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RECAP: Intrinsic Geometry
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u

v

p(u,v)

pu
pv

• Needed to define lengths, angles and areas.

• It defines the metric of the surface.

Parametrization 

speed of u direction
Alignment of 

parametrizations

Alignment of 

parametrizations

Parametrization 

speed of v direction
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● First fundamental form
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RECAP: Extrinsic Geometry

Olga Sorkine-Hornung, Marcel Padilla 3

p

x
y

z

Beautiful! 

Out of plane bending 

in u direction.
Mixed curvature 

interaction

Mixed curvature 

interaction
Out of plane bending 

in v direction.

„How is my surface bend relative to the normal plane?“
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RECAP: Fundamental Forms

● First fundamental form (first derivative surface behavior)
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Intrinsic
(Measurements made on surface)

Extrinsic
(3D space properties)

● Second fundamental form (second derivative surface behavior)

(determines the normal curvature 
𝐱𝐓𝐈𝐈𝐱

𝐱𝐓𝐱
 )

(determines the metric 𝐱 , 𝐲 = 𝐱𝐓𝐈𝐲 )



#

RECAP: Surface Curvatures
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Theorem:

The principal curvatures 𝜅1 = 𝜅𝑚𝑖𝑛 ,
𝜅2 = 𝜅𝑚𝑎𝑥 are eigenvalues of 𝐈𝐈

Extrinsic
(3D space properties)

● Second fundamental form (second derivative surface behavior)

(determines the normal curvature 𝜅𝑛 𝐱 =
𝐱𝐓𝐈𝐈𝐱

𝐱𝐓𝐱
 )
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Principal Directions
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Euler‘s Theorem:

Planes of principal curvature are orthogonal and independent of parameterization.

Unit-length direction t 
in the tangent plane:

t  Tangent plane



#

Surface Curvatures

● Principal curvatures

▪ Minimal curvature

▪ Maximal curvature

● Mean curvature

● Gaussian curvature
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due to Euler’s 

Theorem



#

Local Surface Shape By Curvatures

Isotropic:

all directions are 

principal directions

spherical (umbilical)

K > 0

Anisotropic:

2 distinct 

principal 

directions

elliptic

1 > 0, 2 > 0

K > 0

parabolic

1= 0
2 > 0

K = 0

planar

K = 0

hyperbolic

K < 0

1 < 0

2 > 0
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𝜅1 ≠ 𝜅2 

𝜅1 = 𝜅2 

Gaussian curvature:



#

Principal Directions

● Principal directions:

tangent vectors corresponding to 

𝜙min, 𝜙max pointing towards 𝜅min, 𝜅max

min curvature max curvature

tangent plane

 min

t1

t2

March 26, 2025 Olga Sorkine-Hornung, Marcel Padilla 9



#

Principal Directions
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Singularity

Often topologically 

unavoidable 

(Pointcare-Hopf Theorem)

Umbilic points

𝜅1 = 𝜅2
(all directions equal curving)



#

Usage example: define fair surfaces

● FiberMesh

Minimize this energy with M 

s.t. M interpolates given curves
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👵https://igl.ethz.ch/projects/FiberMesh/ (2007 )

https://igl.ethz.ch/projects/FiberMesh/ (2007 )

https://igl.ethz.ch/projects/FiberMesh/
https://igl.ethz.ch/projects/FiberMesh/


#

Gauss map and Gaussian curvature

n

p(u,v)

pu
pv

𝐾 = lim
𝐴→0

SignedArea(𝑁(𝐴))
Area(𝐴)

= 𝜅1 ⋅ 𝜅2
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Relationship to Gauss map

Easier to remember:     The Gauss curvature expresses the relative relation of the principle curvatures 𝜅1, 𝜅2.
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Theorema Egregium

● Gauss curvature is intrinsic 
▪ (Mean curvature and principal curvatures are not)
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n

p

pv
pu

t



It means, K can be derived solely from the first fundamental form (and its derivatives, without the normal).

An ant can measure 

Gauss curvature!

= Exceptional, extraordinary
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What is the total curvature of this?
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Moo!

?
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Gauss-Bonnet Theorem

● For a closed surface M:
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𝜒 𝑀 = 2 − 2𝑔 − 𝑏

Total curvature is a topological invariant! 
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Moment of fame ☺
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#

Gauss-Bonnet Theorem
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𝜒 𝑀 = 2 − 2𝑔

Total curvature is a topological invariant! 

0

4𝜋

0

−8𝜋

Try it

yourself! 

For a closed surface of genus 𝑔:

?

?

?

?
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Gauss-Bonnet Theorem
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https://youtu.be/egEraZP9yXQ?si=tQ-yNGIi0bZue_aS
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Gauss-Bonnet Theorem

● For a closed surface M: (Gauss-Bonnet theorem)
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● Compare with planar curves: (Turning number theorem)



Towards discrete curvatures 



#

Surface Curvatures

● Principal curvatures

▪ Minimal curvature

▪ Maximal curvature
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min 

curvature 

direction

max 

curvature 

direction

Let‘s focus on this one for now:

● Mean curvature

● Gaussian curvature
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Mean Curvature
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The average of all normal curvatures



#

Laplace Operator

Laplace

operator

gradient

operator
2nd partial

derivatives

Cartesian

coordinates
divergence

operator

function in

Euclidean space
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Laplace equation (heat equation)

Olga Sorkine-Hornung, Marcel Padilla 24

Δ𝑓 =
𝜕𝑓

𝜕𝑡

Heat Equation:

Heat diffusion simulated in a plane.

https://en.wikipedia.org/wiki/File:Heat_eqn.gif

No heat flow = stable!

(Given suitable boundary conditions)

Steady state 

heat equation:

Δ𝑓 = 0

March 26, 2025



#

Laplace equation (heat equation)

Olga Sorkine-Hornung, Marcel Padilla 25

Δ𝑓 =
𝜕𝑓

𝜕𝑡

No heat flow = stable!

(Given suitable boundary conditions)

Steady state 

heat equation:

Δ𝑓 = 0
Heat flow is a diffusion process.

Values are blurred in the surrounding space!

Δ is a diffusion operator.

Heat Equation:

March 26, 2025
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Heat equation on a surface
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Geodesic in Heat

[Crane et al. 2013]

Poke a bunny with 

a hot needle 
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Laplace-Beltrami Operator

● Extension of Laplace to functions on manifolds
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Laplace-

Beltrami

Surface gradient

operator

Surface divergence

operator

function on

surface M

On the surface, not in ℝ3
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Laplace-Beltrami Operator

● For coordinate functions:

March 26, 2025 Olga Sorkine-Hornung, Marcel Padilla 28

mean 

curvature

unit

surface

normal

Laplace-

Beltrami

Recall:

Diffusing 

position itself.

For curves:

For surfaces:
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Differential Geometry on Meshes

March 26, 2025 Olga Sorkine-Hornung, Marcel Padilla 29

How can we discretize 

curvature, normal and 

operators? 



#

Differential Geometry on Meshes

● Assumption: 
meshes are piecewise linear approximations of smooth 
surfaces

● Idea: 
Can try fitting a smooth surface locally
(say, a polynomial) and find differential quantities analytically

● But: 
It is often too slow for interactive setting and error prone 

March 26, 2025 Olga Sorkine-Hornung, Marcel Padilla 30

● Problem: 

Discrete surfaces are not differentiable at edges/corners.
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Discrete Differential Operators
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• v = mesh vertex

• Nk(v) = k-ring neighborhood

Approach:

Approximate differential properties at point v as 

spatial average over local mesh neighborhood N(v)



#

Discrete Laplace-Beltrami
vi

vj

Olga Sorkine-Hornung, Marcel Padilla 32March 26, 2025

Smooth Laplace relationship

“uniform 

Laplacian”

● Uniform discretization:  L(v) or ∆v

Local averaging, like in heat flow .
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Discrete Laplace-Beltrami

● Intuition for uniform discretization – finite differences

vi vi+1

vi-1



Arc-length parameterization assumption

Olga Sorkine-Hornung, Marcel Padilla 33March 26, 2025
Finite difference approximation of the second derivative through finite difference approximation of the first derivative. 



#

Discrete Laplace-Beltrami

vi

vj1 vj2

vj3

vj4
vj5

vj6

● Intuition for uniform discretization – finite differences

Finite difference approximation of the second derivative through finite difference approximation of the first derivative. 

Depends only on connectivity = simple and efficient

Bad approximation for irregular triangulations



#

Discrete Laplace-Beltrami

● Cotangent formula

Olga Sorkine-Hornung, Marcel Padilla 35March 26, 2025

Aivi

vi

vj vj

ij

ij

vi

vj

“cotan 

Laplacian”

Vertex area Cotan weights
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Voronoi Vertex Area

● Unfold the triangle flap onto the plane (without distortion)

θ

vi

vj

Olga Sorkine-Hornung, Marcel Padilla 36March 26, 2025



#

Voronoi Vertex Area

θ

vi

cjvj

cj+1

Flattened flap
vi

Olga Sorkine-Hornung, Marcel Padilla 37

vj+1

March 26, 2025
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Discrete Laplace-Beltrami

● Cotangent formula

Olga Sorkine-Hornung, Marcel Padilla 38March 26, 2025

▪

• Accounts for mesh geometry

• Can be derived using linear Finite Elements

• Nice property: gives zero for planar 1-rings!

▪

• Potentially negative/ infinite weights



#

Discrete Laplace-Beltrami

● Normal

● Uniform Laplacian Lu(vi)

● Cotangent Laplacian Lc(vi)

● For nearly equal edge lengths
Uniform ≈ Cotangent

vi

vj





Cotan Laplacian allows computing discrete normals 

Olga Sorkine-Hornung, Marcel Padilla 39March 26, 2025

Δ𝑀𝐩 = −𝐻𝐧 ⇒
Δ𝑀𝐩

| Δ𝑀𝐩 |
= ±𝐧 Δ𝑀𝐩 = −𝐻𝐧 ⇒ 𝐻 = −⟨Δ𝑀𝐩, 𝐧⟩



#

Discrete Curvatures

● Discrete Mean curvature (derived from Δ𝑀𝐩 = −𝐻𝐧)

Ai

j

Olga Sorkine-Hornung, Marcel Padilla 40March 26, 2025

● Gaussian curvature

● Principal curvatures (Using 𝐻&𝐾. Rearrange 𝐻 =
1

2
(𝜅1+𝜅2) and 𝐾 = 𝜅1𝜅2)

𝐻 = −⟨𝐧, Δ𝑀 𝐩 ⟩

? 
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Discrete Gauss-Bonnet Theorem

● Total Gaussian curvature should be fixed for a given topology
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න
𝑀

𝐾𝑑𝐴 = 2𝜋𝜒(𝑀) ෍

𝑖

𝐴𝑖𝐾(𝐯𝑖) = 2𝜋𝜒(𝑀)
discretize

Ai

j

Area weighted local angle defect from plane

 Needs to be 0 for flat objects and dependent on intrinsic values

Proposal:
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Discrete Gauss-Bonnet Theorem
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න
𝑀

𝐾𝑑𝐴 = 2𝜋𝜒(𝑀) ෍

𝑖

𝐴𝑖𝐾(𝐯𝑖) = 2𝜋𝜒(𝑀)

if:

Continuous Gauss-Bonnet Theorem Discrete Gauss-Bonnet Theorem
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Example: Discrete Mean Curvature
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#

Links and Literature

● M. Meyer, M. Desbrun, P. Schroeder, A. Barr

Discrete Differential-Geometry Operators for Triangulated 2-Manifolds, 

VisMath, 2002

Olga Sorkine-Hornung, Marcel Padilla 44March 26, 2025



#

Links and Literature

● libigl implements many discrete 

differential operators

● See the tutorial! 
● https://libigl.github.io/tutorial/

March 26, 2025 Olga Sorkine-Hornung, Marcel Padilla 45

principal directions
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Surface Processing– Topics

Olga Sorkine-Hornung, Marcel Padilla #  46March 26, 2025

Smoothing Parametrization Remeshing
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Surface Smoothing – Motivation

● Scanned surfaces can be noisy

Olga Sorkine-Hornung, Marcel Padilla #  47March 26, 2025



#

Surface Smoothing – Motivation

● Scanned surfaces can be noisy
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Mesh Fairing – Motivation

● Marching Cubes meshes can be ugly 

Olga Sorkine-Hornung, Marcel Padilla #  49March 26, 2025

Why so damn ugly? Why so disgusting? 



#

Important rule

 Bad triangles = Bad computations 

Olga Sorkine-Hornung, Marcel Padilla

● More triangles than needed 
▪ Waste of memory

▪ Waste of computation time

● Long triangles 
▪ Numerical issues

• e.g. Normal computation

▪ Bad Laplacian Matrix
• Negative weights

• Large weights

• Nearly singular matrix

▪ Bad for Algorithms
• Performance & accuracy

#  50March 26, 2025
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Visual Assessment of Surface Smoothness

Olga Sorkine-Hornung, Marcel Padilla #  51March 26, 2025
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Reflection Lines as an Inspection Tool

● Shape optimization 

using reflection lines

E. Tosun, Y. I. Gingold, 

J. Reisman, D. Zorin

Symposium on Geometry 

Processing 2007

Olga Sorkine-Hornung, Marcel Padilla #  52March 26, 2025

http://mrl.nyu.edu/~dzorin/papers/tosun2007sou.pdf
http://mrl.nyu.edu/~dzorin/papers/tosun2007sou.pdf


#

Reflection Lines as an Inspection Tool
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● Shape optimization using 

reflection lines

E. Tosun, Y. I. Gingold, J. 

Reisman, D. Zorin

Symposium on Geometry 

Processing 2007

http://mrl.nyu.edu/~dzorin/papers/tosun2007sou.pdf
http://mrl.nyu.edu/~dzorin/papers/tosun2007sou.pdf


How to measure smoothness?
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Curvature and Smoothness

Olga Sorkine-Hornung, Marcel Padilla #  55March 26, 2025
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Curvature and Smoothness

Olga Sorkine-Hornung, Marcel Padilla #  56

mean curvature plot

March 26, 2025
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Curvature and Smoothness
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mean curvature plot

March 26, 2025
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Curvature and Smoothness

Olga Sorkine-Hornung, Marcel Padilla #  58

mean curvature plot

March 26, 2025
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Curvature and Smoothness

Reducing total 

curvature?

Olga Sorkine-Hornung, Marcel Padilla #  59March 26, 2025

What is smoothing? 

make curvature 
vary less?

VS.

This one is a 

good choice! 

Gauss-Bonnet theorem 

says it is invariant

(for closed surfaces) 
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Which curvature to change for 

smoothing?

Olga Sorkine-Hornung, Marcel Padilla #  60March 26, 2025

spherical (umbilical)

K > 0

elliptic

1 > 0, 2 > 0

K > 0

parabolic

1= 0

2 > 0

K = 0

planar

K = 0

hyperbolic

K < 0

1 < 0

2 > 0

Remember Smooth theory Gauss curvature:

So can we use smooth surfaces by reducing gauss curvature variation?
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Can we use Gauss Curvature?

Olga Sorkine-Hornung, Marcel Padilla #  61March 26, 2025

These two surfaces are intrinsically the same ⇒ Equal Gauss curvature!

Impossible to smooth this curvature. 

Everywhere here:

𝐾 = 0

parabolic

1= 0

2 > 0

K = 0
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Which curvature?

Olga Sorkine-Hornung, Marcel Padilla #  62

goal: or

March 26, 2025

● Principal curvatures 𝜅min, 𝜅max 

▪ Nonlinear and “discontinuous” operator

● Gauss curvature 𝐾 

▪ Intrinsic only, insensitive to embedding

● Mean curvature 𝐻 

▪ Easy to compute by Laplacian Δ



Laplace as a linear 

operator
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Recap: discrete Laplace-Beltrami Δℳ

● Assumption: smoothing = local averaging/diffusion

● Heat equation operator Δ𝑀 is linear ⇒ Δ𝑀 has matrix form

Olga Sorkine-Hornung, Marcel Padilla #  64March 26, 2025

Matrix form with unknown entries:

local

weighted differences
vertex

weight
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L-B: Weighting Schemes

● Ignore geometry

Olga Sorkine-Hornung, Marcel Padilla

duniform : Wi = 1, wij = 1/|N(i)|

dcotan : wij = 0.5(cot ij + cot ij)

n

ij
ijWi =Ai



#  65March 26, 2025

● Integrate over Voronoi region of the vertex
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Laplacian Matrix

● The transition between xyz and d is linear:

Olga Sorkine-Hornung, Marcel Padilla

=L x dx

=

=

L

L

y

z

dy

dz

#  66March 26, 2025
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Laplacian Matrix

● Breaking down the Laplace matrix:

● M = mass matrix; Lw = stiffness matrix

Olga Sorkine-Hornung, Marcel Padilla

L =

#  67March 26, 2025

Matrix Δ

M–1

Diagonal 

Lw

Symmetric



#

How to do the smoothing?

Idea 1:
● Smooth 𝐻 ⇒ ෩𝐻

● Construct surface that has 

mean curvature ෩𝐻

▪ Problem: H doesn’t define 

the surface, n nonlinear in p

Olga Sorkine-Hornung, Marcel Padilla #  68

goal: or

March 26, 2025

Idea 2:
● If Δℳ𝐩 small, then 𝐻 also small.

● Minimize Δℳ𝐩 by flowing along 𝐧

▪ Classic gradient descent “flow”!

▪ Feasible because linear operator!



Smoothing by flowing



#

Example – smoothing curves

● Uniform Laplace in 1D = second derivative.

Olga Sorkine-Hornung, Marcel Padilla #  70March 26, 2025

finite differences

0

0

Defined by point connectivity

● In matrix-vector form for the whole curve 
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Example – smoothing curves

● Flow to reduce curvature:

Olga Sorkine-Hornung, Marcel Padilla #  71March 26, 2025

● Matrix-vector form:  

„step size“ 0 < 𝜆 < 1

 Problem May shrink the shape, can be slow

 This flow will reduce curvature step by step
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Original curve

Filtering Curves

Olga Sorkine-Hornung, Marcel Padilla #  72March 26, 2025
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1st iteration; =0.5

Filtering Curves

Olga Sorkine-Hornung, Marcel Padilla #  73March 26, 2025
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2nd iteration; =0.5

Filtering Curves
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8th iteration; =0.5

Filtering Curves

Olga Sorkine-Hornung, Marcel Padilla #  75March 26, 2025



#

27th iteration; =0.5

Filtering Curves

Olga Sorkine-Hornung, Marcel Padilla #  76March 26, 2025
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50th iteration; =0.5

Filtering Curves

Olga Sorkine-Hornung, Marcel Padilla #  77March 26, 2025



#

500th iteration; =0.5

Filtering Curves

Olga Sorkine-Hornung, Marcel Padilla #  78March 26, 2025
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1000th iteration; =0.5

Filtering Curves

Olga Sorkine-Hornung, Marcel Padilla #  79March 26, 2025
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5000th iteration; =0.5

Filtering Curves

Olga Sorkine-Hornung, Marcel Padilla #  80March 26, 2025
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10000th iteration; =0.5

Filtering Curves

Olga Sorkine-Hornung, Marcel Padilla #  81March 26, 2025
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50000th iteration; =0.5

Filtering Curves

Olga Sorkine-Hornung, Marcel Padilla #  82March 26, 2025
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Filtering Curves

Olga Sorkine-Hornung, Marcel Padilla #  83March 26, 2025

50000th iteration; =0.5
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On meshes: smoothing as mean curvature flow

● Model smoothing as a diffusion process

Olga Sorkine-Hornung, Marcel Padilla #  84

 Explicit 

integration!

Unstable unless 

time step dt is 

small.

March 26, 2025

● Discretize in time, forward differences:

 Explicit 

integration!

Super easy to 

compute.
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Taubin Smoothing: Explicit Steps

● Simple iteration :

Olga Sorkine-Hornung, Marcel Padilla

10 iterations

50 iterations

original

200 iterations

A Signal Processing Approach to Fair Surface Design

Gabriel Taubin

ACM SIGGRAPH 95

#  85March 26, 2025

 > 0 to smooth;

 < 0 to inflate

Using uniform Laplacian

● Disgustingly slow convergence :

▪ Very local

▪ 𝜆, 𝜇 need tweaking



#

Example

Olga Sorkine-Hornung, Marcel Padilla

0 iterations 10 iterations 100 iterations

#  86March 26, 2025
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On meshes: smoothing as 

mean curvature flow

● Model smoothing as a diffusion process

Olga Sorkine-Hornung, Marcel Padilla #  87

 Implicit 

integration!

Much more stable 

for small steps dt 

compared to 

explicit integration

March 26, 2025

● Discretize in time, forward differences:

 Implicit 

integration!

Harder to compute 

because of matrix 

solve.
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Implicit Fairing: Implicit Euler Steps

● In each iteration, solve for the smoothed :

Olga Sorkine-Hornung, Marcel Padilla

Implicit fairing of irregular meshes using diffusion and curvature flow

M. Desbrun, M. Meyer, P. Schroeder, A. Barr

ACM SIGGRAPH 99

#  88March 26, 2025
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Implicit Fairing

Olga Sorkine-Hornung, Marcel Padilla

Implicit fairing of irregular meshes using diffusion and curvature flow

M. Desbrun, M. Meyer, P. Schroeder, A. Barr

ACM SIGGRAPH 99

#  89March 26, 2025
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Mesh Independence

● Result of smoothing with uniform Laplacian

depends on triangle density and shape

▪ Why?

Olga Sorkine-Hornung, Marcel Padilla #  90March 26, 2025

Because triangle size is not considered. Smaller triangles => smaller values of laplacian

Asymmetric results 

although underlying 

geometry is symmetric

cotanuniformStart



#

Mesh Independence

● Result of smoothing with uniform

Laplacian depends on triangle density and shape

▪ Why?

Olga Sorkine-Hornung, Marcel Padilla #  91March 26, 2025

Because triangle size is not considered. Smaller triangles => smaller values of laplacian

Asymmetric results 

although underlying 

geometry is symmetric

cotanuniformStart



#

Comparison of the weights

● Implicit fairing with different weights:

Olga Sorkine-Hornung, Marcel Padilla

Mean curvature

#  92March 26, 2025

cotanuniformStart

Mean curvature



Thank you
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