Shape Modeling and Geometry Processing

Normal Estimation in Point Clouds

Goal:

Assign a normal vector **n** at each point cloud point x

- Assign a normal vector n at each point cloud point x
 - Estimate the direction by fitting a local plane

- Assign a normal vector n at each point cloud point x
 - Estimate the direction by fitting a local plane

- Assign a normal vector n at each point cloud point x
 - Estimate the direction by fitting a local plane

- Assign a normal vector n at each point cloud point x
 - Estimate the direction by fitting a local plane

- Assign a normal vector n at each point cloud point x
 - Estimate the direction by fitting a local plane

- Assign a normal vector n at each point cloud point x
 - Estimate the direction by fitting a local plane

- Assign a normal vector n at each point cloud point x
 - Estimate the direction by fitting a local plane

- Assign a normal vector n at each point cloud point x
 - Estimate the direction by fitting a local plane

- Assign a normal vector n at each point cloud point x
 - Estimate the direction by fitting a local plane

- Assign a normal vector n at each point cloud point x
 - Estimate the direction by fitting a local plane

- Assign a normal vector n at each point cloud point x
 - Estimate the direction by fitting a local plane

- Assign a normal vector n at each point cloud point x
 - Estimate the direction by fitting a local plane

- Assign a normal vector n at each point cloud point x
 - Estimate the direction by fitting a local plane
 - Find consistent global orientation by propagation (spanning tree)

Local Plane Fitting

For each point x in the cloud, pick n
nearest neighbors, or all points in r-ball:

$$\{\mathbf{x}_i \mid \|\mathbf{x}_i - \mathbf{x}\| < r\}$$

$$\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$$

Local Plane Fitting

For each point \mathbf{x} in the cloud, pick nnearest neighbors, or all points in r-ball:

$$\{\mathbf{x}_i \mid \|\mathbf{x}_i - \mathbf{x}\| < r\}$$

$$\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$$

Find a plane Π that minimizes the sum of squared distances:

$$\min \sum_{i=1}^n \operatorname{dist}(\mathbf{x}_i,\Pi)^2$$

Notations

• Input points: $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in \mathbb{R}^d$

 Looking for a (hyper) plane passing through c with normal n s.t.

$$\min_{\mathbf{c},\mathbf{n},\|\mathbf{n}\|=1} \sum_{i=1}^n \frac{\left((\mathbf{x}_i - \mathbf{c})^\mathsf{T} \mathbf{n}\right)^2}{\sup_{\substack{\mathsf{sum of squared} \\ \mathsf{distances from plane}}}}$$

Principal Component Analysis (PCA)

PCA finds an orthogonal basis that best represents a given data set

PCA finds the best approximating line/plane/linear subspace in terms of

$$\sum distances^2$$

Best-fit PCA plane - basic recipe

- Input: $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in \mathbb{R}^d$ (column vectors)
- Compute centroid = plane origin $\mathbf{c} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$
- Compute $d \times d$ scatter matrix S $\mathbf{Y} = (\mathbf{y}_1 \ \mathbf{y}_2 \ \dots \ \mathbf{y}_n)$

$$\mathbf{Y} = (\mathbf{y}_1 \ \mathbf{y}_2 \ \dots \ \mathbf{y}_n)$$

$$\mathbf{y}_i = \mathbf{x}_i - \mathbf{c}$$

$$S = YY^{\mathsf{T}}$$

 $[d \times d] = [d \times n][n \times d]$ matrix

Encodes all change correlations!

• Plane normal n is the eigenvector of S with the smallest eigenvalue

$$\mathbf{S} = \mathbf{V} egin{pmatrix} \lambda_1 & & & \ & \ddots & & \ & & \lambda_d \end{pmatrix} \mathbf{V}^\mathsf{T}$$

Direction of smallest change!

Normal Smoothing

Bilateral (anisotropic) normal smoothing is often used.

https://doc.cgal.org/latest/Point_set_processing_3/index.html

- Beware of noise weighted PCA for better robustness.
- <u>A</u> Beware of sharp edges, e.g., intersection of two planes.

- PCA may return arbitrarily oriented eigenvectors
- Wish to orient consistently
 - Neighboring points should have similar normals

- Build graph connecting neighboring points
 - Edge (i,j) exists if $\mathbf{x}_i \in \text{kNN}(\mathbf{x}_j)$ or $\mathbf{x}_j \in \text{kNN}(\mathbf{x}_i)$

- Build graph connecting neighboring points
- Propagate normal orientation through graph connectivity
 - For neighbors \mathbf{x}_i , \mathbf{x}_j : Flip \mathbf{n}_j if $\mathbf{n}_i^\mathsf{T} \mathbf{n}_j < 0$

- Build graph connecting neighboring points
- Propagate normal orientation through graph connectivity
 - For neighbors \mathbf{x}_i , \mathbf{x}_j : Flip \mathbf{n}_j if $\mathbf{n}_i^\mathsf{T} \mathbf{n}_j < 0$

- Build graph connecting neighboring points
- Propagate normal orientation through graph connectivity
 - For neighbors \mathbf{x}_i , \mathbf{x}_j : Flip \mathbf{n}_j if $\mathbf{n}_i^\mathsf{T} \mathbf{n}_j < 0$
 - Fails at sharp edges/corners

- Build graph connecting neighboring points
- Propagate normal orientation through graph connectivity
- Propagate along "safe" paths (parallel tangent planes)
 - Minimum spanning tree with angle-based edge weights

$$w_{ij} = 1 - |\mathbf{n}_i^\mathsf{T} \mathbf{n}_j|$$

- Build graph connecting neighboring points
- Propagate normal orientation through graph connectivity
- Propagate along "safe" paths (parallel tangent planes)
 - Minimum spanning tree with angle-based edge weights

$$w_{ij} = 1 - |\mathbf{n}_i^\mathsf{T} \mathbf{n}_j|$$

- Build graph connecting neighboring points
- Propagate normal orientation through graph connectivity
- Propagate along "safe" paths (parallel tangent planes)
 - Minimum spanning tree with angle-based edge weights

$$w_{ij} = 1 - |\mathbf{n}_i^\mathsf{T} \mathbf{n}_j|$$

- Build graph connecting neighboring points
- Propagate normal orientation through graph connectivity
- Propagate along "safe" paths (parallel tangent planes)
 - Minimum spanning tree with angle-based edge weights

$$w_{ij} = 1 - |\mathbf{n}_i^\mathsf{T} \mathbf{n}_j|$$

This algorihtm is way better, but still not "perfect" at all sharp corners.

Shape Modeling and Geometry Processing

(Discrete) Differential Geometry Planar Curves

Differential Geometry

Language to analyze:

K-dimensional manifolds in N-dimensional space

Differential Geometry - Motivation

Describe and analyze geometric characteristics of shapes

Differential Geometry - Motivation

Describe and analyze geometric characteristics of shapes

Deformations

Parameterizations

Geometric properties - distance

Poke a bunny with a hot needle

See how the heat distributes after a millisecond.

Geodesic in Heat [Crane et al. 2013]

Geometric properties - curvature

The bending of curves

Surface curvature

The bending of surfaces

Surface curvature

Mappings are strongly affected by bending!

Classification of surfaces by curvature

Only 3 classes:

elliptic

Bending "together"

parabolic

On side direction is not bending

hyperbolic

Bending "away from each other"

Differential Geometry Basics

• What does it mean to be "manifold"?

Local neighborhoods are mappings of tiny discs (or lines)

Differential Geometry Basics

• What does it mean to be "manifold"?

Local neighborhoods are mappings of tiny discs (or lines)

The tiny mappings allow us to compute:

- Derivatives
- Tangents
- Normals
- Curvature
- Angles
- Distances
- Etc...

Differential Geometry Basics

- Geometry of manifolds
- Local neighborhoods are parametrized by tiny lines (or discs)

Curves

Parameterization in 2D:

$$\mathbf{p}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}, \ t \in [t_0, t_1]$$

• p(t) must be continuous no jumps!

Properties of planar curves

Length, curvature, tangents, normals

Arc Length Parameterization

- Same curve has many different parameterizations!
- Arc-length: equal, unit pace of the parameter along the curve

Secant

• A line through two points on the curve.

Tangent

• The limiting secant as the two points come

together.

Secant and Tangent - Parametric Form

- Secant: line through $\mathbf{p}(t) \mathbf{p}(s)$
- Tangent vector: $\mathbf{p}'(t) = (x'(t), y'(t), ...)^{T}$

parameterization is arc-length $\Leftrightarrow ||\mathbf{p}'(t)|| = 1$

Tangent, normal, radius of curvature

Circle of Curvature

 Consider the circle passing through three points on the curve...

Circle of Curvature

• ...the limiting circle as three points come together.

Radius of Curvature, r

53

Signed Curvature

Traversal along curve

54

Signed Curvature

Traversal along curve

Flipping direction flips curvature for planar curves!

55

Curvature in arc-length parameterization

 Curvature K corresponds to the rate of change of the tangent t (size of its derivative)

• Curvature is inversely proportional to the osculating circle radius r

Curvature in arc-length parameterization

• In arc-length parameterization, the derivative of the tangent t, is parallel to the curve normal n.

Quick proof:

$$\langle \mathbf{t}(t), \mathbf{t}(t) \rangle = |t|^2 = 1 \quad \Rightarrow 0 = 1' = \langle \mathbf{t}(t), \mathbf{t}(t) \rangle' = 2\langle \mathbf{t}'(t), \mathbf{t}(t) \rangle$$

$$\mathbf{p}''(t) = (\mathbf{p}'(t))' = \mathbf{t}'(t) = \kappa(t) \mathbf{n}(t)$$

The Curvature Normal

When t is arc-length parameter

$$\mathbf{p}''(t) = \kappa(t) \, \mathbf{n}(t)$$

"A multiresolution framework for variational subdivision", Kobbelt and Schröder, ACM TOG 17(4), 1998

The Curvature Normal

When t is arc-length parameter

$$\mathbf{p}''(t) = \kappa(t) \, \mathbf{n}(t)$$

March 12, 2025

Theorem:

The curvature **defines** the planar curve shape, up to rotation and translation!

All these curves have the exact same curvature

(Because it is a non-vectorial property of the derivative.)

59

Gauss map n(p)

Maps points on a curve to the normal at that point.

Curvature = change in normal direction

- Assuming arc length t
 - Absolute curvature: $\kappa(t) = \|\mathbf{n}'(t)\|$
 - Signed curvature: $\mathbf{n}'(t) = -\kappa(t) \mathbf{t}(t)$

Parameter-free view via the Gauss map

Curvature Normal - Examples

Smoothness Example

Curvature and Topology - Turning Number, k

Number of orbits in Gauss image

Curvature and Topology

Turning Number Theorem:

For a closed curve, the integral of curvature is an integer multiple of 2π .

$$\int_{\gamma} \kappa \, dt = 2\pi k$$

Interpretation: If you want to drive back to the start, your total curvature / steering needs to match the number of loops times 2π .

$$\int_{\gamma} \kappa \, dt = \boxed{ +2\pi}$$

$$\boxed{ -2\pi}$$

$$\boxed{ +4\pi}$$

$$\boxed{ 0}$$

$$\int_{\gamma} \kappa \, dt = \, 2\pi$$

$$\int_{\gamma} \kappa \, dt = \, \mathbf{4\pi}$$

$$\int_{\gamma} \kappa \, dt = 2\pi$$

$$\int_{\gamma} \kappa \, dt = -4\pi$$

$$\int_{\gamma} \kappa \, dt = \, 4\pi$$

Thank you

