252-0538-00L, Spring 2025

Shape Modeling and Geometry Processing

Introduction and Overview

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

February 19, 2025

Teaching team

Lectures

Prof. Dr. Olga Sorkine-Hornung sorkine@inf.ethz.ch https://igl.ethz.ch/people/sorkine/

Exercises

Annika Oehri

Alexandre Binninger

Dr. Jing Ren

en Dr. Ruben Wiersma

Dr. Marcel Padilla

Aviv Segall

Contact: igl.lectures@inf.ethz.ch

February 19, 2025

Motivation

- Most manufactured objects are designed on a computer
- Digital 3D content creation is in high demand: entertainment, marketing, virtual worlds, art...
- Digital manufacturing technologies: 3D printing, CNC milling, injection molding, machine knitting
- Machine perception, generative AI, VR/AR/XR, self-driving cars...

Where is it?

February 19, 2025

Olga Sorkine-Hornung

Hint 🙂

February 19, 2025

Motivation

• Eifel Tower new pavilion on the 1st floor. Curved glass panels.

Images sources: archdaily, moitti-rivière

February 19, 2025

Course Goals

- Learn how to design, program and analyze algorithms for interactive 3D shape modeling and digital geometry processing
 - Theory and applications of 3D shape processing
 - Hands-on experience with shape modeling and geometry processing algorithms

Geometric Modeling and Processing

- To describe any real-life or imagined object on the computer: start with shape (2D/3D)
- Geometry processing: digital modeling of 2D/3D geometry

February 19, 2025

Olga Sorkine-Hornung

8

Applications

Product design and prototyping

Medicine, prosthetics

Architecture

Digital humans & avatars

February 19, 2025

Olga Sorkine-Hornung

9

Applications

Source: Esri

Geographical systems, city and landscape planning

February 19, 2025

Olga Sorkine-Hornung

Manufacturing at scale

• Geometry determines aesthetics **and** physics/structural properties

<u>3D printed unreinforced masonry bridge</u>, BLOCK research group (ETHZ)

February 19, 2025

Olga Sorkine-Hornung

Applications

Apparel design, real and virtual fashion

February 19, 2025

Digital Geometry Processing (DGP)

- Processing of discrete (polygonal mesh) models
- Why discrete?
 - Simplicity ease of description
 - Efficiently rendered by graphics hardware
 - Output of most acquisition tools (computer vision, CT/MRI, LIDAR...)
 - Input to most simulation/analysis tools (FE solvers)

Olga Sorkine-Hornung

Interactive Shape Modeling

- Tools for design, editing and animation of digital shapes
 - Interactive = fast
 - Intuitive = convenient interface and predictable outcome

http://youtu.be/EMx6yNe23ug

Digital Shape Modeling

- How do shapes find their way into computers?
 - Geometric modeling is difficult

Humans have no direct "video out"

"Translation" from 2D to 3D is hard

February 19, 2025

Digital Shape Modeling

- How do shapes find their way into computers?
 - Geometric modeling is difficult

Humans have no direct "video out"

"Translation" from 3D to 3D is also not easy

February 19, 2025

Digital Shape Modeling

- How do shapes find their way into computers?
 - Geometric modeling is difficult

Hope: computation can compensate for lack of direct ability to convey visual information

Computer-Aided Geometric Design

• Traditional pipeline for modeling shapes from scratch

User defines a layout of surface patches and control points

Editing is performed by moving control points and/or prescribing tangents

Patch-based construction of a surface

February 19, 2025

Blender Demo

February 19, 2025

Computer-Aided Geometric Design

- High-quality surfaces
- Constrained modeling
- Requires a specific idea of the object first
 - Not easy to experiment and explore alternatives
- Requires training, skill and tedious work

CATIA, Dassault Systemes

http://youtu.be/gTC5zMktMr0

February 19, 2025

Olga Sorkine-Hornung

$$\mathbf{x}(u,v) = \sum_{i,j} \mathbf{p}_{i,j} B_i(u) B_j(v)$$

$$\min_{\mathbf{x}} E(\mathbf{x}) \quad s.t. \ \mathbf{x}|_{\mathcal{C}} = \mathbf{x}_{\text{fixed}}$$

User has more freedom! Select and manipulate arbitrary regions.

February 19, 2025

$$\mathbf{x}(u,v) = \sum_{i,j} \mathbf{p}_{i,j} B_i(u) B_j(v)$$

User has more freedom! Select and manipulate arbitrary regions.

February 19, 2025

Olga Sorkine-Hornung

100 Armadillos, 86K triangles each

February 19, 2025

Olga Sorkine-Hornung

Modern Geometry Acquisition Pipeline

0 19l

February 19, 2025

Unstructured Digital Shapes

- How to **edit** and **animate**?
- How to convert to a **structured representation**?
- Computational challenge: very large amounts of data, yet modeling has to remain interactive

Thai statue, 10M triangles, Stanford 3D Scanning Repository

) igl

February 19, 2025

Olga Sorkine-Hornung

Tools?

- Use techniques from both CS & Math
 - Discrete differential geometry
 - Numerical methods
 - Numerical linear algebra
 - Graph theory
 - PDEs
 - • •
- ... combined with intuition and creativity ...
- work on real data, write/use sophisticated code

Organization

- Course website: <u>https://igl.ethz.ch/teaching/shape-modeling/sm2025/</u>
- Weekly* lectures and exercise sessions
- Prerequisites:
 - Computer Graphics or Visual Computing somewhat soft condition
 - Knowledge of C++ programming firm condition
- * see course website for the precise schedule

Course Materials

- No book covers all topics
 - Many of the topics are recent research results
 - The following book might be helpful: Polygon Mesh Processing, Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, Bruno Levy, AK Peters, 2010. <u>http://www.pmp-book.org/</u> Several copies available in the CS library.
- We will **link** to relevant papers in the **course slides**
- Lecture slides available on the website shortly after the class
- Papers from: SIGGRAPH, Symposium on Geometry Processing (SGP), EUROGRAPHICS, etc. Useful website: <u>https://kesen.realtimerendering.com/</u>

Grading

- Homework assignments
 - Mesh / libigl "Hello, world!"
 - Surface reconstruction
 - DDG tutorial and smoothing optional, ungraded
 - Mesh parameterization
 - Detail preserving shape deformation
 - Articulated character deformation/animation
- Multiple choice, timed assignment (60 min) (last lecture slot, 28.05.2025)
- All programming assignments are in C++, details on Friday in the TA session.

80%

20%

Policy

- Homework assignments to be done individually
 - May consult (also via forum) but may not collaborate
 - Plagiarism checks on all assignments, zero tolerance policy
 - More details in the exercise section
- Laptops in class last occupied row only, please ③
- Feel free to participate and ask questions!

- Overview of shape representations
 - Parametric curves/surfaces
 - Implicit surfaces
 - Polygonal meshes

February 19, 2025

Olga Sorkine-Hornung

• Shape acquisition

- Scanning/imaging
- Reconstruction

February 19, 2025

Olga Sorkine-Hornung

Differential geometry

- Continuous and discrete
- Powerful tool to analyze and model shapes

February 19, 2025

• Digital geometry processing

 Denoising, smoothing, simplification, remeshing, parameterization, compression

February 19, 2025

February 19, 2025

• Parameterization

February 19, 2025

• Shape creation and editing

http://youtu.be/38wF2Qnoc7A

February 19, 2025

O'

Advanced topics - TBD

• Architectural geometry, developable surfaces

February 19, 2025

Advanced topics - TBD

Data driven geometry processing and learning

Hertz et al. 2022: the SPAGHETTI system (a deep neural network). Shape parts and the rules for their relationships are automatically learned.

OIGL

February 19, 2025

Olga Sorkine-Hornung

Thank you

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

February 19, 2025