
8 Analytical Geometry

Scalar product. The scalar product is a fundamental operator
on two vectors, providing us with a scalar quantity. It allows us
to conveniently compute projections and is widely used in all our
computations. The scalar product operator is also called the “dot
product” or “inner product.”

The definition of the scalar product is as follows. Given two
vectors v and w and the angle θ between them,

〈v,w〉 = ‖v‖ · ‖w‖ · cos θ .

Observe Figure 1.8, where ` denotes the length of the projection of
w onto v. From basic trigonometry, we have cos θ = `

‖w‖ , which
leads to

` =
〈v,w〉
‖w‖

,

a very useful application of the dot product operator, as we demon-
strated in Equation (1.1).

Figure 1.8: Computing cos θ = `
‖w‖ .

The dot product of two vectors 〈v,w〉 can be computed explic-
itly given a coordinate representation of the vectors (more on this
later in Chapter 2): given v = (xv, yv) and w = (xw, yw), we have
〈v,w〉 = xvxw + yvyw. In 2D we have a useful property that if
〈v,w〉 = 0, then the vectors are perpendicular, and we can com-
pute the perpendicular vector of v = (xv, yv) as v⊥ = (−yv, xv).

Parametric representation of a line. A parametric represen-
tation of a line is given by l(t) = p = p0 +tv, where the line origin
is at p0, where t = 0 (see Figure 1.9); the parameter value is any
real number t ∈ (−∞,∞). When we refer to a ray, rather than a
line, the forward direction of the ray is where t > 0.

With a parametric representation of a line, we can derive the
distance between a point q and a line l(t) = p0 + tv. As shown in
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Analytical Geometry 9

Figure 1.9: Parametric representation of a line.

Figure 1.10, we look for a point q′ such that q−q′ is perpendicular
to v, and then the distance between q and l is dist(q, l) = ‖q−q′‖.

Figure 1.10: The distance between a point and a line.

Let us denote it in a dot product form:

〈q− q′,v〉 = 0 ,

〈q− (p0 + tv),v〉 = 0 ,

〈q− p0,v〉 − t〈v,v〉 = 0 .

Solving for t:

t =
〈q− p0,v〉
‖v‖

.

Now we can apply the Pythagorean formula to get

dist2(q, l) = ‖q− p0‖2 − t2 .

Note that the parametric representation of the line is coordin-
ates-independent. The vectors and points v, p0 and q can be in
2D or in 3D or in any dimension.

In a similar fashion, we can derive the distance between a point
and plane. First, a given plane Π is characterized by its normal n,
see Figure 1.11. Given a point q, its distance to the plane is
‖q′ − q‖, where q′ is the projection of q in the direction of the
normal vector n onto the plane. Since q′ − q is parallel to n,
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Linear Algebra? 27

To extract the αi, we can use the linearity of the space and form
inner products that give us

〈a,vj〉 =

n∑
i=1

αi〈vi,vj〉 ,

and thus we have

〈a,v1〉 = α1〈v1,v1〉+ α1〈v2,v1〉+ α3〈v3,v1〉 ;
〈a,v2〉 = α2〈v1,v2〉+ α1〈v2,v2〉+ α3〈v3,v2〉 ;
〈a,v3〉 = α3〈v1,v3〉+ α1〈v2,v3〉+ α3〈v3,v3〉 .

In other words, we have a linear system of three equations and
three unknowns:〈v1,v1〉 〈v1,v2〉 〈v1,v3〉

〈v2,v1〉 〈v2,v2〉 〈v2,v3〉
〈v3,v1〉 〈v3,v2〉 〈v3,v3〉

α1

α2

α3

 =

〈a,v1〉
〈a,v2〉
〈a,v3〉

 .
Here is where orthogonality may come in handy. If the basis is

orthogonal, then 〈vi,vj〉 =
[

1 i=j
0 i 6=j

]
, and we get the trivial identity

matrix and all the above collapses into the simple form:α1

α2

α3

 =

〈a,v1〉
〈a,v2〉
〈a,v3〉

 .
The simplicity of this form is particularly attractive because no

linear system needs to be solved (since the matrix to be inverted
is the identity matrix). But orthogonality is important not only
because it may simplify computations; it is also essential for nu-
merical stability of computations, as it avoids an accumulation of
roundoff errors.

Homogeneous coordinates

Earlier in this chapter, we claimed that a translation is not a
linear operation. We attributed it to the fact that a translation
operator T might translate the origin: T (0) 6= 0. This is one
of the reasons why homogeneous coordinates are commonly used
in computer graphics. In homogeneous coordinates, translation is
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PCA and SVD 59

If the rank of A is smaller than n, then A is singular and it maps
the entire space Rn onto some subspace, like a plane (so A is some
sort of a projection).

Earlier we discussed computing the principal directions of a set
of points xi, or in fact the vectors yi (which are xi shifted by the
center of mass m): yi = xi − m. Let Y be the matrix whose
columns are the vectors yi:

Y =

 | | |
y1 y2 · · · yn
| | |

 .
Suppose we have the SVD of Y : Y = UΣV>. Then the scatter

matrix S = Y Y> simplifies to

Y Y>= UΣV>(UΣV>)
>

= UΣV>V Σ>U>

= U(ΣΣ>)U>.

Thus, the column vectors of U are the principal components
of the data set, and commonly they are sorted by the size of the
singular values of Y .

Now, we can go back to the question raised in Chapter 2 and
show how SVD can solve it: Given two objects with corresponding
landmarks (shown in Figure 4.14 (left)), how can we find a rigid
transformation that aligns them (Figure 4.14 (right))? When the
objects are aligned, the lengths of the line segments connecting
the landmarks are small. Therefore, we can solve a least-squares
problem. Let pi and qi be the corresponding sets of points.
We seek a translation vector t and a rotation matrix R so that∑n

i=1 ‖pi − (Rqi + t)‖2 is minimized.
It turns out that we can solve for the translation and rotation

separately. If (R, t) is the optimal transformation, then the points
{pi} and {Rqi + t} have the same centers of mass. To see that,
let p = 1

n

∑n
i=1 pi and q = 1

n

∑n
i=1 qi. Given optimal R and t,

p =
1

n

n∑
i=1

(Rqi + t) = R

(
1

n

n∑
i=1

qi

)
+ t = Rq + t ,

and t = p − Rq. The same can be shown by differentiating our
least-squares objective with respect to t.
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60 PCA and SVD

Figure 4.14: Aligning two shapes in correspondence by a rigid transfor-
mation.

To find R, let us assume that the corresponding points have
been shifted so that their centers of mass align. Now we want to
find R that minimizes

n∑
i=1

‖pi −Rqi‖2.

Let

H =
n∑
i=1

qipi
>.

Given the SVD of H = UΣV>, the optimal orthogonal transfor-
mation is R = V U>. Below we see why.

Given the orthogonality of R, we have R>R = I and hence

n∑
i=1

‖pi −Rqi‖2 =
n∑
i=1

(pi −Rqi)
>(pi −Rqi)

=

n∑
i=1

pi
>pi − pi

>Rqi − qi
>Rpi + qi

>R>Rqi

=
n∑
i=1

pi
>pi − pi

>Rqi − qi
>Rpi + qi

>qi .

The first and last terms, pi
>pi and qi

>qi, do not depend on R,
so we can ignore them in the minimization of

∑n
i=1 ‖pi − Rqi‖2.

Thus, the minimization reduces to

min
R

n∑
i=1

(−pi
>Rqi − qi

>Rpi) = max
R

n∑
i=1

(pi
>Rqi + qi

>Rpi) .
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PCA and SVD 61

Since the second term qi
>Rpi is a scalar, we have

pi
>Rqi = (pi

>Rqi)
>= pi

>Rqi ,

which implies that

argmax
R

n∑
i=1

2pi
>Rqi = argmax

R

n∑
i=1

pi
>Rqi .

Simplifying further,

n∑
i=1

pi
>Rqi = Trace

( n∑
i=1

Rqipi
>
)

= Trace

(
R

n∑
i=1

qipi
>
)
,

where Trace(A) =
∑n

i=1Aii.
Hence, we want to find R that maximizes Trace(RH). It is

known that if M is symmetric positive definite (all eigenvalues of
M are positive) and B is any orthogonal matrix, then

Trace(M) ≥ Trace(BM) .

Thus, let us find R so that RH is symmetric positive definite.
Then we know for sure that Trace(RH) is maximal. If H = UΣV>

is the SVD, we define R = V U>. Now let us check RH:

RH = (V U>)(UΣV>) = V ΣV>,

which is a symmetric matrix and its eigenvalues are positive, mean-
ing that RH is symmetric positive definite. If you want to go
deeper into the algebra of this problem, refer to our technical note
“Least-Squares Rigid Motion Using SVD”,
http://igl.ethz.ch/projects/ARAP/svd rot.pdf

Practical computation of principal components. Comput-
ing the SVD is expensive, and we always need to pay attention to
the dimensions of the matrix. In many applications we need to
compute the principal components for very large matrices, and
that can be extremely computationally expensive or even infeasi-
ble. Suppose, for example, that each vector represents the pixels
of an image: then the vector length is approximately 16K for a
rather small-size image of 128×128 pixels, and the scatter matrix
is a huge matrix of dimensions 16K × 16K. However, the rank
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