Shape Modeling and Geometry Processing

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

March 26, 2025

RECAP: Intrinsic Geometry

🔘 ıgl

March 26, 2025 Olga Sorkine-Hornung, Marcel Padilla

RECAP: Extrinsic Geometry

"How is my surface bend relative to the normal plane?"

3

RECAP: Fundamental Forms

First fundamental form (first derivative surface behavior)

$$\mathbf{I} = \begin{pmatrix} E & F \\ F & G \end{pmatrix} = \begin{pmatrix} \mathbf{p}_u^\mathsf{T} \mathbf{p}_u & \mathbf{p}_u^\mathsf{T} \mathbf{p}_v \\ \mathbf{p}_u^\mathsf{T} \mathbf{p}_v & \mathbf{p}_v^\mathsf{T} \mathbf{p}_v \end{pmatrix}$$

(determines the metric $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^{T} \mathbf{I} \mathbf{y}$)

Second fundamental form (second derivative surface behavior)

$$\mathbf{II} = \begin{pmatrix} e & f \\ f & g \end{pmatrix} = \begin{pmatrix} \mathbf{p}_{uu}^{\mathsf{T}} \mathbf{n} & \mathbf{p}_{uv}^{\mathsf{T}} \mathbf{n} \\ \mathbf{p}_{uv}^{\mathsf{T}} \mathbf{n} & \mathbf{p}_{vv}^{\mathsf{T}} \mathbf{n} \end{pmatrix}$$
the normal curvature $\frac{\mathbf{x}^{\mathsf{T}} \mathbf{II} \mathbf{x}}{\mathbf{y}^{\mathsf{T}} \mathbf{x}}$)

(determines t X'X

> March 26, 2025 Olga Sorkine-Hornung, Marcel Padilla

RECAP: Surface Curvatures

Theorem:
The principal curvatures
$$\kappa_1 = \kappa_{min}$$
,
 $\kappa_2 = \kappa_{max}$ are eigenvalues of II

Second fundamental form (second derivative surface behavior)

$$\mathbf{II} = \begin{pmatrix} e & f \\ f & g \end{pmatrix} = \begin{pmatrix} \mathbf{p}_{uu}^{\mathsf{T}} \mathbf{n} & \mathbf{p}_{uv}^{\mathsf{T}} \mathbf{n} \\ \mathbf{p}_{uv}^{\mathsf{T}} \mathbf{n} & \mathbf{p}_{vv}^{\mathsf{T}} \mathbf{n} \end{pmatrix}$$

(determines the normal curvature $\kappa_n(\mathbf{x}) = \frac{\mathbf{x}^T \mathbf{I} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$)

March 26, 2025

Olga Sorkine-Hornung, Marcel Padilla #

5

Principal Directions

Euler's Theorem: Planes of principal curvature are **orthogonal** and independent of parameterization.

$$\kappa_n(\varphi) = \kappa_1 \cos^2 \varphi + \kappa_2 \sin^2 \varphi, \quad \varphi = \text{angle with } \mathbf{t}_1$$

OIGL

6

Surface Curvatures

- Principal curvatures
 - Minimal curvature $\kappa_1 = \kappa_{\min} = \min_{\varphi} \kappa_n(\varphi)$
 - Maximal curvature $\kappa_2 = \kappa_{\max} = \max_{\varphi} \kappa_n(\varphi)$

• Mean curvature $H = \frac{1}{2\pi} \int_{0}^{2\pi} \kappa_n(\varphi) d\varphi \stackrel{\downarrow}{=} \frac{\kappa_1 + \kappa_2}{2}$

Olga Sorkine-Hornung, Marcel Padilla

• Gaussian curvature

March 26, 2025

$$K = \kappa_1 \cdot \kappa_2$$

due to Euler's Theorem

#

7

ETH zürich

Local Surface Shape By Curvatures

Principal Directions

Principal directions: tangent vectors corresponding to ϕ_{\min}, ϕ_{\max} pointing towards $\kappa_{\min}, \kappa_{\max}$ **t**₂ φ_{\min} Orthogonal (C) (Thanks to Euler's theorem) tangent plane

March 26, 2025

Principal Directions

March 26, 2025

Olga Sorkine-Hornung, Marcel Padilla

10 #

Often topologically (Pointcare-Hopf Theorem)

Umbilic points (all directions equal curving)

Usage example: define fair surfaces

• FiberMesh

$$\min_{\mathcal{M}} \int_{\mathcal{M}} \left(\frac{d\kappa_n}{d\mathbf{t}_1} \right)^2 + \left(\frac{d\kappa_n}{d\mathbf{t}_2} \right)^2 dA$$

Minimize this energy with M s.t. M interpolates given curves

https://igl.ethz.ch/projects/FiberMesh/ (2007 🕲)

March 26, 2025

5 Olga Sorkine-Hornung, Marcel Padilla

Gauss map and Gaussian curvature

Easier to remember: The Gauss curvature expresses the relative relation of the principle curvatures κ_1, κ_2 .

O Igl

March 26, 2025 Olga Sorkine-Hornung, Marcel Padilla

Theorema Egregium

Gauss curvature is intrinsic 😨 🏂

(Mean curvature and principal curvatures are not)

It means, K can be derived solely from the first fundamental form (and its derivatives, without the normal).

OIGL

March 26, 2025 Olga Sorkine-Hornung, Marcel Padilla

What is the total curvature of this?

OIGl

March 26, 2025 Olga Sorkine-Hornung, Marcel Padilla

• For a closed surface M: $\chi(M) = 2 - 2g - b$

Moment of fame ③

Topology.

March 2

Gauss-Bonnet Theorem

• For a closed surface M:

Haha

$$\int_{\mathcal{M}} K \, dA = 2\pi \, \chi(\mathcal{M})$$

$$\int K(\mathbf{r}) = \int K(\mathbf{r}) = \int K(\mathbf{r})$$

 $) = 4\pi$

16

14

Send

🗘 😂 💭 You, Alexander Sorkine-Hornung, Victor Cornillère and 834 others 👘 165 comments

Comment

Total curvature is a topological invariant! 😂

March 26, 2025 Olga Sorkine-Hornung, Marcel Padilla

How Many Holes Does a Human Have?

https://youtu.be/egEraZP9yXQ?si=tQ-yNGli0bZue_aS

Olga Sorkine-Hornung, Marcel Padilla

• For a closed surface *M*: (Gauss-Bonnet theorem)

$$\int_{\mathcal{M}} K \, dA = 2\pi \, \chi(\mathcal{M})$$

• Compare with planar curves: (Turning number theorem)

$$\int_{\gamma} \kappa \, ds = 2\pi \, k$$

OIGL

Towards discrete curvatures

Surface Curvatures

- Principal curvatures
 - Minimal curvature

$$\kappa_1 = \kappa_{\min} = \min_{\varphi} \kappa_n(\varphi)$$

Maximal curvature

$$\kappa_2 = \kappa_{\max} = \max_{\varphi} \kappa_n(\varphi)$$

Let's focus on this one for now:

Mean curvature

$$H = \frac{\kappa_1 + \kappa_2}{2} = \frac{1}{2\pi} \int_0^{2\pi} \kappa_n(\varphi) d\varphi$$

min curvature direction

curvature direction

• Gaussian curvature K = K

$$K = \kappa_1 \cdot \kappa_2$$

019

March 26, 2025 Olga Sorkine-Hornung, Marcel Padilla

Mean Curvature

$$H = \frac{\kappa_1 + \kappa_2}{2} = \frac{1}{2\pi} \int_0^{2\pi} \kappa_n(\varphi) d\varphi$$

The average of all normal curvatures

March 26, 2025 Olga Sorkine-Hornung, Marcel Padilla

Laplace Operator

Laplace equation (heat equation)

Heat Equation:

$$\Delta f = \frac{\partial f}{\partial t}$$

Steady state heat equation:

$$\Delta f = 0$$

No heat flow = stable! (Given suitable boundary conditions)

Heat diffusion simulated in a plane.

https://en.wikipedia.org/wiki/File:Heat_eqn.gif

March 26, 2025

Olga Sorkine-Hornung, Marcel Padilla

Laplace equation (heat equation)

Heat Equation:

Steady state heat equation:

= 0

No heat flow = stable! (Given suitable boundary conditions)

March 26, 2025

Olga Sorkine-Hornung, Marcel Padilla

Heat equation on a surface

OIGL

March 26, 2025 Olga Sorkine-Hornung, Marcel Padilla

Laplace-Beltrami Operator

• Extension of Laplace to functions on manifolds

March 26, 2025 Olga Sorkine-Hornung, Marcel Padilla

Laplace-Beltrami Operator

• For coordinate functions: f(x, y, z) = x $\mathbf{p} = (x, y, z)$

Recall:

For curves:

$$\gamma'' = \kappa \mathbf{n}(\gamma)$$

For surfaces:

$$\kappa_n(\varphi) = \kappa_1 \cos^2 \varphi + \kappa_2 \sin^2 \varphi$$

March 26, 2025

5 Olga Sorkine-Hornung, Marcel Padilla

Differential Geometry on Meshes

How can we discretize curvature, normal and operators?

29

ςl

March 26, 2025 Olga Sorkine-Hornung, Marcel Padilla

Differential Geometry on Meshes

- Problem: 😟 Discrete surfaces are not differentiable at edges/corners.
- Assumption: Assumption: Assumption: Assumption
 meshes are piecewise linear approximations of smooth surfaces
- Idea: Output
 Idea: Output
 Can try fitting a smooth surface locally
 (say, a polynomial) and find differential quantities analytically
- But: A
 It is often too slow for interactive setting and error prone

Discrete Differential Operators

Approach:

Approximate differential properties at point v as spatial average over local mesh neighborhood N(v)

- **v** = mesh vertex
- $N_k(\mathbf{v}) = k$ -ring neighborhood

Smooth Laplace relationship

$$\Delta_{\mathcal{M}}\mathbf{p} = -H\mathbf{n}$$

• Uniform discretization: $L(\mathbf{v})$ or $\Delta \mathbf{v}$

$$L_u(\mathbf{v}_i) = \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} (\mathbf{v}_j - \mathbf{v}_i) = \left(\frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} \mathbf{v}_j\right)$$
"uniform Laplacian"

Local averaging, like in heat flow 🔴.

OIGL

March 26, 2025 Olga Sorkine-Hornung, Marcel Padilla

32

 \mathbf{v}_i

 \mathbf{V}_i

 $\Delta_{\mathcal{M}}\mathbf{p} = -H\mathbf{n}$

Intuition for uniform discretization - finite differences

 $H = \frac{1}{2\pi} \int_{0}^{2\pi} \kappa(\varphi) d\varphi$

Arc-length parameterization assumption

$$\kappa \mathbf{n} = \gamma''$$

$$\gamma'' \approx \frac{1}{h} \left(\frac{\mathbf{v}_{i+1} - \mathbf{v}_i}{h} - \frac{\mathbf{v}_i - \mathbf{v}_{i-1}}{h} \right) = -\frac{2}{h^2} \left(\frac{1}{2} (\mathbf{v}_{i-1} + \mathbf{v}_{i+1}) - \mathbf{v}_i \right)$$

Finite difference approximation of the second derivative through finite difference approximation of the first derivative. 🧒

 $\Delta_{\mathcal{M}}\mathbf{p} = -H\mathbf{n}$

• Intuition for uniform discretization - finite differences

$$H = \frac{1}{2\pi} \int_0^{2\pi} \kappa(\varphi) d\varphi$$

Depends only on connectivity = simple and efficient
Pad approximation for irregular triangulations

Finite difference approximation of the second derivative through finite difference approximation of the first derivative. 🧒

• Cotangent formula

March 26, 2025

Olga Sorkine-Hornung, Marcel Padilla

Voronoi Vertex Area

• Unfold the triangle flap onto the plane (without distortion)

March 26, 2025

Voronoi Vertex Area

Discrete Laplace-Beltrami

• Cotangent formula

$$L_c(\mathbf{v}_i) = \frac{1}{A_i} \sum_{j \in \mathcal{N}(i)} \frac{1}{2} (\cot \alpha_{ij} + \cot \beta_{ij}) (\mathbf{v}_j - \mathbf{v}_i)$$

- 🍊
 - Accounts for mesh geometry
 - Can be derived using linear Finite Elements
 - Nice property: gives zero for planar 1-rings!
- 💎
 - Potentially negative/ infinite weights

ETH zürich

March 26, 2025 Olga Sorkine-Hornung, Marcel Padilla

Discrete Laplace-Beltrami

Cotan Laplacian allows computing discrete normals 🦉

$$\Delta_M \mathbf{p} = -H\mathbf{n} \Rightarrow \frac{\Delta_M \mathbf{p}}{||\Delta_M \mathbf{p}||} = \pm \mathbf{n}$$

• Normal

- Uniform Laplacian $L_u(v_i)$
- Cotangent Laplacian $L_c(v_i)$
- For nearly equal edge lengths Uniform ≈ Cotangent

 $\Delta_M \mathbf{p} = -H\mathbf{n} \quad \Rightarrow \quad H = -\langle \Delta_M \mathbf{p}, \mathbf{n} \rangle$

Discrete Curvatures

• **Discrete Mean curvature** (derived from $\Delta_M \mathbf{p} = -H\mathbf{n}$)

$$H = -\langle \mathbf{n}, \Delta_M(\mathbf{p}) \rangle$$

• **Principal curvatures** (Using *H*&*K*. Rearrange $H = \frac{1}{2}(\kappa_1 + \kappa_2)$ and $K = \kappa_1 \kappa_2$)

$$\kappa_1 = H - \sqrt{H^2 - K} \qquad \kappa_2 = H + \sqrt{H^2 - K}$$

• Gaussian curvature

$$K(\mathbf{v}_i) = ? \bigcirc$$

Discrete Gauss-Bonnet Theorem

• Total Gaussian curvature should be fixed for a given topology

$$\int_{M} K dA = 2\pi \chi(M) \xrightarrow{\text{discretize}} \sum_{i} A_{i}K(\mathbf{v}_{i}) = 2\pi \chi(M)$$
Reeds to be 0 for flat objects and dependent on intrinsic values
Proposal: $K(\mathbf{v}_{i}) = \frac{1}{A_{i}} (2\pi - \sum_{j} \theta_{j})$
Area weighted local angle defect from plane

March 26, 2025

Olga Sorkine-Hornung, Marcel Padilla

Discrete Gauss-Bonnet Theorem

Continuous Gauss-Bonnet Theorem

 $\int K dA = 2\pi \chi(M)$

Another structure preservation!

Discrete Gauss-Bonnet Theorem

$$\sum_{i} A_i K(\mathbf{v}_i) = 2\pi \chi(M)$$

if:
$$K(\mathbf{v}_i) = \frac{1}{A_i}(2\pi - \sum_j \theta_j)$$

March 26, 2025 Olga Sorkine-Hornung, Marcel Padilla

Example: Discrete Mean Curvature

March 26, 2025 Olga Sorkine-Hornung, Marcel Padilla

Links and Literature

 M. Meyer, M. Desbrun, P. Schroeder, A. Barr Discrete Differential-Geometry Operators for Triangulated 2-Manifolds, VisMath, 2002

Links and Literature

- libigl implements many discrete differential operators
- See the tutorial! 🦉
- https://libigl.github.io/tutorial/

principal directions

Surface Processing- Topics

Smoothing

Parametrization

Remeshing

March 26, 2025 Olga Sorkine-Hornung, Marcel Padilla

Surface Smoothing - Motivation

Scanned surfaces can be noisy

Olga Sorkine-Hornung, Marcel Padilla

Surface Smoothing - Motivation

Scanned surfaces can be noisy

Mesh Fairing - Motivation

Marching Cubes meshes can be ugly

Important rule

- More triangles than needed 🖰
 - Waste of memory
 - Waste of computation time
- Long triangles
 - Numerical issues
 - e.g. Normal computation
 - Bad Laplacian Matrix
 - Negative weights
 - Large weights
 - Nearly singular matrix
 - Bad for Algorithms
 - Performance & accuracy

O Igl

March 26, 2025 Olga Sorkine-Hornung, Marcel Padilla

Visual Assessment of Surface Smoothness

March 26, 2025 Olga Sorkine-Hornung, Marcel Padilla

Reflection Lines as an Inspection Tool

March 26, 2025

Olga Sorkine-Hornung, Marcel Padilla

Reflection Lines as an Inspection Tool

 Shape optimization using reflection lines
 E. Tosun, Y. I. Gingold, J. Reisman, D. Zorin
 Symposium on Geometry Processing 2007

March 26, 2025 Olga Sorkine-Hornung, Marcel Padilla

How to measure smoothness?

March 26, 2025 Olga Sorkine-Hornung, Marcel Padilla

March 26, 2025

Olga Sorkine-Hornung, Marcel Padilla

Which curvature to change for smoothing?

Remember Smooth theory Gauss curvature:

So can we use smooth surfaces by reducing gauss curvature variation?

Can we use Gauss Curvature?

These two surfaces are intrinsically the same \Rightarrow Equal Gauss curvature!

🔘 ıgl

March 26, 2025 Olga Sorkine-Hornung, Marcel Padilla

Which curvature?

- Principal curvatures κ_{\min} , κ_{\max} 🗙
 - Nonlinear and "discontinuous" operator
- Gauss curvature K 🗙
 - Intrinsic only, insensitive to embedding
- Mean curvature H ✔
 - Easy to compute by Laplacian Δ

$$\Delta_{\mathcal{M}} \mathbf{p} = -H \mathbf{n}$$
goal: $H=0$ or $H=\mathrm{const}$

Laplace as a linear operator

- Assumption: smoothing = local averaging/diffusion
- Heat equation operator Δ_M is linear $\Rightarrow \Delta_M$ has matrix form

L-B: Weighting Schemes

$$\delta_i = \frac{1}{W_i} \sum_{j \in \mathcal{N}(i)} w_{ij} (\mathbf{p}_j - \mathbf{p}_i)$$

• Ignore geometry

δ_{uniform}: $W_i = 1$, $w_{ij} = 1/|N(i)|$

Integrate over Voronoi region of the vertex

δ_{cotan} : $w_{ij} = 0.5(\cot \alpha_{ij} + \cot \beta_{ij})$

Olga Sorkine-Hornung, Marcel Padilla

Laplacian Matrix

• The transition between xyz and δ is linear:

March 26, 2025 Olga Sorkine-Hornung, Marcel Padilla

Laplacian Matrix

- Breaking down the Laplace matrix:
- \mathbf{M} = mass matrix; \mathbf{L}_{w} = stiffness matrix

How to do the smoothing?

$$\Delta_{\mathcal{M}}\mathbf{p} = -H\mathbf{n}$$

goal:
$$H = 0$$
 or $H = \text{const}$

Idea 1:

- Smooth $H \Rightarrow \widetilde{H}$
- Construct surface that has mean curvature *H*
 - Problem: *H* doesn't define the surface, n nonlinear in p

Idea 2:

- If $\Delta_{\mathcal{M}} \mathbf{p}$ small, then *H* also small.
- Minimize $\Delta_{\mathcal{M}} \mathbf{p}$ by flowing along \mathbf{n}
 - Classic gradient descent "flow"!
 - Feasible because linear operator!

Smoothing by flowing

Example - smoothing curves

• Uniform Laplace in 1D = second derivative.

finite differences
$$L(\mathbf{p}_i) = \frac{1}{2}(\mathbf{p}_{i-1} - \mathbf{p}_i) + \frac{1}{2}(\mathbf{p}_{i+1} - \mathbf{p}_i)$$

In matrix-vector form for the whole curve

$$L\mathbf{p}$$

$$\mathbf{p} = [\mathbf{x} \ \mathbf{y}] \in \mathbb{R}^{n \times 2} \qquad L = \frac{1}{2} \begin{pmatrix} -2 & 1 & & \mathbf{0} \\ 1 & -2 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & -2 & 1 \\ \mathbf{0} & & & 1 & -2 \end{pmatrix}$$

Defined by point connectivity

70

March 26, 2025

Olga Sorkine-Hornung, Marcel Padilla

Example - smoothing curves

• Flow to reduce curvature:

"step size" $0 < \lambda < 1$ $\tilde{\mathbf{p}}_i = \mathbf{p}_i + \lambda \frac{d^2}{ds^2}(\mathbf{p}_i)$

• Matrix-vector form:

$$\tilde{\mathbf{p}} = \mathbf{p} + \lambda L \mathbf{p}, \quad \mathbf{p} \in \mathbb{R}^{n \times 2}$$

U This flow will reduce curvature step by step

Problem May shrink the shape, can be slow

O Igl

March 26, 2025 Olga Sorkine-Hornung, Marcel Padilla

Filtering Curves

Original curve

March 26, 2025 Olg

Olga Sorkine-Hornung, Marcel Padilla

1st iteration; λ =0.5

March 26, 2025

Olga Sorkine-Hornung, Marcel Padilla

2nd iteration; λ =0.5

March 26, 2025

Olga Sorkine-Hornung, Marcel Padilla

8th iteration; λ =0.5

March 26, 2025

Olga Sorkine-Hornung, Marcel Padilla

27th iteration; λ =0.5

March 26, 2025

Olga Sorkine-Hornung, Marcel Padilla

50th iteration; λ =0.5

March 26, 2025

Olga Sorkine-Hornung, Marcel Padilla

500th iteration; λ =0.5

March 26, 2025 Olga

Olga Sorkine-Hornung, Marcel Padilla

1000th iteration; λ =0.5

March 26, 2025

Olga Sorkine-Hornung, Marcel Padilla

5000th iteration; λ =0.5

March 26, 2025

Olga Sorkine-Hornung, Marcel Padilla

10000th iteration; λ =0.5

March 26, 2025

Olga Sorkine-Hornung, Marcel Padilla

50000th iteration; λ =0.5

•

March 26, 2025

Olga Sorkine-Hornung, Marcel Padilla

50000th iteration; λ =0.5

Olga Sorkine-Hornung, Marcel Padilla

On meshes: smoothing as mean curvature flow

Model smoothing as a diffusion process

$$\frac{\partial \mathbf{p}}{\partial t} = \lambda \Delta \mathbf{p} = -\lambda H \mathbf{n}$$

• Discretize in time, forward differences:

March 26, 2025

Olga Sorkine-Hornung, Marcel Padilla

😧 Explicit

84

ETH zürich

Taubin Smoothing: Explicit Steps

- Simple iteration Δ : $\tilde{\mathbf{p}} = \mathbf{p} + \lambda L \mathbf{p} = (I + \lambda L) \mathbf{p}$ $\tilde{\mathbf{p}} = \mathbf{p} + \mu L \mathbf{p} = (I + \mu L) \mathbf{p}$ $\lambda > 0$ to smooth; $\mu < 0$ to inflate
- Disgustingly slow convergence Selection
 - Very local
 - λ, μ need tweaking

A Signal Processing Approach to Fair Surface Design Gabriel Taubin ACM SIGGRAPH 95

Using uniform Laplacian

March 26, 2025 Olga Sorkine-Hornu

Olga Sorkine-Hornung, Marcel Padilla

Example

March 26, 2025 Olga Sorkine-Hornung, Marcel Padilla

On meshes: smoothing as mean curvature flow

• Model smoothing as a diffusion process

$$\frac{\partial \mathbf{p}}{\partial t} = \lambda \Delta \mathbf{p} = -\lambda H \mathbf{n}$$

• Discretize in time, forward differences:

$$\frac{\mathbf{p}^{(n+1)} - \mathbf{p}^{(n)}}{dt} = \lambda L \mathbf{p}^{(n+1)}$$

Olga Sorkine-Hornung, Marcel Padilla

Implicit Fairing: Implicit Euler Steps

• In each iteration, solve for the smoothe $ilde{\mathbf{P}}$:

$$(I - \tilde{\lambda} L)\tilde{\mathbf{p}} = \mathbf{p}$$

Implicit fairing of irregular meshes using diffusion and curvature flow M. Desbrun, M. Meyer, P. Schroeder, A. Barr ACM SIGGRAPH 99

🚫 ıgl

Implicit Fairing

Figure 4: Stanford bunnies: (a) The original mesh, (b) 10 explicit integrations with $\lambda dt = 1$, (c) 1 implicit integration with $\lambda dt = 10$ that takes only 7 PBCG iterations (30% faster), and (d) 20 passes of the $\lambda | \mu$ algorithm, with $\lambda = 0.6307$ and $\mu = -0.6732$. The implicit integration results in better smoothing than the explicit one for the same, or often less, computing time. If volume preservation is called for, our technique then requires many fewer iterations to smooth the mesh than the $\lambda | \mu$ algorithm.

Implicit fairing of irregular meshes using diffusion and curvature flow M. Desbrun, M. Meyer, P. Schroeder, A. Barr ACM SIGGRAPH 99

OIGL

Mesh Independence

- Result of smoothing with uniform Laplacian depends on triangle density and shape
 - WhyBecause triangle size is not considered. Smaller triangles => smaller values of laplacian

Mesh Independence

- Result of smoothing with uniform Laplacian depends on triangle density and shape
 - WhyBecause triangle size is not considered. Smaller triangles => smaller values of laplacian

Comparison of the weights

• Implicit fairing with different weights:

March 26, 2025

Olga Sorkine-Hornung, Marcel Padilla

Thank you

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

March 26, 2025