.

Initialization. Our optimization is based on Newton’s method
and requires a feasible starting point with no triangle flips. We
use Tutte’s embedding with uniform weights, which guarantees
bijectivity if the boundary is convex. We can therefore initially
map each cylinder to a rectangle in the plane, where the top and
bottom boundaries are parallel to the x axis, in order to satisfy
Str. We set the height of each rectangle to have the length of the
cylinder boundary to get a more isometric initial guess. To satisfy
Int we require each edge of a transition boundary to have the same
length in its parameterization. We can do the same for the cylinder
boundary edges, which then completely determines the boundary.

Fig. 11. The parameterization of the three topological cylinders of the T
shape. See Fig. 7 for another perspective of the same segmentation. Wemark
the corresponding interfaces by matching colors, and the red dot represents
one of the two points where all cylinders meet. We remark that this point
has no particular significance and is only there as a visual guide. The blue
sides of each flattening and the corresponding ellipses represent the open
boundaries, while the unmarked sides represent the constrained cylinder
seams.

regular spiral Fermat spiral

0.5
l

l

Fig. 12. Illustration of a Fermat spiral on a cylinder. The cap of the cylinder
on the right represents the open boundary where the center of the Fermat
spiral appears.

However, we note that we can in fact use Cyl, as they are in the
form of an orbifold Tutte’s embedding (see [Aigerman and Lipman
2015]), instead of specifying vertex positions directly, which results
in a slightly less distorted initial guess.

Optimization. We use a modified Newton’s [Shtengel et al. 2017]
method with linear constraints to solve (5). We use the line search
method suggested in [Smith and Schaefer 2015], which guarantees
that no triangle flips are introduced during optimization. We show
an example of the parameterization of the T shape in Fig. 11.

3.3 Spiraling zipper-curve
With the global seamless parameterization of the cylindrical decom-
position available, the next stage in our algorithm is to generate
a spiraling curve that represents the zipper-curve. This is done by
drawing straight lines in the parameter domain and lifting them
back into 3D using the inverse of the parameterization. A spiral on
a single Ci can be created as discussed in the beginning of Sec. 3, by
drawing a straight line on the cylinder’s parameterization. For the
case of multiple Ci ’s, in order to obtain a single continuous curve,
we must make sure that the spirals of the individual Ci ’s connect.
We make the following simplifying assumptions:

(1) The curve visits each Ci exactly once.
(2) The curve starts and ends at an open boundary and enters

and leaves each cylinder through different interfaces.
(3) The curve traverses cylinders via Fermat spirals, except for

the first and the last one.
Note that a Fermat spiral requires drawing two lines on a cylinder
(see Fig. 12). The assumptions above mean w.l.o.g. that a curve must
start at an open boundary in C1, then cross the transition boundary
through an interface to the adjacent C2 and touch the open boundary
of C2. Next, leaving the open boundary at another point, passing
back through the transition boundary via another interface to C3.
This continues until all cylinders are traversed, and the curve ends
at the open boundary of the last Ci . See Fig. 13 for an illustration.

There are several choices we let the user make. The first is the
traversal order of the Ci ’s. To assist the user, we enumerate all
valid traversal orders, which are essentially all the Hamiltonian
paths on the graph of segments, and let the user choose one by
cycling through them. A valid path is guaranteed to exist if the
number of segments is smaller than 11 [Barnette and Jucovič 1970].
Excluding pathological cases, the number of possible paths grows
dramatically with respect to the number of segments. Many of them
can be eliminated by letting the user pick a start and end segment.
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Another choice is the location on an interface where the curve passes
between Ci and Ci+1. Finally, the user can prescribe the number of
windings of the spiral on each Ci . See Fig. 14 for an example of the
different choices, also demonstrated in the accompanying video.

These choices impact the final appearance of the zipper-curve
and should be based mostly on artistic considerations. In general,
having even spacing between the windings greatly contributes to
the aesthetics of the zipped-up shape. For a regular spiral, even
spacing is ensured by the low-distortion parameterization. For Fer-
mat spirals we would like to draw the two lines parallel, such that
their copies are uniformly spaced. Therefore, the horizontal distance
between the lines should be half the width of the boundary (Fig. 12).
Unfortunately, this is not always possible, since the placement of
interfaces between the different Ci ’s might not allow it. To illustrate
this, consider a cylinder Ci with i > 1, where the zipper-curve comes
in from Ci−1 through the interface I in

i and leaves to Ci+1 through
the interface Iout

i (see Fig. 13, e.g. i = 2). The two boundaries (open
and transition) of Ci are parameterized to straight, parallel segments
of the same length li . For all C′

i s with 1<i<N , we need to pick two
points on each segment that will be the end points of the incoming
and outgoing lines. For the open boundary, we are free to pick any
two points, and the best option is two points with a distance of
0.5 li . W.l.o.g. we can assume that the interface segments lie on the
x-axis. For the transition boundary, we would like to pick two points
x in
i ,x

out
i such that ���x in

i − xout
i

��� = 0.5 li . (6)

However, since x in
i ∈ I in

i and xout
i ∈ Iout

i , this is clearly not neces-
sarily possible. Even if I in

i , I
out
i do permit (6), we must recall that

xout
i−1 = x in

i , which thus couples all transition interfaces together.
Nevertheless, we can solve an optimization problem to determine
the best transition points. We formulate the problem as follows:

end

start

Iout
3

Iout
2

Iout
1

I in
2

I in
3

I in
4

C1 C3

C2 C4

xin
2 xout

2

2nd Fermat spiral

1st Fermat spiral open
boundary

transition
boundary

C1 C2 C3 C4

zippable topology

Fig. 13. Illustration of a spiraling curve traversing several cylinders. We
mark the interfaces of Ci by I in

i and I out
i for i = 1, 2, 3, 4 (see Sec. 3.3). The

colors help to visualize the zippable’s connectivity and relate to the topology
of the zippable shown in the top left corner. Every Fermat spiral creates a
new branching part shown in red/yellow and green/pink.

uneven
spacing

increased
turns

Fermat spiral
right

Fermat spiral
top

Fig. 14. We show several possible zipper-curves on the T shape. The design
is up to the user’s artistic choices.

argmin
x in
i ,x

out
i ,i=2, ...,N−1

∑
i

( ���xout
i − x in

i

��� − 0.5 li
)2
,

s.t. x in
i ∈ I in

i , x
out
i ∈ Iout

i and

xout
i−1 = x in

i ,

(7)

where we exclude C1 and CN since they do not contain Fermat
spirals. We have the freedom to pick the starting point of each Ii
such that xout

i > x in
i is always satisfied, allowing to drop the absolute

value from the objective in (7). There still might be a translational
degree of freedom, and we remove it by requiring transition points
to be close to the middle of their intervals. In Fig. 15 we show the
difference between a naive initialization, which tries to keep the
zippable width as constant as possible in a greedy way, and the
optimized solution.

naive placement optimized

1

2 3

4
5

Fig. 15. The difference between a naive transition between cylinders, which
tries to keep the zippable width as constant as possible with a greedy
approach, and the optimized solution. Note that the optimized result appears
to be more uniform. The numbers depict the cylinder transition order of the
zipper-curve.
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3.4 Cutting, remeshing and flattening
The goal of the final stage of our algorithm is to find a developable
surface that approximates the input 3D shape well and has the curve
computed in the previous stage as the boundary. This is a challeng-
ing task in general (see, e.g., [Rose et al. 2007; Tang et al. 2016]), but
somewhat simpler in the discrete setting. It is well known that a
triangle mesh in 3D that has no internal vertices, i.e., all its vertices
are boundary vertices, is developable. Fitting a developable triangu-
lation is still a difficult problem, where the challange lies in finding
a meshing that appears smooth. Mitani and Suzuki [2004] proposed
to use edge collapse and vertex removal operations until no internal
vertices are left, and then to apply edge flip operations in order to
improve the smoothness of the triangulation. We have implemented
their method, but observed that the greedy edge flipping can intro-
duce triangle fans near sharp curve turns (see Fig. 16). We instead
propose a simple approach based on the parameterization we already
have from previous stages. The idea is to define correspondences
between points on adjacent windings of the spiral, which, when
connected by straight lines, act as rulings of a developable surface.
The simple correspondence we choose is based on the x coordi-
nates of the lines in each Ci ’s parameterization (Fig. 17). We sample
these lines uniformly and connect two samples in adjacent windings
when their x coordinates are the same. We use Triangle [Shewchuk
1996] to complete the triangulation in the parametrization space in
regions where there is no natural correspondence, that is, around
the interfaces between cylinders and the open boundaries. Although
this simple approach is not always optimal (see Fig. 24), we found
it to deliver sufficient results for all cases. Once the zippable is tri-
angulated, we can unfold it to the plane (see Fig. 5). We cut it into
few smaller pieces in order to utilize the laser cutter bed better
and resolve overlaps. The minimal number of cuts is related to the
number of segments (parts from different segments might intersect)
and the number of turns in each segment (different turns in the
same part might intersect). See the attached cutting plans in the
supplementary material.

spiral design Mitani et al. our meshing

Fig. 16. A comparison of our simple ribbon meshing approach to the method
in [Mitani and Suzuki 2004]: The greedy edge flipping step can generate non-
optimal triangle fans (middle column), whereas ours results in a smoother
and better approximation of the original surface. But generally, it is not
guaranteed to create an optimal meshing (see Fig. 24).

4 FABRICATION
Zipper tape. The previous section describes how to design and

compute a zipper-curve on the surface, but ignores the physical

Fig. 17. Illustration of remeshing to a developable zippable. In the parameter
domain, points on adjacent lines with the same x coordinate are connected
by an edge.

properties of the zipper itself. This is sufficient if one wishes to
make papercraft, as in Fig. 22, since the zipper-curve has a negligible
width. Accommodating a real zipper requires additional modeling.
In general, zippers are made from two fabric tapes with a row of
teeth on each (Fig. 18), which interlock or split when operating the
slider. The common way to attach zippers to fabric is to sew the
two tapes onto the matching edges of two parts. The teeth should
slightly protrude to create a wide enough gap between the two
pieces of fabric, so that the slider can move freely without getting
stuck. This means that we must slightly offset the borders of the
designed zippable in order to create that gap. We discuss offsetting
in later subsections.

Boundary alignment. To ensure that corresponding borders are
aligned with each other through the zipper, we place markers (e.g.,
small circles) at regular intervals along the boundary of the zippable
and on the zipper tape. We use 3 cm intervals; the markers can be
etched by the laser cutter. When attaching the zipper, care must
be taken to align the markers on the zippable with the ones on the
zipper tape. After the zipper is attached, we align the starting points
of the two sides of the zipper and put the slider in to obtain the final
result.

Overlapping zippables. If the 2D layout of the zippable contains
any overlapping regions or is too big for the available laser cut-
ter or fabric, we separate it by cutting into intersection-free parts.
These parts are then marked for etching with corresponding letters,
arranged efficiently in the plane, laser-cut and sewn back together.

4.1 Attaching the zipper.
In this section we describe the fabrication process in more detail. We
propose two different methods that differ by the offsetting procedure
and the zipper attachment technique, with each method having its
own benefits and drawbacks. The first approach is based on sewing
the zipper to the fabric, and the second approach is based on gluing
and requires the zipper and fabric to be mounted on a bespoke
fastening rig. The sewing approach can be used for larger target
sizes, where the width of the zipper can be largely neglected. It
requires more expertise and manual work, but allows for more
flexibility in fabrication. The second technique is particularly handy
when the zipper width is not negligible, or for fabrication in an
assembly line, since it comprises several sequential steps.

Attaching the zipper by sewing. To the best of our knowledge,
there are currently no devices for automated sewing of zippers
along a curved path, so this must be done manually using a sewing
machine. Sewing on a curve is somewhat complicated since zippers
are usually designed to have zero geodesic curvature. Their straight
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tapes resist bending in the plane (although bending out of plane
is possible, as we discuss in the following section). To afford this
bending, the tape must be cut every few centimeters, as shown in
Fig. 18.

2D-Offsetting. Since the zipper teeth have to protrude by a certain
distancew , we must compensate for that by offsetting the boundary
curve of the zippable by the same amount. This can be easily done
in the plane using a standard curve offset in the normal direction
by distance w . The only caveat is that this changes the boundary
length, such that markers on the offset curve are no longer 3 cm
apart. As a consequence, while sewing, the tailor needs to ensure
that the markers on the zipper and the fabric still line up by slightly
squeezing the fabric or the zipper tape, or cutting them, as shown in
Fig. 18. For larger objects, the resulting inaccuracies are fairly small,
as can be seen in the results in Figures 4, 8, 3, 5, which were all
created using this approach. The fabricated shapes remain faithful
to the design.

Attaching the zipper by welding or gluing. In modern clothing
industry, zippers are often attached by welding or gluing to the
underlying fabric, especially in outdoor, waterproof garments and
equipment. This can be beneficial for the fabrication on an assem-
bly line, since the different working steps can be split better than
for sewing, which is still one of the most manual labor-intensive
industries today. Gluing may also be a preferable technique for
makers with no sewing experience or the necessary machines. It
requires the fabric and the zipper to be first placed and secured in
correct alignment before applying the necessary pressure to fixate
it. Therefore, one can no longer assume that local squeezing is freely
permitted, which calls for a different offsetting strategy.

Length preserving offsets. Forbidding the zipper (and the fabric)
from stretching means that it can only undergo isometric deforma-
tions, which prohibits the planar curve offsetting we proposed for
the sewing method. However, in practice and as shown in Fig. 18, the
zipper has the ability to bend out of plane. Therefore, we consider
the offsetting in 3D (see Fig. 19). In reality, the zipper tape can also
easily twist and shear a bit, so instead of precisely isometric defor-
mation, we make a simplification and assume that the two sides
of the zipper, or equivalently the two sides of the offset boundary
curves of the zippable, only need to have the same length to be a

uncut cut

top tape teeth

boom tape

slider

bending

out of
plane

in
plane

zipper

Fig. 18. A dissection of a zipper. Note that the zipper resists bending in the
plane, unless cut every few centimeters to allow the zipper tape to stretch.

Fig. 19. The heart is our smallest physical result with a height of only 15cm.
It was fabricated using our fastening rig in only 1 hour. The virtual model
(insets in the bottom) is faithfully reproduced. The top insets show the
segmentation, the visualization of the zipper tape and flattened zippable,
from left to right.

valid zipper configuration. Given the zipper-curve on the surface in
3D, we seek two curves that are offset by the same amount in oppo-
site directions. We propose to use the binormal of the zipper-curve
as the offset direction. We prove in Appendix A that in the continu-
ous setting, the offsetting in the positive and negative direction is
guaranteed to keep the lengths of the two offset curves equal, and
we bound the length difference between the zipper-curve and the
offset curves. In practice, this small difference can be compensated
by a slight buckling of the zipper tape. In the discrete setting, we
estimate the binormal by the cross product of two adjacent segments
of the zipper-curve. Note that the binormal direction for a straight
line is not well defined, and so in regions where the polyline is
almost straight, we might get numerically noisy results. To avoid
this, we consider a bigger window of adjacent segments to find a
stable estimation of the binormal at these locations, at the cost of a
small deviation in length. To validate our results, we compute the
relative change in length that occurs due to the approximation. For
the heart shape in Fig. 19, we use 2.25 meters of zipper, and our
error of 0.2 mm is negligible. Two results with this type of offsetting
are shown in Figures 19, 2.

The fastening rig. Central to the gluing approach is a bespoke
fastening rig we developed. The idea is to secure the zipper and the
zippable in place before applying contact glue and pressing them
together. In order to glue the zipper tape completely flat onto the
zippable, one needs to cut it at regular intervals. The important
difference to sewing is that this does not result in any buckling or
deformation of the zippable and is completely hidden behind it. The
rig is constructed from 3 layers of hard sheets (e.g., acrylic glass or
plywood) as shown in Fig. 20. The bottom one serves as a baseplate
to stabilize the others. We cut tracks into the middle sheet for sliding
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in the zipper tapes. The tracks have the shape of the boundary of
the flattened zippable and a width of about 4 mm. The teeth track
is curved, but it only bends the zipper tape out of plane. The cut
in the top layer is slightly offsetted, such that the zipper tape can
pass through the gap but the teeth are held down. We also add an
opening for the tracks to simplify the sliding in of the zipper in parts.
The layers are connected and secured with screws. Even though the
rig does a good job in aligning the zipper tape to the zippable, we
still add markers in 5 cm intervals on the zipper tape and the rig as a
detailed alignment guidance. If the zippable has overlaps, the tracks
for the shape can also be split into multiple parts as before, which
then only requires to slide in and glue the zipper to the zippable part
by part (the result in Fig. 2 was produced in this way). We found that
this adds no significant time to the fabrication process. See Fig. 20
and the accompanying video for more detail.

support plate

zipper rails

zippable track

fastening rig profile

glued

zippable

split zipper tapes

Fig. 20. An overview of the fabrication with the fastening rig. From top to
bottom: the empty assembled rig; rig with inserted zippable and partly slid
in zipper tape; the completed zippable. Sliding in the zipper tapes is easy
and fast. The tracks in the fastening rig almost automatically take care of
the correct alignment of the tape to the zippable. Gluing is straight-forward
and we refer to the accompanying video for a demonstration.

5 RESULTS AND DISCUSSION
We implemented all parts of our algorithm in C++, except the pa-
rameterization, which was implemented in MATLAB. The modified
Newton’s method converges within at most 15 iterations and takes
about 20 seconds for a mesh of 30k triangles on our Xeon CPU
E5-2650 v2, 64 GB RAM machine.

Fabrication process. We fabricated seven of our designs in fabric,
see Figures 1, 2, 3, 4, 5, 8, 19. Fig. 5 shows the steps of our method
with our simplest model, the T shape. All fabricated results have
a zipper length of about 10 meters and a maximum dimension of
about 50 cm, except the heart (Fig. 19) with 3.5 m zipper and 15 cm

10 turns 30 turns 60 turns

Fig. 21. Running our method on the T shape with different spiral densities.

height, and the star (Fig. 2) with 2.25 m zipper and 27 cm height.
These last two are considerably smaller and were fabricated with
our gluing technique. The sewn results were made by professional
tailors and took 5 to 6 hours for each model. The time needed mainly
depends on the length of zipper-curve. Even though the tailors had
no experience with this special kind of fabrication, there were no
problems in attaching the zippers to the cut fabric pieces thanks to
the linearity of the assembly method. In comparison, the fabrication
of the results made with the bespoke fastening rig approach took
us 1 hour for the heart and 1.5 hours for the star shape. Cutting and
constructing the fastening rig amounts to about 30 min overhead,
and the rig can serve the making of many copies of the same shape.

Design process. We designed all the presented examples ourselves.
Simple designs like the heart (Fig. 19) or the star (Fig. 2) can be made
within only two to three minutes. More complicated models like
the octopus (Fig. 23) can take up to 15 minutes. Most time is spent
iterating and refining the cylindrical segmentation in order to op-
timize the zipper-curve shape, since the global parameterization
has to be recomputed each time. In the future, we would like to
explore splines instead of straight lines in the parameterization to
enable a more flexible zipper-curve design, possibly aligning it to
geometric features or user prescribed directions. While the transi-
tion point optimization (Sec. 3.3) finds the best possible solution for
a selected traversal order, it is not guaranteed to always create a
nice, uniformly spaced zippable. This is due to the limited degrees
of freedom of the corresponding traversal interfaces. In this case,
the user can iterate through the other traversal orders to pick a
better choice. In the future, it would be interesting to incorporate an
automatic search to find the best possible traversal order in terms
of uniformity of the zippable. Another useful feature would be a
way to bound the maximal curvature of the zipper-curve to make it
smoother.

Papercraft comparison. Our method can be used to create paper-
craft models. In general, it produces fewer initial pieces than pre-
viously published methods, and the assembly by gluing is straight-
forward and does not require elaborate instructions. See Fig. 22 for
a comparison of our bunny result fabricated from paper with the
method of [Mitani and Suzuki 2004]. Note that even though our
result is somewhat finer in terms of the width of the parts, it is
fabricated from fewer pieces.

Approximation capabilities. Naturally, the thinner the designed
zippable, the better its approximation power. However, this also
results in a longer zippable, prolonging the fabrication. The decision
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regarding the sizing is left to the user. See Fig. 21 for different widths
and approximations of the T shape.

We attach cutting plans for our zippables, including the fastening
rig for the heart shape, in the supplemental material.

6 CONCLUSION
We presented a method for shape representation by a single de-
velopable surface that can be fabricated from flat fabric. We show
several examples to demonstrate the power and generality of our
approach. Currently, we do not attempt to align the zipper-curve
to the input shape’s features. This means that regions with sharp
corners may not be well represented by the zippable, unless the user
manually specifies it. We plan to tackle this issue in the future by
using feature detection and incorporating it into the zipper-curve
design stage. Additionally, we are interested in targeting more global
objectives, such as symmetry. Furthermore, we would like to com-
bine the zipper-curve design with the final stage of remeshing to a
developable. Currently these steps are strictly decoupled, and we

Fig. 22. Our laser cut plans of the bunny with 7 pieces (bottom row) for
a single developable piece that can be assembled by linearly gluing its
border, starting at the designated red point, compared to [Mitani and Suzuki
2004] (taken from their paper) with 15 pieces which require more detailed
instructions to be glued together (top row). Note that even though our result
is somewhat finer in terms of the width of the parts, it is fabricated from
fewer pieces.

Fig. 23. A virtual result of an octopus model segmented into nine cylindrical
parts. The zippable has a nice uniform spacing but some of the geometric
details, like the eyes, are lost due to the limited resolution.

Fig. 24. Our naive meshing algorithm is not guaranteed to produce an opti-
mal approximation of the original surface, especially for a sparse coverage
of the target model with the zipper-curve.

expect to get better approximation quality by optimizing both parts
simultaneously. Another interesting direction would be to integrate
the optimization into the segmentation stage, such that the design
of the final zipper-curve can be done more interactively.

Fabrication with textiles, especially woven fabrics, is a very pro-
lific but currently notoriously human labor-intensive industry, in
dire need of digitalization and automation. We plan to explore fur-
ther automation and acceleration of our fabrication process and
expand to other types of fabrication methods and applications. One
application we are particularly interested in is pipe cladding, which
is part of the process of insulating heated pipes with metal sheets,
and is a labour intensive task. The process is similar to our zipping,
but usually performed manually by an expert; our method could be
potentially used to greatly simplify and speed up this task.
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A OFFSETTING
We show that offsetting a curve in the direction of its binormal and
the negative of that direction by the same amount results in two
curves of the same length.

Proposition A.1. Let γ (s) be an arc-length parameterized curve,
and τ (s) and B(s) its torsion and binormal at s . Assume that τ (s) , 0.
Define γ±(s) := γ (s) ± w B(s), where w is the offset amount. Then
∀s, ∥γ ′+(s)∥ = ∥γ ′−(s)∥.

Proof. By applying the Frenet-Serret formula we obtain
γ ′±(s) = T (s) ∓w τ (s)N (s),

whereT (s),N (s) are the tangent and the normal of γ at s . The result
immediately follows by using the polarization identity:

∥T (s) +w τ (s)N (s)∥2 − ∥T (s) −w τ (s)N (s)∥2 =

= 4
〈
T (s), w τ (s)N (s)〉 = 0,

where the last equality is due to T (s) ⊥ N (s). �

The result above also leads to a bound on the local change of
length, i.e., speed, of the offset curve. Indeed, using the triangle
inequality,

∥γ±(s)∥ ≤ ∥T (s)∥ + ∥w τ (s)N (s)∥ = 1 +w τ (s),
which also means that the speed is determined by the torsion τ (s).
Since the zipper-curve we design usually have a helical shape, we
believe that τ (s) is kept relatively small compared to a random path
on the surface.
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