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Geometry Acquisition is Everywhere

Goal: low-cost, fast, accurate, dense
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From physical to digital
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Scanning
results in range images

Registration
bring all range images to 

one coordinate system

Stitching/reconstruction
Integration of scans into a single mesh

Postprocess
Topological filtering

Geometric filtering

Remeshing

Compression

Geometry Acquisition Pipeline
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Touch Probes
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Touch Probes (Contact-based)

● Physical contact with the object

● Manual or computer-guided

● Advantages:

▪ Can be very precise

▪ Can scan any solid surface

● Disadvantages:

▪ Slow, small scale

▪ Can’t use on fragile objects
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Optical Scanning

● Infer the geometry from 

light reflectance 

● Advantages:

▪ Less invasive than touch

▪ Fast, large scale possible

● Disadvantages:

▪ Difficulty with transparent, fuzzy 

and shiny objects
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Optical scanning – active lighting
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Optical scanning – active lighting

● A type of laser pulse-based 

rangefinder (LIDAR)

● Measures the time it takes the laser 

beam to hit the object and come back
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Optical scanning – active lighting

● Accommodates large range – up to several miles 

(suitable for buildings, rocks)

● Lower accuracy in large range

▪ objects move while scanning
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Optical scanning – active lighting
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Optical scanning – active lighting

● Laser beam and camera

● Laser dot is photographed

● The location of the dot in the

image allows triangulation: 

we get the distance to the object
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Optical scanning – active lighting

● Very precise (tens of microns)

● Works well for small distances 

(meters)

● Scanning is tough for

surfaces (shiny or dark)
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Optical scanning – active lighting
Structured light
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Optical scanning – active lighting
Structured light (depth camera)

● Pattern of visible or infrared light is projected onto the object (larger 

scanning area)

● The distortion of the pattern, recorded by the camera, provides geometric 

information

● Very fast – 2D pattern at once

▪ Even in real time, like Intel RealSense

● Complex distance calculation, prone to noise, problems outdoors
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Optical scanning – passive stereo

● No need for special lighting/radiation (* but good ambient lighting helps)

● Requires two (or more) cameras

▪ Feature matching and triangulation

(xR, yR)

(xL, yL)

Epipolar 

line

Right camera

projection plane

Left camera

projection plane

Left camera

focal point

Right camera

focal point
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Optical scanning – passive stereo

● Photogrammetry, multi-view reconstruction

● Sensitive to changing light conditions and ambient light

● Sensitive to density of features

● Relatively slow and inaccurate, requires significant compute resources

By Fxguide By bitfab

February 26, 2025 Olga Sorkine-Hornung, Ruben Wiersma 26



#

Imaging

● Ultrasound, CT, MRI

● Discrete volume of density data

● First need to segment the 

desired object (contouring)
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Challenges

Noise & Outliers Incompleteness Inconsistency
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Scanning
results in range images

Registration
bring all range images to 

one coordinate system

Stitching/reconstruction
Integration of scans into a single mesh

Postprocess
Topological filtering

Geometric filtering
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Compression

Geometry Acquisition Pipeline
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Problem Statement

𝑀1 ≈ 𝑇 𝑀2

𝑇:  translation + rotation

𝑀1 𝑀2
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Problem Statement

𝑀1 𝑀2

𝑀1 ≈ 𝑇2 𝑀2 ≈⋯≈ 𝑇𝑛 𝑀𝑛

Given 𝑀1, … ,𝑀𝑛 find 𝑇2, … , 𝑇𝑛 such that 

the overlapping parts of the shapes match.
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Correspondences

● How many points define a rigid transformation? 6 DOF

● The first problem is finding corresponding pairs!
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ICP: Iterative Closest Point

● Idea: Iterate

▪ (1) Find correspondences

▪ (2) Use them to find a transformation

● Intuition:

▪ With right correspondences, problem solved
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ICP: Iterative Closest Point

This algorithm converges to the correct solution

if the starting scans are “close enough”
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ICP: Basic Algorithm

● Select (e.g., 1000) random points

● Match each point to closest point on other scan

● Reject pairs with distance too big

▪ Why? How?

● Construct error function:

● Minimize

▪ closed form solution in: http://dl.acm.org/citation.cfm?id=250160
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ICP: Basic Algorithm

● Select (e.g., 1000) random points

● Match each point to closest point on other scan

● Reject pairs with distance too big

▪ Why? How?

● Construct error function:

● Minimize

▪ We will revisit this solution later: http://igl.ethz.ch/projects/ARAP/svd_rot.pdf
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Surface Reconstruction

● Generate a mesh from a set of surface samples

February 26, 2025 Olga Sorkine-Hornung, Ruben Wiersma 43



#

Implicit Function Approach
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Implicit Function Approach

● Define a function 

(typically with value > 0 outside 

the shape and < 0 inside)
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Implicit Function Approach

● Define a function 

(typically with value > 0 outside

the shape and < 0 inside)

● Extract the zero-set
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➔ Get mesh with Marching Cubes! 

More on all this next week.
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Polygonal Meshes

● Boundary representations of objects
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Meshes as Approximations of Smooth Surfaces

● Piecewise linear approximation

▪ Error is O(h2), where h is edge-length
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Polygonal Meshes

Polygonal meshes are a good representation

● approximation O(h2) 

● arbitrary topology

● piecewise smooth surfaces

● adaptive refinement

● efficient rendering
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Polygon

▪ Vertices:

▪ Edges: 

▪ Closed:

▪ Planar: all vertices on a plane

▪ Simple: not self-intersecting
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Polygonal Mesh

● A finite set M of closed, 

simple polygons Qi is a 

polygonal mesh

● The intersection of two 

polygons in M is either 

empty, a vertex, or an edge
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#

● A finite set M of closed, 

simple polygons Qi is a 

polygonal mesh

● The intersection of two 

polygons in M is either 

empty, a vertex, or an edge

● Every edge belongs to at 

least one polygon

● Each Qi defines a face of 

the polygonal mesh

Polygonal Mesh
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Polygonal Mesh

February 26, 2025 Olga Sorkine-Hornung, Ruben Wiersma 61

vertices edges faces



#

Polygonal Mesh

4
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● Vertex degree or valence 

=

number of incident edges
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Polygonal Mesh

2

● Vertex degree or valence 

=

number of incident edges
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Polygonal Mesh

● Boundary: the set of all 

edges that belong to only 

one polygon 

▪ Either empty or forms 

closed loops

▪ If empty, then the 

polygonal mesh is closed
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Triangle Meshes

● Connectivity: vertices, edges, triangles

● Geometry: vertex positions
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Manifolds

● A surface is a closed 2-manifold if it is everywhere locally 

homeomorphic to a disk

February 26, 2025 Olga Sorkine-Hornung, Ruben Wiersma 66



#

Manifolds

● A surface is a closed 2-manifold if it is everywhere locally 

homeomorphic to a disk

February 26, 2025 Olga Sorkine-Hornung, Ruben Wiersma 67

Homeomorphic

• one-to-one (bijective)

• continuous in both directions
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Manifolds

● For every point x in M, there is an open ball Bx (r) of radius r > 0 

centered at x such that M   Bx is homeomorphic to an open disk
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Manifolds

● Manifold with boundary: a vicinity of each boundary point is 

homeomorphic to a half-disk
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Is it 2-manifold or not? Why?
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Manifold meshes

● Manifold: at most 2 faces sharing an edge

▪ Boundary edges have one incident face

▪ Inner edges have two incident faces

● A manifold vertex has 1 connected (half-)ring of faces

manifold non-manifold 

vertex

non-manifold

edge

non-manifold 

vertex
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Manifolds

● If closed and not self-intersecting, a manifold divides the space 

into inside and outside

● A closed manifold polygonal mesh is also called polyhedron
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Orientation

● Every face of a polygonal mesh is orientable

▪ Clockwise vs. counterclockwise order of face vertices

▪ Defines sign/direction of the surface normal
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Orientation

● Consistent orientation of neighboring faces:
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face 1: (3,0,1,2) face 2: (2,1,4,5)
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● A polygonal mesh is orientable, if all faces can be oriented such that the 

incident faces to every edge are consistently oriented

▪ If the faces are consistently oriented for every edge, the mesh is oriented

● Note

▪ Every non-orientable closed mesh 

embedded in      intersects itself

▪ A non-self-intersecting 

polyhedron is always orientable 

Orientability
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Klein bottle
Möbius strip
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Global Topology of Meshes

● Genus: ½ × the maximal number of closed paths that 

do not disconnect the graph  

▪ Informally, the number of handles (“donut holes”)
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Global Topology of Meshes

● Genus: ½ × the maximal number of closed paths that 

do not disconnect the graph  
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Euler-Poincaré Formula

● Theorem (Euler): The sum

 is constant for a given surface topology, no matter which 
(manifold) mesh we choose

▪ v = number of vertices

▪ e = number of edges

▪ f = number of faces
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Euler-Poincaré Formula

● For orientable meshes:

▪ c = number of connected components

▪ g = genus

▪ b = number of boundary loops
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Euler-Poincaré Formula

● For orientable meshes:

▪ c = number of connected components

▪ g = genus

▪ b = number of boundary loops
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Implication for Mesh Storage

● Let‘s count the edges and faces in a closed triangle mesh:

▪ Ratio of edges to faces: e = 3/2 f

• each edge belongs to exactly 2 triangles

• each triangle has exactly 3 edges
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● Let‘s count the edges and faces in a closed triangle mesh:

▪ Ratio of edges to faces: e = 3/2 f

• each edge belongs to exactly 2 triangles

• each triangle has exactly 3 edges

▪ Ratio of vertices to faces: f ~ 2v

• 2 = v – e + f = v – 3/2 f + f

• 2 + f / 2 = v

Implication for Mesh Storage

February 26, 2025 Olga Sorkine-Hornung, Ruben Wiersma 84



#

● Let‘s count the edges and faces in a closed triangle mesh:

▪ Ratio of edges to faces: e = 3/2 f

• each edge belongs to exactly 2 triangles

• each triangle has exactly 3 edges

▪ Ratio of vertices to faces: f ~ 2v

• 2 = v – e + f = v – 3/2 f + f

• 2 + f / 2 = v

▪ Ratio of edges to vertices: e ~ 3v

▪ Average degree of a vertex:  6

Implication for Mesh Storage
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Regularity

● Triangle mesh: average valence = 6

● Quad mesh: average valence = 4

● Regular mesh: all faces have the same number of edges and all 

vertex degrees are equal. 

▪ Not possible for all topologies

● Regular mesh with singularities:

▪ all faces have same number of sides;

▪ small number of vertices has a different valence

(e.g. for quad meshes: degree 3 or 5).
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Regularity

● “Nice mesh” (sometimes colloquially called “regular”)
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Regularity

● Regular mesh with singularities (different valence)

▪ a.k.a. “nearly regular”
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Triangulation

● Polygonal mesh where every face is 

a triangle

● Simplifies data structures

● Simplifies rendering

● Simplifies algorithms

● Each face planar and convex

● Any polygon can be triangulated
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Triangulation
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● Polygonal mesh where every face is 

a triangle

● Simplifies data structures

● Simplifies rendering

● Simplifies algorithms

● Each face planar and convex

● Any polygon can be triangulated
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Polygonal vs. Triangle Meshes

● Triangles are flat and convex
▪ Easy rasterization, normals

▪ Uniformity (same # of vertices)

● 3-way symmetry is less natural

● General polygons are flexible
▪ Quads have natural symmetry

● Can be non-planar, non-convex
▪ Difficult for graphics hardware

● Varying number of vertices
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Polygonal vs. Triangle Meshes

● Edge loops are convenient for editing and animation
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Polygonal vs. Triangle Meshes

● Quality of triangle meshes

▪ Uniform area

▪ Angles close to 60

● Quality of quadrilateral meshes

▪ Number of irregular vertices

▪ Angles close to 90

▪ Good edge flow
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Polygonal (hex) Meshes

E. Van Egeraat
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Data Structures

● What should be stored?

▪ Geometry: 3D coordinates

▪ Connectivity
• Adjacency relationships

▪ Attributes
• Normal, color, texture coordinates

• Per vertex, face, edge
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#

Data Structures

● What should be supported?

▪ Rendering

▪ Queries

• What are the vertices of face #2?

• Is vertex A adjacent to vertex H?

• Which faces are adjacent to face #1?

▪ Modifications

• Remove/add a vertex/face

• Vertex split, edge collapse

A
B

C D

E F

G

H
I

J K

1

2

3

4

February 26, 2025 Olga Sorkine-Hornung, Ruben Wiersma 96



#

Data Structures

● How good is a data structure?

▪ Time to construct

▪ Time to answer a query

▪ Time to perform an operation

▪ Space complexity

▪ Redundancy

● Criteria for design

▪ Expected number of vertices

▪ Available memory

▪ Required operations

▪ Distribution of operations
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Triangle List

● STL format (used in CAD)

● Storage

▪ Triangular face: 3 positions

▪ 4 bytes per coordinate

▪ 36 bytes per face

• Euler: f = 2v

• 72*v bytes for a mesh 

with v vertices

● No connectivity information

Triangles

0 x0 y0 z0

1 x1 x1 z1

2 x2 y2 z2

3 x3 y3 z3

4 x4 y4 z4

5 x5 y5 z5

6 x6 y6 z6

... ... ... ...
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Indexed Face Set

● Used in formats

    OBJ, OFF, WRL…

● Storage

▪ Vertex: position

▪ Face: vertex indices

▪ 12 bytes per vertex (single precision)

▪ 12 bytes per face

▪ 36*v bytes for the mesh

● No explicit neighborhood info

Vertices

v0 x0 y0 z0

v1 x1 x1 z1

v2 x2 y2 z2

v3 x3 y3 z3

v4 x4 y4 z4

v5 x5 y5 z5

v6 x6 y6 z6

... ... ... ...

Triangles

t0 v0 v1 v2

t1 v0 v1 v3

t2 v2 v4 v3

t3 v5 v2 v6

... ... ... ...
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#

● Information about neighbors is not explicit

▪ Finding neighboring vertices/edges/faces costs O(V) time!

▪ Local mesh modifications cost O(V) 

▪ Breadth-first search costs O(kV) where k = # found vertices

Indexed Face Set: Problems
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#

Neighborhood Relations

▪ All possible neighborhood relationships:

1. Vertex – Vertex    VV

2. Vertex – Edge  VE

3. Vertex – Face  VF

4. Edge – Vertex  EV

5. Edge – Edge  EE

6. Edge – Face  EF

7. Face – Vertex  FV

8. Face – Edge  FE

9. Face – Face  FF

We’d like O(1) time for queries and 

local updates of these relationships
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The Classics

● Which data structure?

▪ O(1) query for adjacency

▪ O(1) insertion, deletion
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Linked List

Data Pointer Data Pointer Data Pointer Data Pointer



#

Halfedge data structure

● Split edges in oriented halfedges

▪ New ‘core’ element
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struct Halfedge {
    Halfedge* twin;
    Halfedge* next;
    Vertex* vertex;
    Edge* edge;
    Face* face;
};



#

Halfedge data structure

● Split edges in oriented halfedges

▪ New ‘core’ element
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struct Halfedge {
    Halfedge* twin;
    Halfedge* next;
    Vertex* vertex;
    Edge* edge;
    Face* face;
};



#

Halfedge data structure

● Split edges in oriented halfedges

▪ New ‘core’ element
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struct Halfedge {
    Halfedge* twin;
    Halfedge* next;
    Vertex* vertex;
    Edge* edge;
    Face* face;
};



#

Halfedge data structure

● Split edges in oriented halfedges

▪ New ‘core’ element
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struct Halfedge {
    Halfedge* twin;
    Halfedge* next;
    Vertex* vertex;
    Edge* edge;
    Face* face;
};



#

Halfedge data structure

● Split edges in oriented halfedges

▪ New ‘core’ element
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struct Halfedge {
    Halfedge* twin;
    Halfedge* next;
    Vertex* vertex;
    Edge* edge;
    Face* face;
};

struct Vertex {
    Halfedge* halfedge;
};

struct Edge {
    Halfedge* halfedge;
};

struct Face {
    Halfedge* halfedge;
};



#

Halfedge data structure

● Split edges in oriented halfedges

▪ New ‘core’ element
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struct Halfedge {
    Halfedge* twin;
    Halfedge* next;
    Vertex* vertex;
    Edge* edge;
    Face* face;
};



#

Easy to traverse
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● Over a face

▪ face

▪ halfedge

▪ next

▪ next

● Vertices? Vertex v = halfedge.vertex;



#

Easy to traverse
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● Around a vertex?

struct Halfedge {
    Halfedge* twin;
    Halfedge* next;
    Vertex* vertex;
    Edge* edge;
    Face* face;
};



#

Easy to traverse
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● Around a vertex?
▪ halfedge
▪ twin
▪ next
▪ twin
▪ next
▪ …



#

Halfedge data structure

● Pros: (assuming bounded vertex valence)

▪ O(1) time for neighborhood relationship queries

▪ O(1) time and space for local modifications (edge collapse, vertex 

insertion…)

● Cons:

▪ Heavy – requires storing and managing extra pointers.

▪ Not as trivial as Indexed Face Set for rendering with GPUs
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Manifold…

● At most two faces on an edge

● Each vertex has only one halfedge
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✓ x x x ✓



#

Manifold and oriented

● Data structure guarantees orientation
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#

Does it halfedge?

February 26, 2025 Olga Sorkine-Hornung, Ruben Wiersma 115

Klein bottle
Möbius strip



#

Minimum number of halfedges?
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#

Halfedge Libraries

● CGAL

▪ www.cgal.org

▪ Computational geometry

● OpenMesh

▪ www.openmesh.org

▪ Mesh processing

● Geometry Central
▪ www.geometry-central.net

● Not used in class.

● Instead, Indexed Face Set augmented with tables for fast queries.
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struct Halfedge {
    Halfedge* twin;
    Halfedge* next;
    Vertex* vertex;
    Edge* edge;
    Face* face;
};

http://www.geometry-central.net/


Thank you

February 26, 2025
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