Shape Modeling and Geometry Processing

Geometry Acquisition Meshes

Geometry Acquisition is Everywhere

By Google

By Elysium Co. Ltd.

Goal: low-cost, fast, accurate, dense

From physical to digital

Scanning

results in range images

Registration

bring all range images to one coordinate system

Stitching/reconstruction

Integration of scans into a single mesh

Postprocess

Scanning

results in range images

Registration

bring all range images to one coordinate system

Stitching/reconstruction

Integration of scans into a single mesh

Postprocess

Scanning

results in range images

Registration

bring all range images to one coordinate system

Stitching/reconstruction

Integration of scans into a single mesh

Postprocess

Scanning

results in range images

Registration

bring all range images to one coordinate system

Stitching/reconstruction

Integration of scans into a single mesh

Postprocess

Scanning

results in range images

Registration

bring all range images to one coordinate system

Stitching/reconstruction

Integration of scans into a single mesh

Postprocess

Scanning

results in range images

Registration

bring all range images to one coordinate system

Stitching/reconstruction

Integration of scans into a single mesh

Postprocess

Touch Probes

Touch Probes (Contact-based)

- Physical contact with the object
- Manual or computer-guided
- Advantages:
 - Can be very precise
 - Can scan any solid surface
- Disadvantages:
 - Slow, small scale
 - Can't use on fragile objects

Optical Scanning

- Infer the geometry from light reflectance
- Advantages:
 - Less invasive than touch
 - Fast, large scale possible
- Disadvantages:
 - Difficulty with transparent, fuzzy and shiny objects

Time of flight laser

- A type of laser pulse-based rangefinder (LIDAR)
- Measures the time it takes the laser beam to hit the object and come back

- Accommodates large range up to several miles (suitable for buildings, rocks)
- Lower accuracy in large range
 - objects move while scanning

- Laser beam and camera
- Laser dot is photographed
- The location of the dot in the image allows triangulation: we get the distance to the object

- Very precise (tens of microns)
- Works well for small distances (meters)
- Scanning is tough for surfaces (shiny or dark)

Structured light

Structured light (depth camera)

- Pattern of visible or infrared light is projected onto the object (larger scanning area)
- The distortion of the pattern, recorded by the camera, provides geometric information
- Very fast 2D pattern at once
 - Even in real time, like Intel RealSense
- Complex distance calculation, prone to noise, problems outdoors

Optical scanning - passive stereo

- No need for special lighting/radiation (* but good ambient lighting helps)
- Requires two (or more) cameras
 - Feature matching and triangulation

Optical scanning - passive stereo

- Photogrammetry, multi-view reconstruction
- Sensitive to changing light conditions and ambient light
- Sensitive to density of features
- Relatively slow and inaccurate, requires significant compute resources

By Fxguide By bitfab

Imaging

- Ultrasound, CT, MRI
- Discrete volume of density data
- First need to segment the desired object (contouring)

Challenges

Noise & Outliers

Incompleteness

Inconsistency

Scanning

results in range images

Registration

bring all range images to one coordinate system

Stitching/reconstruction

Integration of scans into a single mesh

Postprocess

Problem Statement

T: translation + rotation

Problem Statement

 M_2

$$M_1 \approx T(M_2)$$

T: translation + rotation

Problem Statement

Given $M_1, ..., M_n$ find $T_2, ..., T_n$ such that the overlapping parts of the shapes match.

Correspondences

- How many points define a rigid transformation? 6 DOF
- The first problem is finding corresponding pairs!

ICP: Iterative Closest Point

- Idea: Iterate
 - (1) Find correspondences
 - (2) Use them to find a transformation
- Intuition:
 - With right correspondences, problem solved

ICP: Iterative Closest Point

- Idea: Iterate
 - (1) Find correspondences
 - (2) Use them to find a transformation
- Intuition:
 - With right correspondences, problem solved

ICP: Iterative Closest Point

- Idea: Iterate
 - (1) Find correspondences
 - (2) Use them to find a transformation
- Intuition:
 - Don't have the right correspondences? Can still make progress!

ICP: Iterative Closest Point

- Idea: Iterate
 - (1) Find correspondences
 - (2) Use them to find a transformation
- Intuition:
 - Don't have the right correspondences? Can still make progress!

ICP: Iterative Closest Point

This algorithm converges to the correct solution if the starting scans are "close enough"

ICP: Basic Algorithm

- Select (e.g., 1000) random points
- Match each point to closest point on other scan
- Reject pairs with distance too big
 - Why? How?
- Construct error function:

$$E(R,t) := \sum_{i=1}^{n} \|(R p_i + t) - q_i\|^2$$

- Minimize
 - closed form solution in: http://dl.acm.org/citation.cfm?id=250160

ICP: Basic Algorithm

- Select (e.g., 1000) random points
- Match each point to closest point on other scan
- Reject pairs with distance too big
 - Why? How?
- Construct error function:

$$E(R,t) := \sum_{i=1}^{n} \|(R p_i + t) - q_i\|^2$$

- Minimize
 - We will revisit this solution later: http://igl.ethz.ch/projects/ARAP/svd_rot.pdf

Geometry Acquisition Pipeline

Scanning

results in range images

Registration

bring all range images to one coordinate system

Stitching/reconstruction

Integration of scans into a single mesh

Postprocess

Topological filtering Geometric filtering Remeshing Compression

Surface Reconstruction

Generate a mesh from a set of surface samples

Define a function

$$f: \mathbb{R}^3 \to \mathbb{R}$$

(typically with value > 0 outside the shape and < 0 inside)

Define a function

$$f: \mathbb{R}^3 \to \mathbb{R}$$

(typically with value > 0 outside the shape and < 0 inside)

Extract the zero-set

$$\{\mathbf{x}: f(\mathbf{x}) = 0\}$$

Define a function

$$f: \mathbb{R}^3 \to \mathbb{R}$$

(typically with value > 0 outside the shape and < 0 inside)

Extract the zero-set

$$\{\mathbf{x}: f(\mathbf{x}) = 0\}$$

→ Get mesh with Marching Cubes!
More on all this next week.

Meshes

Boundary representations of objects

Meshes as Approximations of Smooth Surfaces

- Piecewise linear approximation
 - Error is $O(h^2)$, where h is edge-length

Meshes as Approximations of Smooth Surfaces

- Piecewise linear approximation
 - Error is $O(h^2)$, where h is edge-length

Meshes as Approximations of Smooth Surfaces

- Piecewise linear approximation
 - Error is $O(h^2)$, where h is edge-length

Polygonal meshes are a good representation

- approximation $O(h^2)$
- arbitrary topology
- piecewise smooth surfaces
- adaptive refinement
- efficient rendering

Polygon

- Vertices: v_0, v_1, \dots, v_{n-1}
- Edges: $\{(v_0, v_1), \dots, (v_{n-2}, v_{n-1})\}$

- Closed: $v_0 = v_{n-1}$
- Planar: all vertices on a plane
- Simple: not self-intersecting

- A finite set M of closed, simple polygons Q_i is a polygonal mesh
- The intersection of two polygons in M is either empty, a vertex, or an edge

- A finite set M of closed, simple polygons Q_i is a polygonal mesh
- The intersection of two polygons in M is either empty, a vertex, or an edge
- Every edge belongs to at least one polygon

- A finite set M of closed, simple polygons Q_i is a polygonal mesh
- The intersection of two polygons in M is either empty, a vertex, or an edge
- Every edge belongs to at least one polygon
- Each Q_i defines a **face** of the polygonal mesh

- A finite set M of closed, simple polygons Q_i is a polygonal mesh
- The intersection of two polygons in M is either empty, a vertex, or an edge
- Every edge belongs to at least one polygon
- Each Q_i defines a **face** of the polygonal mesh

- A finite set M of closed, simple polygons Q_i is a polygonal mesh
- The intersection of two polygons in M is either empty, a vertex, or an edge
- Every edge belongs to at least one polygon
- Each Q_i defines a **face** of the polygonal mesh

- A finite set M of closed, simple polygons Q_i is a polygonal mesh
- The intersection of two polygons in M is either empty, a vertex, or an edge
- Every edge belongs to at least one polygon
- Each Q_i defines a **face** of the polygonal mesh

Vertex degree or valence=number of incident edges

Vertex degree or valence=number of incident edges

- Boundary: the set of all edges that belong to only one polygon
 - Either empty or forms closed loops
 - If empty, then the polygonal mesh is closed

Triangle Meshes

- Connectivity: vertices, edges, triangles
- Geometry: vertex positions

$$V = \{v_1, \dots, v_n\}$$

$$E = \{e_1, \dots, e_k\}, \quad e_i \in V \times V$$

$$F = \{f_1, \dots, f_m\}, \quad f_i \in V \times V \times V$$

$$P = {\mathbf{p}_1, \dots, \mathbf{p}_n}, \quad \mathbf{p}_i \in \mathbb{R}^3$$

A surface is a closed 2-manifold if it is everywhere locally

homeomorphic to a disk

$$B_{\mathbf{x}}(r) = \{ \mathbf{y} \in \mathbb{R}^3 \ s.t. \ ||\mathbf{y} - \mathbf{x}|| < r \}$$

A surface is a closed 2-manifold if it is everywhere locally

homeomorphic to a disk

$$B_{\mathbf{x}}(r) = \{ \mathbf{y} \in \mathbb{R}^3 \ s.t. \ \|\mathbf{y} - \mathbf{x}\| < r \}$$

Homeomorphic

- one-to-one (bijective)
- continuous in both directions

• For every point x in M, there is an **open** ball $B_x(r)$ of radius r > 0 centered at x such that $M \cap B_x$ is homeomorphic to an open disk

$$B_{\mathbf{x}}(r) = \{ \mathbf{y} \in \mathbb{R}^3 \ s.t. \ \|\mathbf{y} - \mathbf{x}\| < r \}$$

Homeomorphic

- one-to-one (bijective)
- continuous in both directions

 Manifold with boundary: a vicinity of each boundary point is homeomorphic to a half-disk

Is it 2-manifold or not? Why?

Manifold meshes

- Manifold: at most 2 faces sharing an edge
 - Boundary edges have one incident face
 - Inner edges have two incident faces
- A manifold vertex has 1 connected (half-)ring of faces

- If closed and not self-intersecting, a manifold divides the space into inside and outside
- A closed manifold polygonal mesh is also called polyhedron

Orientation

- Every face of a polygonal mesh is orientable
 - Clockwise vs. counterclockwise order of face vertices
 - Defines sign/direction of the surface normal

Orientation

Consistent orientation of neighboring faces:

Orientability

- A polygonal mesh is orientable, if all faces can be oriented such that the incident faces to every edge are consistently oriented
 - If the faces are consistently oriented for every edge, the mesh is oriented

Note

- Every non-orientable *closed* mesh embedded in \mathbb{R}^3 intersects itself
- A non-self-intersecting polyhedron is always orientable

- **Genus:** $\frac{1}{2}$ × the maximal number of closed paths that do not disconnect the graph
 - Informally, the number of handles ("donut holes")

- **Genus:** $\frac{1}{2}$ × the maximal number of closed paths that do not disconnect the graph
 - Informally, the number of handles ("donut holes")

- **Genus:** $\frac{1}{2}$ × the maximal number of closed paths that do not disconnect the graph
 - Informally, the number of handles ("donut holes")

• **Genus:** $\frac{1}{2}$ × the maximal number of closed paths that do not disconnect the graph

Euler-Poincaré Formula

Theorem (Euler): The sum

$$\chi(M) = v - e + f$$

is **constant** for a given surface topology, no matter which (manifold) mesh we choose

- v = number of vertices
- e = number of edges
- f = number of faces

80

Euler-Poincaré Formula

For orientable meshes:

$$v - e + f = 2(c - g) - b = \chi(M)$$

- c = number of connected components
- g = genus
- b = number of boundary loops

$$\chi(\bigcirc) = 2 \qquad \chi(\bigcirc$$

Euler-Poincaré Formula

For orientable meshes:

$$v - e + f = 2(c - g) - b = \chi(M)$$

- c = number of connected components
- g = genus
- b = number of boundary loops

$$\chi(\bigcirc) = 1$$

$$(\bigcirc) = 2 \qquad \chi(\bigcirc) = 0 \qquad \chi(\bigcirc)$$

Implication for Mesh Storage

- Let's count the edges and faces in a closed triangle mesh:
 - Ratio of edges to faces: e = 3/2 f
 - each edge belongs to exactly 2 triangles
 - each triangle has exactly 3 edges

Implication for Mesh Storage

- Let's count the edges and faces in a closed triangle mesh:
 - Ratio of edges to faces: e = 3/2 f
 - each edge belongs to exactly 2 triangles
 - each triangle has exactly 3 edges
 - Ratio of vertices to faces: $f \sim 2v$

•
$$2 = v - e + f = v - 3/2 f + f$$

•
$$2 + f/2 = v$$

Implication for Mesh Storage

- Let's count the edges and faces in a closed triangle mesh:
 - Ratio of edges to faces: e = 3/2f
 - each edge belongs to exactly 2 triangles
 - each triangle has exactly 3 edges
 - Ratio of vertices to faces: $f \sim 2v$

•
$$2 = v - e + f = v - 3/2 f + f$$

•
$$2 + f/2 = v$$

- Ratio of edges to vertices: $e \sim 3v$
- Average degree of a vertex: 6

Regularity

- Triangle mesh: average valence = 6
- Quad mesh: average valence = 4

- Regular mesh: all faces have the same number of edges and all vertex degrees are equal.
 - Not possible for all topologies
- Regular mesh with singularities:
 - all faces have same number of sides;
 - small number of vertices has a different valence (e.g. for quad meshes: degree 3 or 5).

Regularity

"Nice mesh" (sometimes colloquially called "regular")

Regularity

Regular mesh with singularities (different valence)

a.k.a. "nearly regular"

Triangulation

 Polygonal mesh where every face is a triangle

- Simplifies data structures
- Simplifies rendering
- Simplifies algorithms
- Each face planar and convex
- Any polygon can be triangulated

Triangulation

 Polygonal mesh where every face is a triangle

- Simplifies data structures
- Simplifies rendering
- Simplifies algorithms
- Each face planar and convex
- Any polygon can be triangulated

Polygonal vs. Triangle Meshes

- Triangles are flat and convex
 - Easy rasterization, normals
 - Uniformity (same # of vertices)
- 3-way symmetry is less natural
- General polygons are flexible
 - Quads have natural symmetry
- Can be non-planar, non-convex
 - Difficult for graphics hardware
- Varying number of vertices

Polygonal vs. Triangle Meshes

Edge loops are convenient for editing and animation

Polygonal vs. Triangle Meshes

- Quality of triangle meshes
 - Uniform area
 - Angles close to 60
- Quality of quadrilateral meshes
 - Number of irregular vertices
 - Angles close to 90
 - Good edge flow

Polygonal (hex) Meshes

E. Van Egeraat

Data Structures

- What should be stored?
 - Geometry: 3D coordinates
 - Connectivity
 - Adjacency relationships
 - Attributes
 - Normal, color, texture coordinates
 - Per vertex, face, edge

Data Structures

- What should be supported?
 - Rendering
 - Queries
 - What are the vertices of face #2?
 - Is vertex A adjacent to vertex H?
 - Which faces are adjacent to face #1?
 - Modifications
 - Remove/add a vertex/face
 - Vertex split, edge collapse

Data Structures

- How good is a data structure?
 - Time to construct
 - Time to answer a query
 - Time to perform an operation
 - Space complexity
 - Redundancy
- Criteria for design
 - Expected number of vertices
 - Available memory
 - Required operations
 - Distribution of operations

Triangle List

- STL format (used in CAD)
- Storage
 - Triangular face: 3 positions
 - 4 bytes per coordinate
 - 36 bytes per face
 - Euler: f = 2v
 - 72*v bytes for a mesh with v vertices
- No connectivity information

Triangles					
0	×0	y0	z0		
1	×1	×1	z1		
2	x2	y2	z2		
3	x3	у3	z3		
4	x4	y4	z4		
5	x5	у5	z5		
6	x6	у6	z6		
• • •	• • •	• • •	• • •		

Indexed Face Set

- Used in formatsOBJ, OFF, WRL...
- Storage
 - Vertex: position
 - Face: vertex indices
 - 12 bytes per vertex (single precision)
 - 12 bytes per face
 - 36*v bytes for the mesh

No explicit neighborhood info

Vertices					
v 0	×0	y0	z0		
v1	×1	x1	z1		
v2	x2	y2	z2		
v3	x3	у3	z3		
v4	x4	y4	z4		
v 5	x5	у5	z5		
v6	x6	у6	z6		
• • •	• • •	• • •	• • •		

Triangles					
t0	v0	v1	v2		
t1	v0	v1	v3		
t2	v2	v4	v3		
t3	v5	v2	v6		
• • •	• • •	• • •	• • •		

Indexed Face Set: Problems

- Information about neighbors is not explicit
 - Finding neighboring vertices/edges/faces costs O(V) time!
 - Local mesh modifications cost O(V)

• Breadth-first search costs O(kV) where k = # found vertices

Neighborhood Relations

• All possible neighborhood relationships:

1. Vertex - Vertex VV

2. Vertex - Edge VE

3. Vertex - Face VF

4. Edge - Vertex EV

5. Edge - Edge EE

6. Edge - Face EF

7. Face - Vertex FV

8. Face - Edge FE

9. Face - Face FF

We'd like O(1) time for queries and local updates of these relationships

The Classics

- Which data structure?
 - O(1) query for adjacency
 - O(1) insertion, deletion

Split edges in oriented halfedges

```
New 'core' element
struct Halfedge {
};
```


- Split edges in oriented halfedges
 - New 'core' element

```
struct Halfedge {
    Halfedge* twin;
};
```


- Split edges in oriented halfedges
 - New 'core' element

```
struct Halfedge {
    Halfedge* twin;
    Halfedge* next;
};
```


- Split edges in oriented halfedges
 - New 'core' element

```
struct Halfedge {
    Halfedge* twin;
    Halfedge* next;
    Vertex* vertex;
    Edge* edge;
    Face* face;
};
```


Split edges in orie

New 'core' eleme

```
struct Halfedge {
    Halfedge* twin
    Halfedge* next
    Vertex* vertex
    Edge* edge;
    Face* face;
};
```

```
struct Vertex {
    Halfedge* halfedge;
};
```

```
struct Edge {
     Halfedge* halfedge;
};
```

```
struct Face {
     Halfedge* halfedge;
};
```


- Split edges in oriented halfedges
 - New 'core' element

```
struct Halfedge {
    Halfedge* twin;
    Halfedge* next;
    Vertex* vertex;
    Edge* edge;
    Face* face;
};
```


Easy to traverse

- Over a face
 - face
 - halfedge
 - next
 - next
- Vertices?

Vertex v = halfedge.vertex;

Easy to traverse

• Around a vertex?

```
struct Halfedge {
    Halfedge* twin;
    Halfedge* next;
    Vertex* vertex;
    Edge* edge;
    Face* face;
};
```


Easy to traverse

- Around a vertex?
 - halfedge
 - twin
 - next
 - twin
 - next
 - • •

- Pros: (assuming bounded vertex valence)
 - O(1) time for neighborhood relationship queries
 - O(1) time and space for local modifications (edge collapse, vertex insertion...)
- Cons:
 - Heavy requires storing and managing extra pointers.
 - Not as trivial as Indexed Face Set for rendering with GPUs

Manifold...

- At most two faces on an edge
- Each vertex has only one halfedge

Manifold and oriented

Data structure guarantees orientation

Does it halfedge?

Möbius strip

Klein bottle

Minimum number of halfedges?

Halfedge Libraries

- CGAL
 - www.cgal.org
 - Computational geometry
- OpenMesh
 - www.openmesh.org
 - Mesh processing
- Geometry Central
 - www.geometry-central.net

- Not used in class.
- Instead, Indexed Face Set augmented with tables for fast queries.

Thank you

