252-0538-00L, Spring 2025

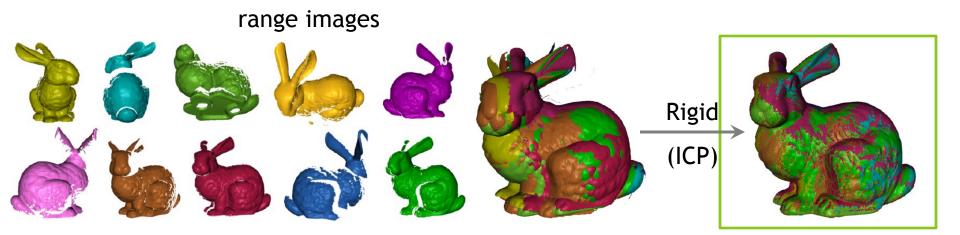
Shape Modeling and Geometry Processing

Inter-surface Mapping Shape Matching Functional Maps

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

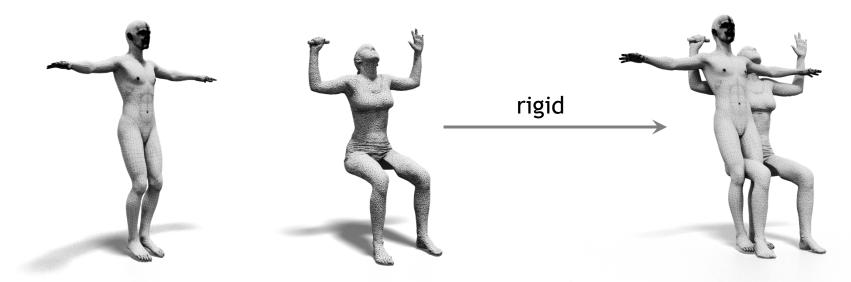
INTERACTIVE GEOMETRY LAB

Rigid Shape Matching



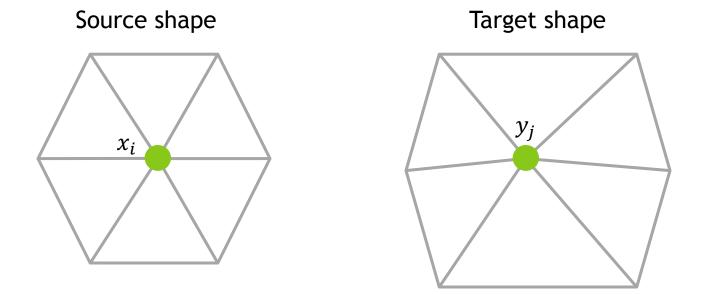
- Find the optimal rigid alignment between shapes
- Rigid alignment: rotation + translation (compact for optimization)

Non-Rigid Shape Matching



- No compact representation for non-rigid matching
- Find the map (correspondences) between two shapes directly

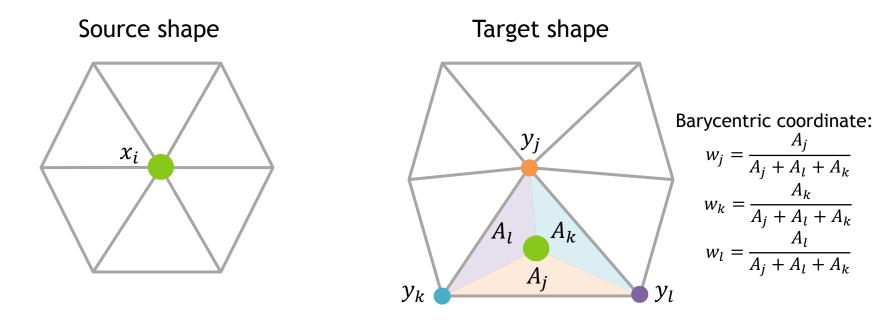
Shape Matching - what is a map?



Vertex-to-vertex map: $\Pi(x_i) = y_i$

April 15, 2025

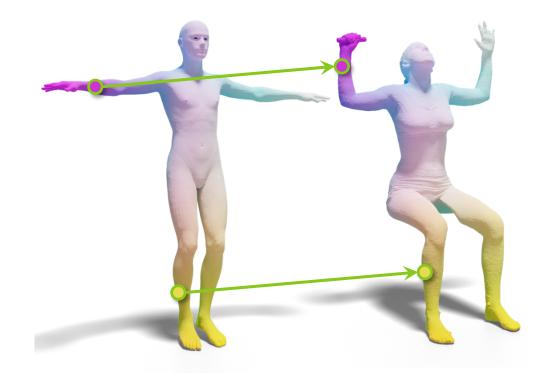
Shape Matching - what is a map?



Vertex-to-point map: $\Pi(x_i) = w_j y_j + w_k y_k + w_l y_l$

April 15, 2025

Map Visualization



Points in correspondences are assigned the same color

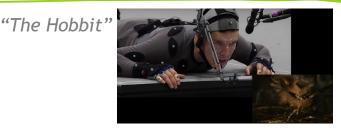
#6

April 15, 2025

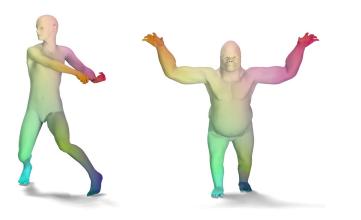
'Q'

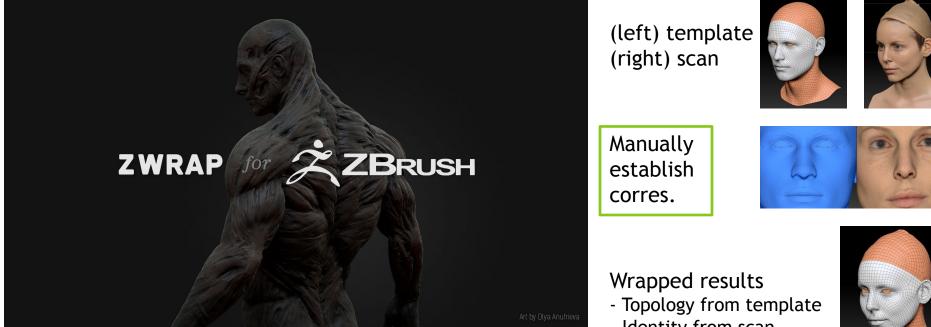
Motion transfer

- Mocap captures the motion/expression of the actor
- Motion/expression transferred to the Ape's model via correspondences



"Dawn of the Planet of the Apes"





Zwrap plugin for R3DS - Russian3DScanner

- Identity from scan

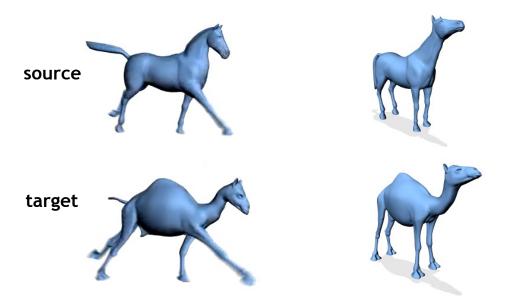
April 15, 2025

Motion transfer

- Motion in the source: S' = S + D
- Given the correspondences f between the source S and the target T

April 15, 2025

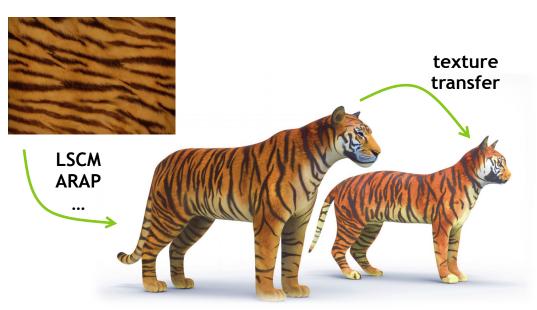
Transferred to target: T' = T + f(D)



"Deformation Transfer for Triangle Meshes" R. Sumner and J. Popovic, SIGGRAPH 2004

• Texture transfer

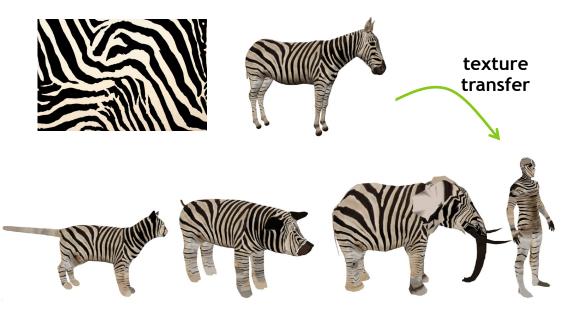
- Paint texture on tiger shape
- Transfer the texture to other shapes via correspondences



"Hierarchical Functional Map between Subdivision Surfaces" M. Shoham, A. Vaxman, M. Ben-Chen, SGP2019

• Texture transfer

- Paint texture on zebra shape
- Transfer the texture to other shapes via correspondences

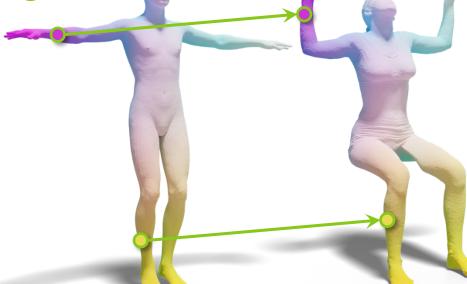


"Interactive Curve Constrained Functional Maps" A.Gehre, M.Bronstein, L.Kobbelt, J. Solomon, SGP2018

With given correspondences, we can transfer from x to y:

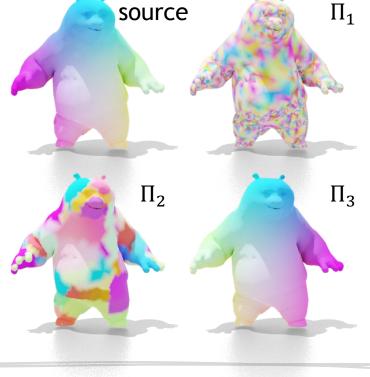
- uv-coordinate
- (R,G,B) color
- segmentation label
- motion (displacement vector)
- deformation (affine transformation)

- Semantically meaningful
- Smooth
- Bijective
- Conformal



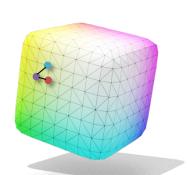
 $\Pi_1 < \Pi_2 < \Pi_3$

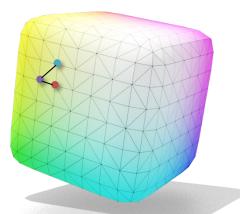
- Semantically meaningful
- Smooth
- Bijective
- Conformal



- Semantically meaningful
- Smooth
 Bijective
 Conformal
 ...

- Semantically meaningful
- Smooth
- Bijective
- Conformal

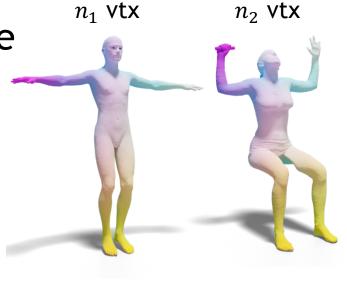




Recall the LSCM energy to measure angle-preservation

Challenges to find a good map

- Large search space
 - For each vertex on the male shape, it has n₂ choices
 - n₂^{n₁} possible maps
 - *n* > 10,000

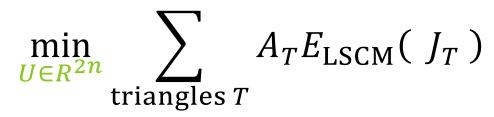


17

April 15, 2025

Challenges to find a good map

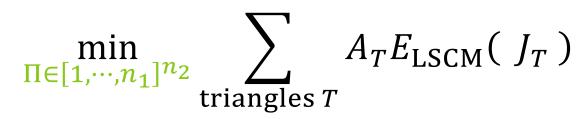
- Discrete search space
 - Recall LSCM for parameterization



- J_T : Jacobian from the 3D triangle in the original shape to 2D triangle in the uv-coordinate
- Quadratic w.r.t. $U \in \mathbb{R}^{2n}$, continuous space!

Challenges to find a good map

- Discrete search space
 - Try to generalize to shape matching



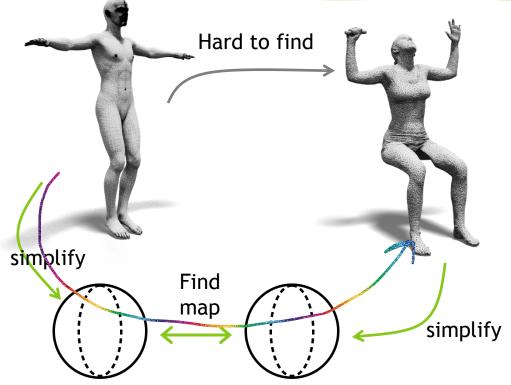
- J_T : Jacobian from the triangle in the source shape to the mapped triangle
- Discrete search space $\Pi \in [1, \dots, n_1]^{n_2}$, gradient is not well-defined! Hard to optimize

Solutions

- Reduce search space size
 - Parameterization-based methods
- Find a continuous search space
 - Functional map-based methods

Parameterization-based methods

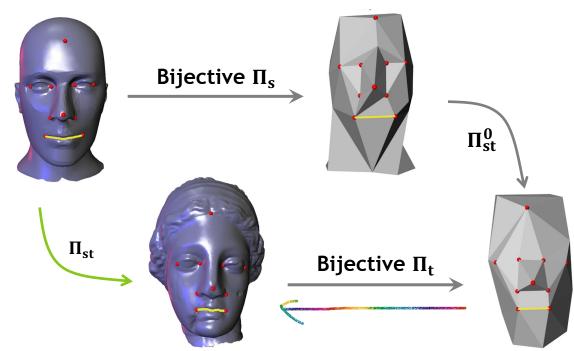
General Idea



- Map the complicated 3D shape to simpler domain
 - Sphere
 - Plane (square)
 - Simplified meshes...
- Find correspondences between the "simplified shapes"
- Propagate the correspondences back to original shapes (as map composition)

April 15, 2025

Multiresolution Mesh Morphing



$$\Pi_{\mathrm{st}} = \Pi_{\mathrm{t}}^{-1} \circ \Pi_{\mathrm{st}}^{0} \circ \Pi_{\mathrm{s}}$$

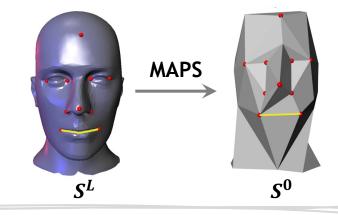
- Q1: how to simplify shapes with bijective map?
- Q2: how to find correspondences at coarse level?

"Multiresolution Mesh Morphing" A.Lee, D. Dobkin, W. Sweldens, P. Schroder, SIGGRAPH 1999

"MAPS"

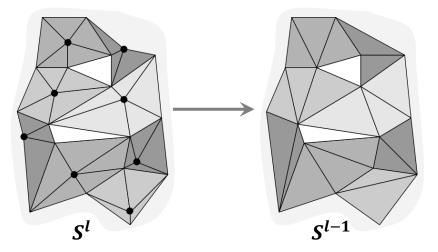
- Q1: how to simplify shapes with bijective map? Key ideas:
- Construct mesh hierarchy: $S^L \to \cdots \to S^l \to S^{l-1} \to \cdots \to S^0$
- $S^l \to S^{l-1}$:
 - Remove vertices
 - Fill holes
 - Establish bijective mapping

"Maps: Multiresolution Adaptive Parameterization of Surfaces" A. Lee, W. Sweldens, P. Schroder, L. Cowsar, D. Dobkin, SIGGRAPH 1998



"MAPS" - vertex removal

 $S^{l} \rightarrow S^{l-1}$: vertex removal



1. Initialize $V = V^{l}, A = [], B = []$

2. Repeat until V is empty: 1. Select one vertex from $v \in V$ 2. A.append(v), Expand the maximally independent vtx set B.append($\mathcal{N}(v)$), Mark the neighbor as non-removable V.pop($v \cup \mathcal{N}(v)$) Update the search queue 3. $V^{l-1} \leftarrow V^l \setminus A$

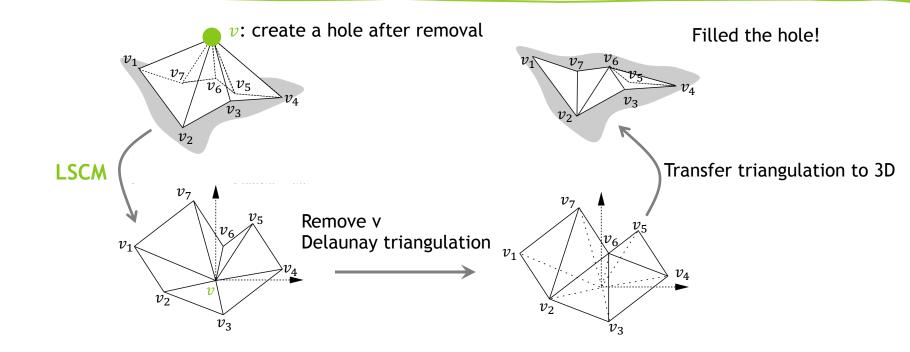
Note: (priority queue) vtx with a flat neighborhood will be selected first - recall Laplacian!

"Maps: Multiresolution Adaptive Parameterization of Surfaces" A. Lee, W. Sweldens, P. Schroder, L. Cowsar, D. Dobkin, SIGGRAPH 1998

Igl

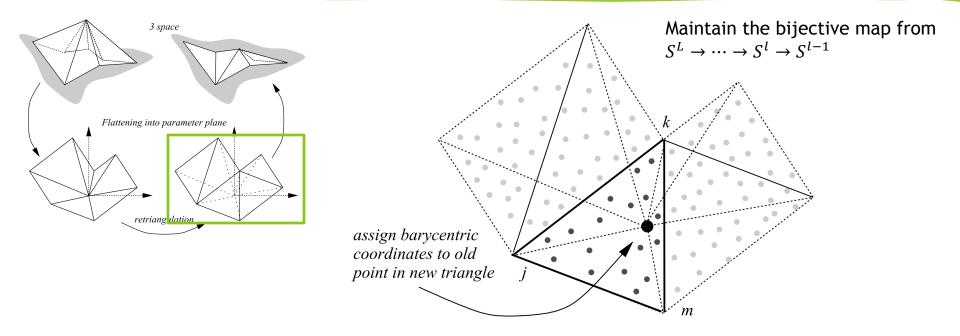
April 15, 2025

"MAPS" - flattening & retriangulation



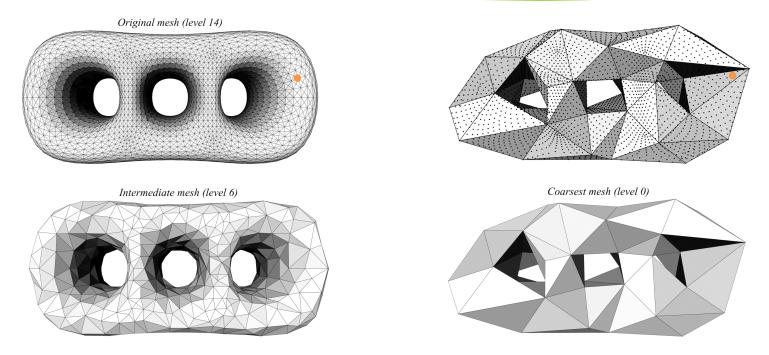
"Maps: Multiresolution Adaptive Parameterization of Surfaces" A. Lee, W. Sweldens, P. Schroder, L. Cowsar, D. Dobkin, SIGGRAPH 1998

"MAPS" - flattening & retriangulation



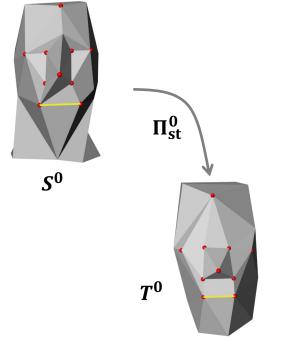
"Maps: Multiresolution Adaptive Parameterization of Surfaces" A. Lee, W. Sweldens, P. Schroder, L. Cowsar, D. Dobkin, SIGGRAPH 1998

"MAPS" - flattening & retriangulation



"Maps: Multiresolution Adaptive Parameterization of Surfaces" A. Lee, W. Sweldens, P. Schroder, L. Cowsar, D. Dobkin, SIGGRAPH 1998

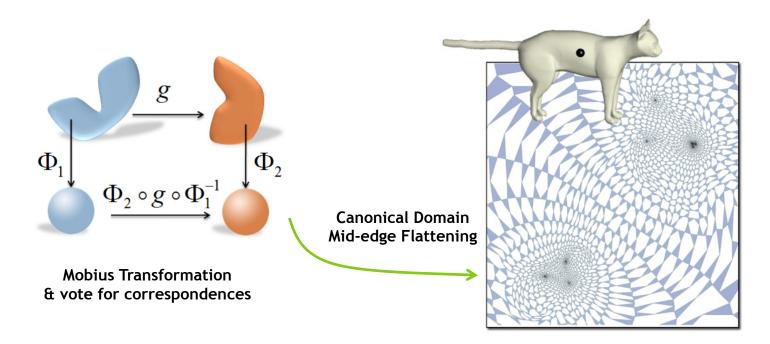
Parameterization-based methods



- Given corresponding landmarks (red points)
- Global alignment via landmarks (rigid ICP)
- Vertex-to-point mapping from S^0 to T^0
 - For each vertex in S^0 , find its closest point in the closest triangle in T^0
 - The points (= vertices in the original shape) in the triangles of S^0 are map using barycentric coordinates

"Multiresolution Mesh Morphing" A.Lee, D. Dobkin, W. Sweldens, P. Schroder, SIGGRAPH 1999

Mobius-Voting for surface correspondence



"Mobius Voting for Surface Correspondence" Y. Lipman, T. Funkhouser, SIGGRAPH 2009

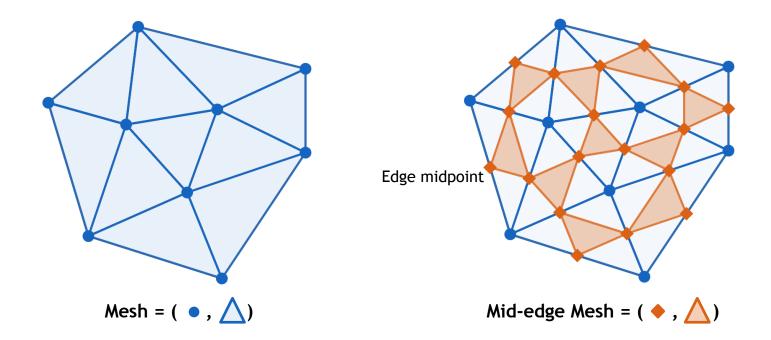
Mobius Transform: $f(z) = \frac{az+b}{cz+d}$

- Mobius Transformation $f(z) = \frac{az+b}{cz+d}$
- Translation f(z) = z + b
- Rotation $f(z) = e^{i\theta}z$
- Scaling f(z) = kz
- Inversion $f(z) = \frac{1}{z}$

In general: maps every line/circle to line or circle

"Möbius Transformations Revealed [HD] - YouTube" Möbius Transforma

Mobius-Voting: Mid-Edge Mesh

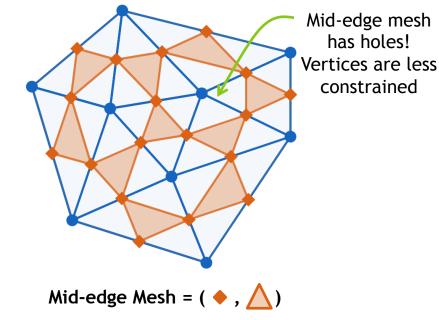


"Mobius Voting for Surface Correspondence" Y. Lipman, T. Funkhouser, SIGGRAPH 2009

Mobius-Voting: Mid-Edge Mesh

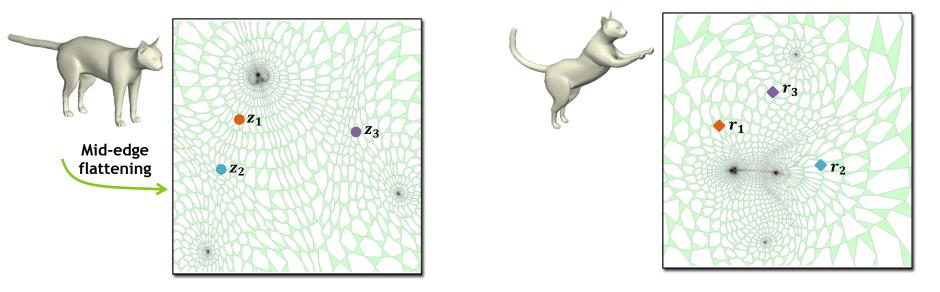
- For non-developable surface: $E_{LSCM}(U) \neq 0 \forall U \neq \text{const.}$
- i.e., any non-trivial uv-flattening has non-zero (discrete) conformal error
- Mid-edge mesh: can be flattened with zero (discrete) conformal error

Recall: zero conformal error means each face undergoes a similarity transformation



"Mobius Voting for Surface Correspondence" Y. Lipman, T. Funkhouser, SIGGRAPH 2009

Mobius-Voting: solve transformation

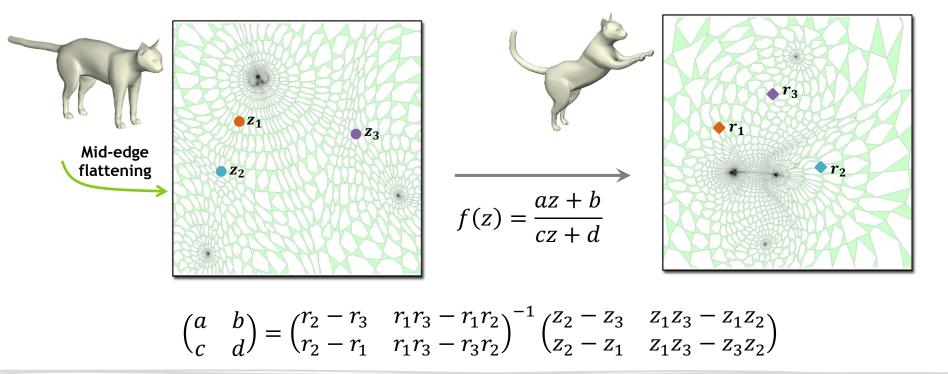


We need 3 corresponding points in the canonical domain to solve for the Mobius transformation $f(z) = \frac{az+b}{cz+d}$

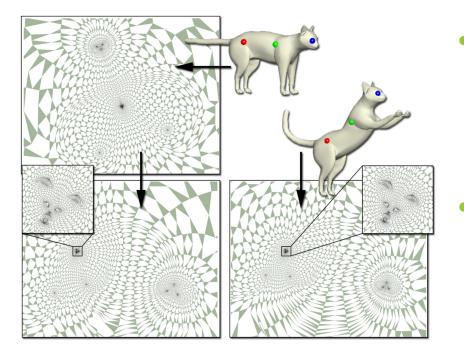
i.e., solve (a, b, c, d) from $f(z_i) = r_i, i = 1, 2, 3$

April 15, 2025

Mobius-Voting: solve transformation

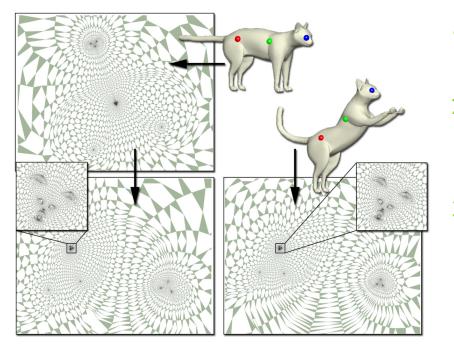


Mobius-Voting: solve transformation

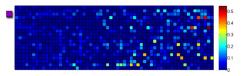


- If the three chosen points are in true correspondences, after applying the Mobius transformation (bottom row), the two flattenings look similar.
- I.e., only need to find 3 pairs of accurate correspondences, instead of N pairs.

Mobius-Voting: correspondences



- 1. Find correspondences in the canonical domain (complex plane)
 - . Measure the distance between the corresponding points in the complex plane
- 3. The average error is used to score the 3 chosen pairs for Mobius transformation computation



) ıgl

Functional Map for Matching

Solutions

- Reduce search space size
 - Parameterization-based methods
- Find a continuous search space
 - Functional map-based methods
 - Instead of finding correspondences between vertices on shapes, try to find correspondences between functions defined on shapes.

Functional Map

• Function
$$f(\cdot): x \to y = f(x)$$

Maps a (high-dim) point to a point

• E.g.,
$$f(x) = x^2$$

Functional Map

• Functional
$$F(\cdot): f \rightarrow g = F(f)$$

• Maps a function $f(\cdot)$ to another function $g(\cdot)$

• E.g.,
$$(F(f))(x) = \int_{-\infty}^{x} f(t)dt$$

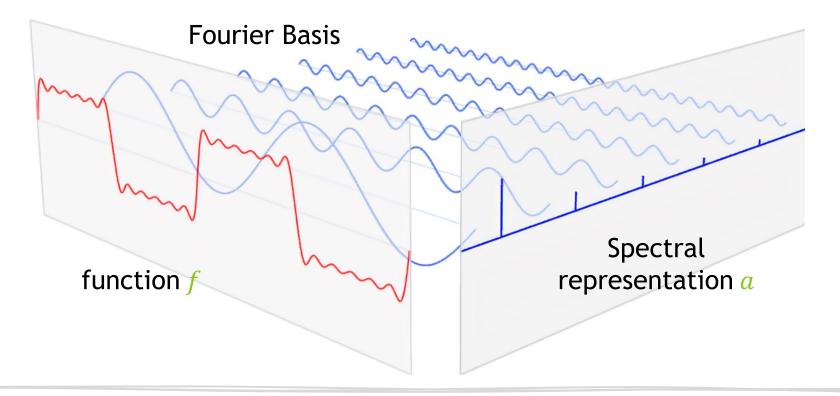
Function defined on shape $f: \mathbb{R}^3 \to \mathbb{R}$

- Per-vertex function $f(v_i) = f_i$
- Piece-wise linear: for a point p in the triangle (v_i, v_j, v_k) :

$$p = w_i v_i + w_j v_j + w_k v_k$$

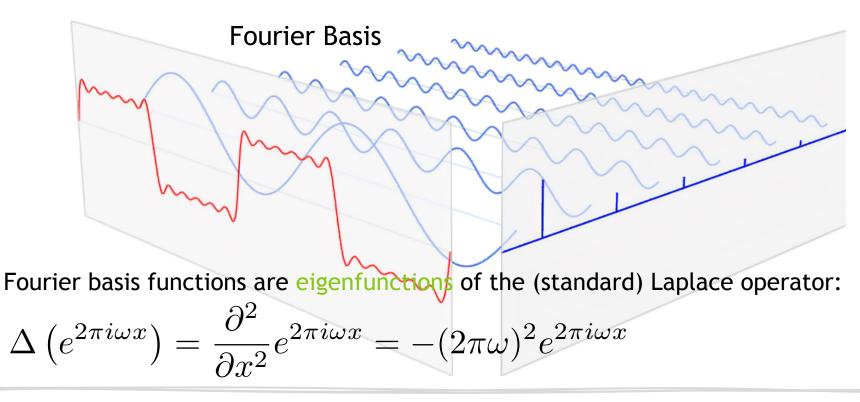
We can define $f(p) = w_i f(v_i) + w_j f(v_j) + w_k f(v_k)$ $= w_i f_i + w_j f_j + w_k f_k$

Fourier Series



April 15, 2025

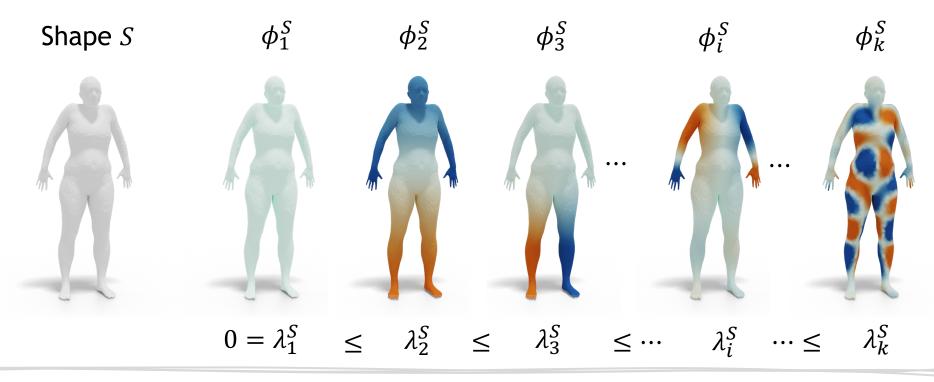
Fourier Series



- Recall the cotangent Laplacian *L*
- Let's try to find its eigenvectors/eigenfunctions
- i.e., solve the Helmholtz equation

 $Lf = \lambda Mf$

• Note $L \in \mathbb{R}^{n \times n}$, the eigenvector $f \in \mathbb{R}^n$ therefore can be regarded as a basis function defined on the shape

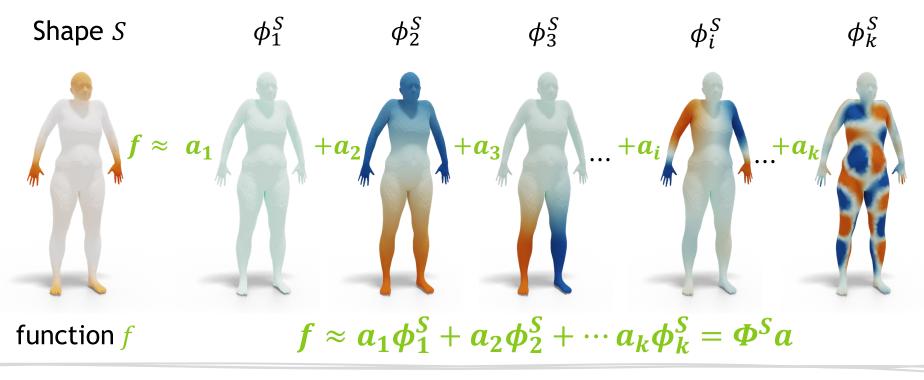


🔘 ıgl

April 15, 2025

Jing Ren

ETH zürich



IQ

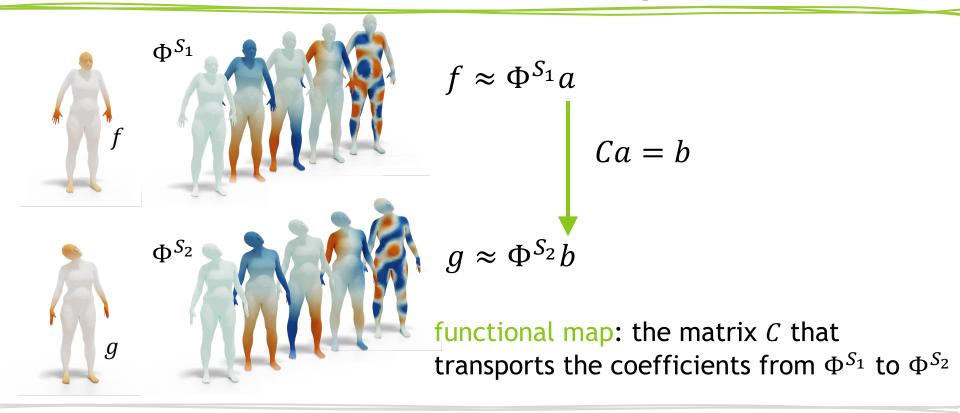
Shape S

function *f*

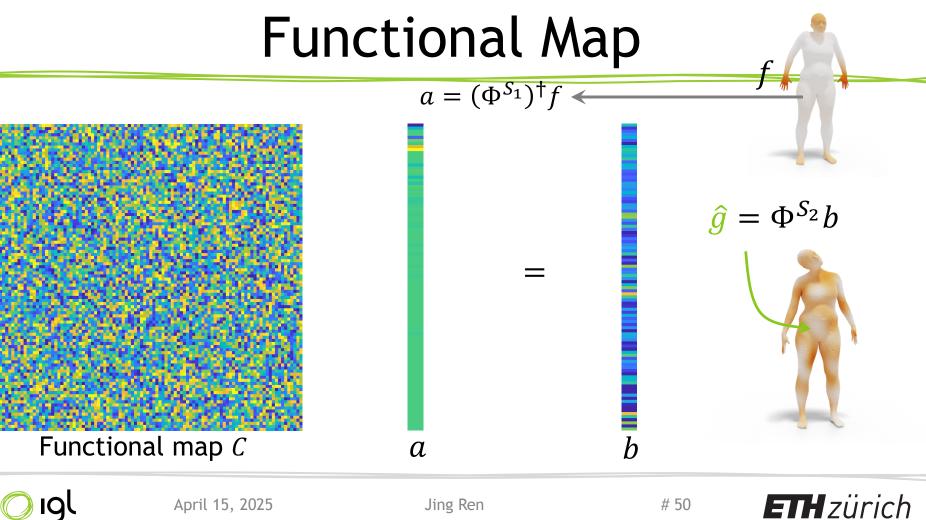
$$f \approx a_1 \phi_1^S + a_2 \phi_2^S + \cdots + a_k \phi_k^S = \Phi^S a$$

It means, we can use a k-dim vector $a \in \mathbb{R}^k$ to approximately represent the function $f \in \mathbb{R}^n$, where $k \ll n$

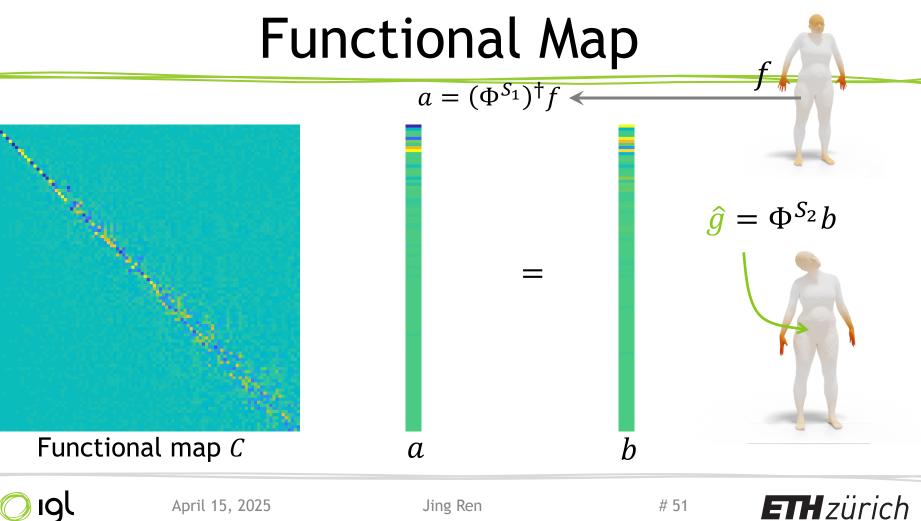
Functional Map



April 15, 2025



April 15, 2025



April 15, 2025

Q

Functional Map Pipeline

- Q1: How to find such a good functional map?
- Q2: How to recover a pointwise map from a functional map (matrix!)?

Functional Map Computation

$$C_{12}^* = \operatorname{argmin}_C \|CA - B\|_F^2$$

 $+ w_1 \| C \Delta_1 - \Delta_2 C \|_F^2$

Descriptor preservation [OBCS*12]

Laplacian commutativity [OBCS*12]

$$+ w_2 \left\| C \Omega_1^{multi} - \Omega_2^{multi} C \right\|_F^2$$

 $+ w_3 \| C \Omega_1^{orient} - \Omega_2^{orient} C \|_F^2$

Multiplicative operators [NO17]

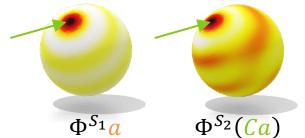
Orientation preservation [RPW018]

Use any quadratic solver to solve for C (the search space is $R^{k_1 \times k_2}$, continuous!)

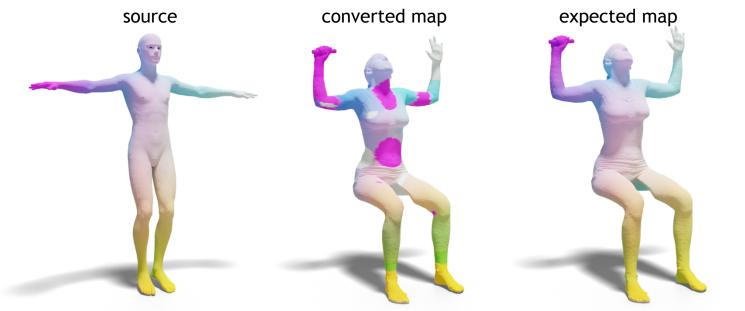
+ …

Pointwise Map Conversion

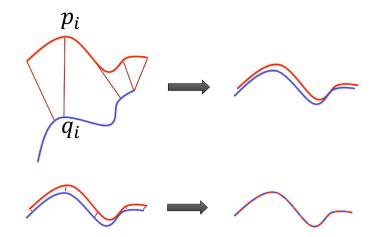
- Given a good functional map C, how do we know where $v \in S_1$ is mapped to on S_2 ?
- Define a delta function $\delta(x) = 1$ if x = v, otherwise $\delta(x) = 0$
- $\delta(x)$ is a function defined on S_1 with spectral coefficients *a*
- *Ca* should gives the spectral coefficients on the target shape
- $g = \Phi^{S_2}(Ca)$ should be close to a delta function on S_2
- argmax g gives the correspondence to v



Map Refinement



- Functional map computed in the truncated spectral basis
- Converted map can be noisy \rightarrow need postprocessing (i.e., map refinement)



Basic Algorithm:

- 1. Find corresponding points (p_i, q_i) via nearest neighbor searching
- 2. Find the best rigid alignment by minimizing:

$$E(R,t) = \sum_{i=1}^{n} ||(Rp_i + t) - q_i||^2$$

3. Apply (R, t) to the source shape, go back to step 1

Rewrite ICP:

$$E(R, \Pi_{12}) = \sum_{p \in S_1} \left\| RX_1(p) - X_2(\Pi_{12}(p)) \right\|^2$$

- 1. Solve $\operatorname{argmin}_{\Pi_{12}} E(\Pi_{12} \mid R)$
- 2. Solve argmin $R E(R | \Pi_{12})$
- 3. go back to step 1

 $X_i(p)$: homogeneous coordinate $(x, y, z, 1)^T$ of vertex p in shape S_i , Π_{12} is a pointwise map from S_1 to S_2

Basic Algorithm:

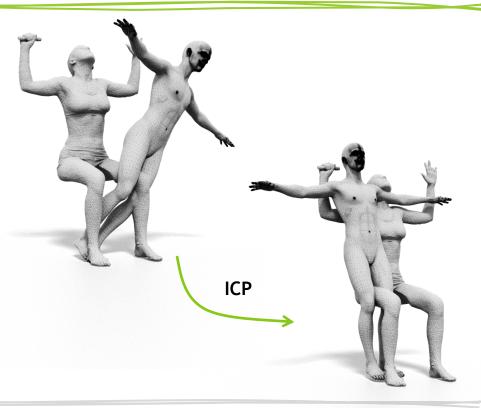
- 1. Find corresponding points (p_i, q_i) via nearest neighbor searching
- 2. Find the best rigid alignment by minimizing: $E(R,t) = \sum_{i=1}^{n} ||(Rp_i + t) - q_i||^2$
- 3. Apply (*R*, *t*) to the source shape, go back to step 1

Rewrite ICP:

$$E(R,\Pi_{12}) = \sum_{p \in S_1} \left\| RX_1(p) - X_2(\Pi_{12}(p)) \right\|^2$$

- 1. Solve $\operatorname{argmin}_{\Pi_{12}} E(\Pi_{12} \mid R)$
- 2. Solve argmin R $E(R \mid \Pi_{12})$
- 3. go back to step 1

 $X_i(p)$: homogeneous coordinate $(x, y, z, 1)^T$ of vertex p in shape S_i , Π_{12} is a pointwise map from S_1 to S_2

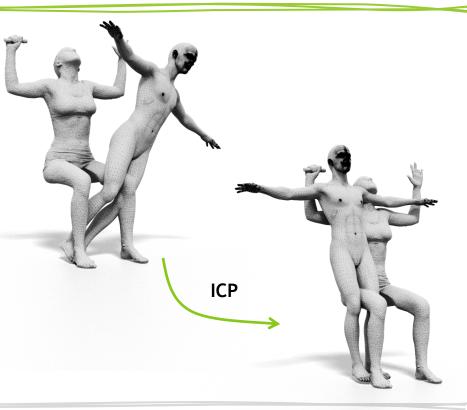


Why ICP fails in non-rigid matching:

$$E(R, \Pi_{12}) = \sum_{p \in S_1} \left\| R X_1(p) - X_2(\Pi_{12}(p)) \right\|^2$$

- nn-search in spatial domain to establish correspondences
- Vertex positions X₁, X₂ are extrinsic features

Solution: find intrinsic features to align



Spectral ICP

Spatial ICP:

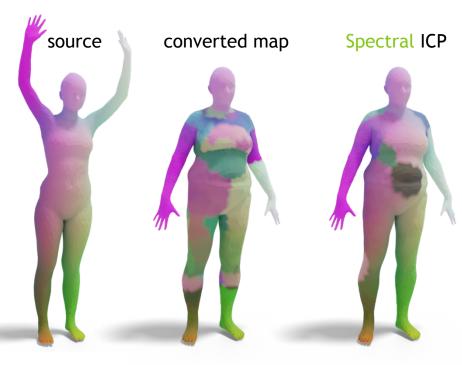
$$E(R,\Pi_{12}) = \sum_{p \in S_1} \left\| RX_1(p) - X_2(\Pi_{12}(p)) \right\|^2$$

Spectral ICP:

$$E(\mathcal{C}, \Pi_{12}) = \sum_{p \in S_1} \left\| \mathcal{C} \Phi_1(p) - \Phi_2(\Pi_{12}(p)) \right\|^2$$

- nn-search in spectral domain to establish correspondences
- Laplace-Beltrami EigenBasis Φ_1, Φ_2 are intrinsic features
- C: high-dimensional rotation to align the spectral domain functional map!

Spectral ICP



Spectral ICP:

$$E(\mathcal{C}, \Pi_{12}) = \sum_{p \in S_1} \left\| \mathcal{C} \Phi_1(p) - \Phi_2 \big(\Pi_{12}(p) \big) \right\|^2$$

- Φ_i usually has a size of 50~500
- C then has a size of $50^2 \sim 500^2$
- linear system can be underdetermined
- Can easily get trapped into local minima

April 15, 2025

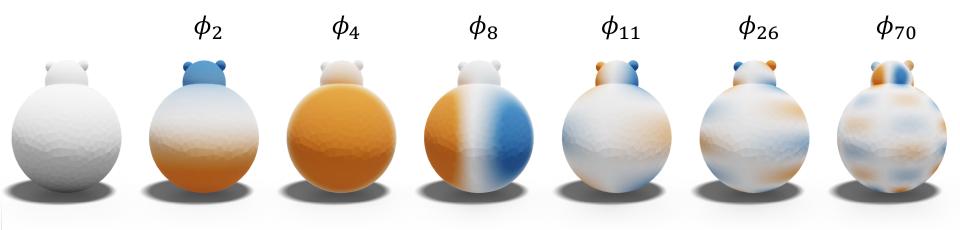
Spectral ICP:

$$E(\mathcal{C}, \Pi_{12}) = \sum_{p \in S_1} \left\| \mathcal{C} \Phi_1(p) - \Phi_2(\Pi_{12}(p)) \right\|^2$$

- The functional map *C* tries to align the high-dimensional feature (spectral) space of the two shapes
- Align in a progressive manner

Global structure \rightarrow **Local structure**

April 15, 2025



Low frequency \rightarrow High frequency

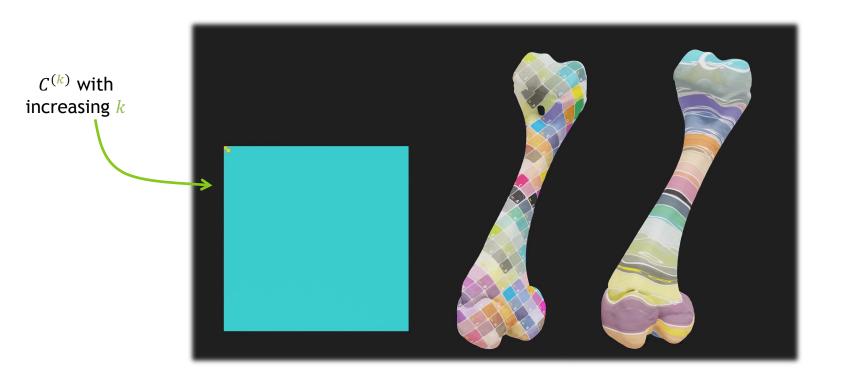
IQI

April 15, 2025

ZoomOut algorithm for minimizing Spectral ICP:

$$E(C, \Pi_{12}) = \sum_{p \in S_1} \left\| C \Phi_1(p) - \Phi_2(\Pi_{12}(p)) \right\|^2$$

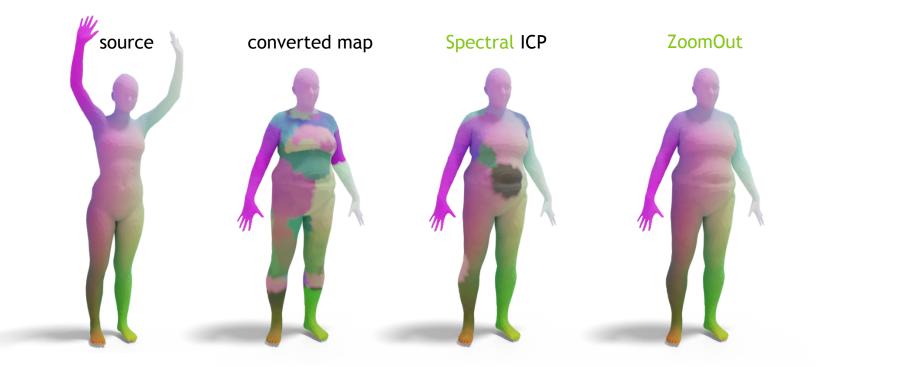
- 1. Initialize Π_{12} and k, where $\Phi_i^{(k)}$ stores the first k Eigen-basis
- 2. Solve for $C^{(k)} = \arg\min_{C} \sum_{p \in S_1} \left\| C \Phi_1^{(k)}(p) \Phi_2^{(k)}(\Pi_{12}(p)) \right\|^2$
- 3. Solve for $\Pi_{12} = \arg\min_{\Pi_{12}} \sum_{p \in S_1} \left\| C^{(k)} \Phi_1^{(k)}(p) \Phi_2^{(k)}(\Pi_{12}(p)) \right\|^2$
- 4. $k \leftarrow k + 1$, go to step 2



April 15, 2025

Q

Spectral ICP v.s. ZoomOut



April 15, 2025

Summary

- Two parameterization-based methods which reduce the search space
 - "MAPS": simplify mesh while maintain the bijective map
 - "Mobius Voting": find 3 correspondences to compute the Mobius transformation
- Functional map pipeline which solves the matching problem in a continuous search space
 - Spectral ICP
 - ZoomOut

Thank You

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

April 15, 2025