
252-0538-00 Shape Modeling and Geometry Processing - Spring 2025

Assignment 1: Hello World
Handout date: 21/02/2025

Submission date: 07/03/2025, 10:00

In this exercise you will

• Familiarize yourself with libigl and the provided mesh viewer.
• Get acquainted with some basic mesh programming by evaluating surface normals, computing
mesh connectivity and isolating connected components.

• Implement a simple mesh subdivision scheme.

1. Setup

Please go to https://github.com/eth-igl/GP2025-Assignments and carefully follow the instructions
detailed in the README.

2. First steps with libigl

The first task is to familiarize yourself with some of the basic code infrastructure provided by libigl.
To get a feeling for the basics of libigl, watch this short introductory video.

2.1. Eigen. libigl uses the Eigen library for all of its matrix computations. In libigl, a mesh is
typically represented by a set of two Eigen arrays, V and F. V is a float or double array (dimension #V
× 3 where #V is the number of vertices) that contains the positions of the vertices of the mesh, where
the i-th row of V contains the coordinates of the i-th vertex. F is an integer array (dimension #faces ×
3 where #F is the number of faces) which contains the descriptions of the triangles in the mesh. The
i-th row of F contains the indices of the vertices in V that form the i-th face, ordered counter-clockwise.

Check out the ”Getting Started” page of Eigen as well as the Quick Reference page to acquaint
yourselves with the basic matrix operations supported.

Note that you don’t need to install Eigen manually since a reasonably up-to-date version is included
as a submodule in libigl.

2.2. Compiling and Running the libigl Tutorials (optional). First, fetch libigl and configure:
cd libigl tutorials/; mkdir build; cd build; cmake -DCMAKE BUILD TYPE=Release ..

The tutorials are located in libigl/tutorial, each named with format XXX TUTORIAL NAME, where
XXX is the number ID of the tutorial. You can list the targets with the command:
cmake --build . --target help

and build a specific tutorial with the command:
cmake --build . --target XXX TUTORIAL NAME or make -j XXX TUTORIAL NAME

Olga Sorkine-Hornung

February 20, 2025

1

https://github.com/eth-igl/GP2025-Assignments
https://libigl.github.io/#short-video-introduction
http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/dox/GettingStarted.html
http://eigen.tuxfamily.org/dox/group__QuickRefPage.html

252-0538-00 Shape Modeling and Geometry Processing - Spring 2025

After the build completes, cd to the bin directory and then each tutorial executable can be run, e.g.:
./bin/XXX TUTORIAL NAME

The source code for the corresponding tutorial is located in
libigl tutorials/libigl/tutorial/XXX TUTORIAL NAME/main.cpp

Experiment with the basic functionality of libigl and the included mesh viewer by running at least
the first 7 tutorials and inspecting the corresponding source code.

3. Important note

During the live demo sessions you only have a limited amount of time to showcase us your homework
assignment. It is therefore crucial that your code works for different meshes and parameter settings
without needing to be recompiled. There is no time for you to recompile your code during your
demo. Make sure you can change the displayed mesh using a command line parameter or via the GUI
menu (and the same goes for other parameters). The template for this first assignment includes code
to launch the program with a mesh of your choice from the command line.

4. Neighborhood Computations [1 point]

For this task, you will use libigl to perform basic neighborhood computations on a mesh. Computing
the neighbors of a mesh face or vertex is required for most mesh processing operations, as you will see
later in the class. You need to fill in the appropriate sections (inside the keyboard callback, keys ’1’ to
’2’) of src/main.cpp to compute the neighborhood relations using libigl. In order to use a function
from libigl (e.g. the function to compute per-face normals), you must include the relevant header file
at the top of your main.cpp file (e.g. #include <igl/per face normals.h>) and call it later in your
code (igl::per face normals(V,F,FN)). These header files provide information on the expected in-
and outputs for the respective functions. You can provide a desired input mesh as a command line
argument to the starter code, so you don’t have to recompile your code for changing the input mesh.

4.1. Vertex-to-Face Relations. Given V and F, generate an adjacency list which contains, for each
vertex, a list of faces adjacent to it. The ordering of the faces incident on a vertex does not matter.
Your program should print out the vertex-to-face relations in text form when key ’1’ is pressed.

Relevant libigl functions: igl::vertex triangle adjacency.

4.2. Vertex-to-Vertex Relations. Given V and F, generate an adjacency list which contains, for each
vertex, a list of vertices connected with it. Two vertices are connected if there exists an edge between
them, i.e., if the two vertices appear in the same row of F. The ordering of the vertices in each list does
not matter. Your program should print out the vertex-to-vertex relations in text form when key ’2’ is
pressed.

Relevant libigl functions: igl::adjacency list.

4.3. Visualizing the Neighborhood Relations. Check your results by comparing them to the built-in
relations calculated by the mesh viewer. You can do this by clicking on the checkboxes “Show vertex
labels” and “Show faces labels” in the viewer window.

Olga Sorkine-Hornung

February 20, 2025

2

252-0538-00 Shape Modeling and Geometry Processing - Spring 2025

5. Shading [2 points]

For this task, you will experiment with the different ways of shading discrete surfaces already imple-
mented in libigl. Fill in the appropriate source code sections (inside the keyboard callback, keys ’3’
to ’5’) to display the mesh with the appropriate shading.

Figure 1. Flat Shading

5.1. Per-face Shading. The simplest shading technique is flat shading, where each polygon of an
object is colored based on the angle between the polygon’s surface normal and the direction of the light
source, their respective colors, and the intensity of the light source. With flat shading, all vertices of
a polygon are colored identically. Your program should compute the appropriate shading normals and
shade the input mesh with flat shading when the key ’3’ is pressed.

Relevant libigl functions: igl::per face normals. Call viewer.data().set normals(·) to
set the shading in the viewer to use the normals you computed.

5.2. Per-vertex Shading. Flat shading may produce visual artifacts, due to the color discontinuity
between neighboring faces. Specular highlights may be rendered poorly with flat shading. When per-
vertex shading is used, per-vertex normals are computed for each vertex by averaging the normals of
the surrounding faces. Your program should compute the appropriate shading normals and shade the
input mesh with per-vertex shading when the key ’4’ is pressed.

Relevant libigl functions: igl::per vertex normals. Call viewer.data().set normals(·) to
set the shading in the viewer to use the normals you computed.

Compare this result with the ones obtained with flat shading.

5.3. Per-corner Shading. On models with sharp feature lines, averaging the per-face normals on the
feature, as done for per-vertex shading, may result in blurred rendering. It is possible to avoid this
limitation and to render crisp sharp features by using per-corner normals. In this case, a different normal
is assigned to each face corner; this implies that every vertex will get a (possibly different) normal
for every adjacent face. A threshold parameter is used to decide when an edge belongs to a sharp
feature. The threshold is applied to the angle between the two corner normals: if it is less than the
threshold value, the normals must be averaged, otherwise they are kept untouched. Your program should

Olga Sorkine-Hornung

February 20, 2025

3

252-0538-00 Shape Modeling and Geometry Processing - Spring 2025

Figure 2. Per-Vertex Shading

compute the appropriate shading normals (with a threshold that clearly looks different from per-vertex
and per-face shading) and shade the input mesh with per-corner shading when the key ’5’ is pressed.

Relevant libigl functions: igl::per corner normals. Call viewer.data().set normals(·) to
set the shading in the viewer to use the normals you computed.

Compare the results with the ones obtained with flat and per-vertex shading. Experiment with the
threshold value.

Figure 3. Per-Corner Shading

6. Connected Components [1 point]

Using neighborhood connectivity, it is possible to partition a mesh into connected components, where
each mesh face belongs only to a single component. Fill in the appropriate source code sections (inside
the keyboard callback, key ’6’) to display the mesh with each face colored to indicate the component it
belongs to (coloring each component distinctly). You can use the jet colormap provided with libigl

to assign colors to the components, or you can implement your own colormap.

Relevant libigl functions: igl::facet components, igl::jet. Call viewer.data().set colors(·)
to set the displayed colors to the per-face colors you computed.

Olga Sorkine-Hornung

February 20, 2025

4

252-0538-00 Shape Modeling and Geometry Processing - Spring 2025

Figure 4. Connected components visualized by coloring each component distinctly.

7. A simple subdivision scheme [6 points]

For this task, you will implement the subdivision scheme described in [1] (https://www.graphics.
rwth-aachen.de/media/papers/sqrt31.pdf) to iteratively create finer meshes from a given coarse
mesh. According to the paper, given a mesh (V,F), the

√
3-subdivision scheme creates a new mesh

(V’,F’) by applying the following rules:

(1) Add a new vertex at location mf for each face f ∈ F of the original mesh. The new vertex
will be located at the midpoint of the face. Append the newly created vertices M = {mf} to
V to create a new set of vertices V ′′ = [V ;M]. Add three new faces for each face f in order
by connecting mf with edges to the original 3 vertices of the face; we call the set of this newly
created faces F ′′. Replace the old set of faces F with F ′′.

(2) Move each vertex v of the old vertices V to a new position p by averaging v with the positions
of its neighboring vertices in the original mesh. If v has valence n and its neighbors in the
original mesh (V,F) are located at v0,v1, . . . ,vn, then the update rule is

Olga Sorkine-Hornung

February 20, 2025

5

https://www.graphics.rwth-aachen.de/media/papers/sqrt31.pdf
https://www.graphics.rwth-aachen.de/media/papers/sqrt31.pdf

252-0538-00 Shape Modeling and Geometry Processing - Spring 2025

Figure 5.
√
3 Subdivision. From left to right: original mesh, added vertices at the

midpoints of the faces (step 1), connecting the new points to the original mesh (step
1), flipping the original edges to obtain a new set of faces (step 3). Step 2 involves
shifting the original vertices and is not shown.

p = (1− an)v +
an
n

n−1∑
i=0

vi

where an =
4−2 cos(2π

n)
9 . The vertex set of the subdivided mesh is then V ′ = [P,M], where P

is the concatenation of the new positions p for all vertices.
(3) Replace the F ′′ with a new set of faces F ′ such that the edges connecting the newly added points

M to P (the relocated original vertices) remain but the original edges of the mesh connecting
points in P to each other are flipped. See Figure 5.

Figure 6. Example of one
√
3 subdivision step.

Note: please make sure that boundary vertices stay at their original position and that edges between
two boundary vertices do not get flipped.

Fill in the appropriate source code sections (inside the keyboard callback, key ’7’) so that hitting key
’7’ subdivides the mesh once and displays it in place of the old mesh.

Olga Sorkine-Hornung

February 20, 2025

6

252-0538-00 Shape Modeling and Geometry Processing - Spring 2025

Relevant libigl functions: Many options possible. Some suggestions: igl::adjacency list,
igl::triangle triangle adjacency, igl::edge topology, igl::barycenter. Use viewer.data().clear()
and viewer.data().set mesh(·,·) to replace the displayed mesh in the viewer.

References

[1] Leif Kobbelt. Sqrt(3)-subdivision, 2000.

Olga Sorkine-Hornung

February 20, 2025

7

	1. Setup
	2. First steps with libigl
	2.1. Eigen
	2.2. Compiling and Running the libigl Tutorials (optional)

	3. Important note
	4. Neighborhood Computations [1 point]
	4.1. Vertex-to-Face Relations
	4.2. Vertex-to-Vertex Relations
	4.3. Visualizing the Neighborhood Relations

	5. Shading [2 points]
	5.1. Per-face Shading
	5.2. Per-vertex Shading
	5.3. Per-corner Shading

	6. Connected Components [1 point]
	7. A simple subdivision scheme [6 points]
	References

